Articles | Volume 19, issue 4
https://doi.org/10.5194/nhess-19-889-2019
https://doi.org/10.5194/nhess-19-889-2019
Research article
 | 
18 Apr 2019
Research article |  | 18 Apr 2019

Evaluating earthquake-induced rockfall hazard near the Dead Sea Transform

Mor Kanari, Oded Katz, Ram Weinberger, Naomi Porat, and Shmuel Marco

Related authors

Towards in situ U–Pb dating of dolomite
Bar Elisha, Perach Nuriel, Andrew Kylander-Clark, and Ram Weinberger
Geochronology, 3, 337–349, https://doi.org/10.5194/gchron-3-337-2021,https://doi.org/10.5194/gchron-3-337-2021, 2021
Short summary
Extended-range luminescence dating of quartz and alkali feldspar from aeolian sediments in the eastern Mediterranean
Galina Faershtein, Naomi Porat, and Ari Matmon
Geochronology, 2, 101–118, https://doi.org/10.5194/gchron-2-101-2020,https://doi.org/10.5194/gchron-2-101-2020, 2020
Short summary
Assessment of seismic sources and capable faults through hierarchic tectonic criteria: implications for seismic hazard in the Levant
Matty Sharon, Amir Sagy, Ittai Kurzon, Shmuel Marco, and Marcelo Rosensaft
Nat. Hazards Earth Syst. Sci., 20, 125–148, https://doi.org/10.5194/nhess-20-125-2020,https://doi.org/10.5194/nhess-20-125-2020, 2020
Short summary
Brief communication: Post-wildfire rockfall risk in the eastern Alps
Sandra Melzner, Nurit Shtober-Zisu, Oded Katz, and Lea Wittenberg
Nat. Hazards Earth Syst. Sci., 19, 2879–2885, https://doi.org/10.5194/nhess-19-2879-2019,https://doi.org/10.5194/nhess-19-2879-2019, 2019
Short summary
Overview: Documentation and monitoring of landslides and debris flows for mathematical modelling and design of mitigation measures – outcomes of the EGU 2011, NH session
L. Franzi, M. Arattano, M. Arai, and O. Katz
Nat. Hazards Earth Syst. Sci., 13, 2013–2016, https://doi.org/10.5194/nhess-13-2013-2013,https://doi.org/10.5194/nhess-13-2013-2013, 2013

Related subject area

Earthquake Hazards
Modelling seismic ground motion and its uncertainty in different tectonic contexts: challenges and application to the 2020 European Seismic Hazard Model (ESHM20)
Graeme Weatherill, Sreeram Reddy Kotha, Laurentiu Danciu, Susana Vilanova, and Fabrice Cotton
Nat. Hazards Earth Syst. Sci., 24, 1795–1834, https://doi.org/10.5194/nhess-24-1795-2024,https://doi.org/10.5194/nhess-24-1795-2024, 2024
Short summary
Scoring and ranking probabilistic seismic hazard models: an application based on macroseismic intensity data
Vera D'Amico, Francesco Visini, Andrea Rovida, Warner Marzocchi, and Carlo Meletti
Nat. Hazards Earth Syst. Sci., 24, 1401–1413, https://doi.org/10.5194/nhess-24-1401-2024,https://doi.org/10.5194/nhess-24-1401-2024, 2024
Short summary
A dense micro-electromechanical system (MEMS)-based seismic network in populated areas: rapid estimation of exposure maps in Trentino (NE Italy)
Davide Scafidi, Alfio Viganò, Jacopo Boaga, Valeria Cascone, Simone Barani, Daniele Spallarossa, Gabriele Ferretti, Mauro Carli, and Giancarlo De Marchi
Nat. Hazards Earth Syst. Sci., 24, 1249–1260, https://doi.org/10.5194/nhess-24-1249-2024,https://doi.org/10.5194/nhess-24-1249-2024, 2024
Short summary
Exploring inferred geomorphological sediment thickness as a new site proxy to predict ground-shaking amplification at regional scale: application to Europe and eastern Türkiye
Karina Loviknes, Fabrice Cotton, and Graeme Weatherill
Nat. Hazards Earth Syst. Sci., 24, 1223–1247, https://doi.org/10.5194/nhess-24-1223-2024,https://doi.org/10.5194/nhess-24-1223-2024, 2024
Short summary
Surface rupture kinematics of the 2020 Mw 6.6 Masbate (Philippines) earthquake determined from optical and radar data
Khelly Shan Sta. Rita, Sotiris Valkaniotis, and Alfredo Mahar Francisco Lagmay
Nat. Hazards Earth Syst. Sci., 24, 1135–1161, https://doi.org/10.5194/nhess-24-1135-2024,https://doi.org/10.5194/nhess-24-1135-2024, 2024
Short summary

Cited articles

Agliardi, F. and Crosta, G. B.: High resolution three-dimensional numerical modelling of rockfalls, Int. J. Rock Mech. Min. Sci., 40, 455–471 2003. 
Ambraseys, N. N.: The earthquake of 1 January 1837 in Southern Lebanon and Northern Israel, Ann. Geofis., 4, 923–935, 1997. 
Ambraseys, N. N. and Barazangi, M.: The 1759 Earthquake in the Bekaa Valley: Implications for Earthquake Hazard Assessment in the Eastern Mediterranean Region, J. Geophys. Res., 94, 4007–4013, doi:10.1029/JB094iB04p04007, 1989. 
Amiran, D. H. K., Arieh, E., and Turcotte, T.: Earthquakes in Israel and Adjacent Areas – Macroseismic Observations since 100 Bce, Isr. Explor. J., 44, 260–305, 1994. 
Badoux, A., Andres, N., Techel, F., and Hegg, C.: Natural hazard fatalities in Switzerland from 1946 to 2015, Nat. Hazards Earth Syst. Sci., 16, 2747–2768, https://doi.org/10.5194/nhess-16-2747-2016, 2016. 
Download
Short summary
We study rockfall hazard to a town in an earthquake-prone area, where large trailer-truck-sized boulders are scattered downslope above the town. Mapping boulder locations and sizes (in the field and in past aerial photos) and calculating their predicted trajectories downslope using computer simulation yielded a hazard map for rockfall impact. Hazard is reduced where slope angle is below 10°. Dating rockfalls coincides with past earthquakes and predicts probability for future rockfall.
Altmetrics
Final-revised paper
Preprint