Articles | Volume 19, issue 12
https://doi.org/10.5194/nhess-19-2905-2019
https://doi.org/10.5194/nhess-19-2905-2019
Research article
 | 
20 Dec 2019
Research article |  | 20 Dec 2019

Nonlinear deformation and run-up of single tsunami waves of positive polarity: numerical simulations and analytical predictions

Ahmed A. Abdalazeez, Ira Didenkulova, and Denys Dutykh

Related authors

Freak wave events in 2005–2021: statistics and analysis of favourable wave and wind conditions
Ekaterina Didenkulova, Ira Didenkulova, and Igor Medvedev
Nat. Hazards Earth Syst. Sci., 23, 1653–1663, https://doi.org/10.5194/nhess-23-1653-2023,https://doi.org/10.5194/nhess-23-1653-2023, 2023
Short summary
Overview: The Baltic Earth Assessment Reports (BEAR)
H. E. Markus Meier, Marcus Reckermann, Joakim Langner, Ben Smith, and Ira Didenkulova
Earth Syst. Dynam., 14, 519–531, https://doi.org/10.5194/esd-14-519-2023,https://doi.org/10.5194/esd-14-519-2023, 2023
Short summary
Editorial: Global warming is due to an enhanced greenhouse effect, and anthropogenic heat emissions currently play a negligible role at the global scale
Axel Kleidon, Gabriele Messori, Somnath Baidya Roy, Ira Didenkulova, and Ning Zeng
Earth Syst. Dynam., 14, 241–242, https://doi.org/10.5194/esd-14-241-2023,https://doi.org/10.5194/esd-14-241-2023, 2023
Subharmonic resonant excitation of edge waves by breaking surface waves
Nizar Abcha, Tonglei Zhang, Alexander Ezersky, Efim Pelinovsky, and Ira Didenkulova
Nonlin. Processes Geophys., 24, 157–165, https://doi.org/10.5194/npg-24-157-2017,https://doi.org/10.5194/npg-24-157-2017, 2017
Short summary
Preface: New challenges for tsunami science: understanding tsunami processes to improve mitigation and enhance early warning
Héléne Hébert, Ira Didenkulova, Hermann M. Fritz, and Gerassimos A. Papadopoulos
Nat. Hazards Earth Syst. Sci., 16, 1855–1857, https://doi.org/10.5194/nhess-16-1855-2016,https://doi.org/10.5194/nhess-16-1855-2016, 2016

Related subject area

Sea, Ocean and Coastal Hazards
Modelling tsunami initial conditions due to rapid coseismic seafloor displacement: efficient numerical integration and a tool to build unit source databases
Alice Abbate, José M. González Vida, Manuel J. Castro Díaz, Fabrizio Romano, Hafize Başak Bayraktar, Andrey Babeyko, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 24, 2773–2791, https://doi.org/10.5194/nhess-24-2773-2024,https://doi.org/10.5194/nhess-24-2773-2024, 2024
Short summary
Estuarine hurricane wind can intensify surge-dominated extreme water level in shallow and converging coastal systems
Mithun Deb, James J. Benedict, Ning Sun, Zhaoqing Yang, Robert D. Hetland, David Judi, and Taiping Wang
Nat. Hazards Earth Syst. Sci., 24, 2461–2479, https://doi.org/10.5194/nhess-24-2461-2024,https://doi.org/10.5194/nhess-24-2461-2024, 2024
Short summary
Revisiting regression methods for estimating long-term trends in sea surface temperature
Ming-Huei Chang, Yen-Chen Huang, Yu-Hsin Cheng, Chuen-Teyr Terng, Jinyi Chen, and Jyh Cherng Jan
Nat. Hazards Earth Syst. Sci., 24, 2481–2494, https://doi.org/10.5194/nhess-24-2481-2024,https://doi.org/10.5194/nhess-24-2481-2024, 2024
Short summary
Global application of a regional frequency analysis to extreme sea levels
Thomas P. Collings, Niall D. Quinn, Ivan D. Haigh, Joshua Green, Izzy Probyn, Hamish Wilkinson, Sanne Muis, William V. Sweet, and Paul D. Bates
Nat. Hazards Earth Syst. Sci., 24, 2403–2423, https://doi.org/10.5194/nhess-24-2403-2024,https://doi.org/10.5194/nhess-24-2403-2024, 2024
Short summary
Tsunami hazard assessment in the South China Sea based on geodetic locking of the Manila subduction zone
Guangsheng Zhao and Xiaojing Niu
Nat. Hazards Earth Syst. Sci., 24, 2303–2313, https://doi.org/10.5194/nhess-24-2303-2024,https://doi.org/10.5194/nhess-24-2303-2024, 2024
Short summary

Cited articles

Abdalazeez, A. A., Didenkulova, I., and Dutykh, D.: Data_Nonlinear deformation and run-up of single tsunami waves of positive polarity numerical simulations and analytical predictions.zip, https://doi.org/10.13140/rg.2.2.27658.41922, 2019. 
Brocchini, M. and Gentile, R.: Modelling the run-up of significant wave groups, Cont. Shelf Res., 21, 1533–1550, https://doi.org/10.1016/S0278-4343(01)00015-2, 2001. 
Carrier, G. F. and Greenspan, H. P.: Water waves of finite amplitude on a sloping beach, J. Fluid Mech., 4, 97–109, https://doi.org/10.1017/S0022112058000331, 1958. 
Carrier, G. F., Wu, T. T., and Yeh, H.: Tsunami run-up and draw-down on a plane beach, J. Fluid Mech., 475, 79–99, https://doi.org/10.1017/S0022112002002653, 2003. 
Didenkulova, I.: New trends in the analytical theory of long sea wave runup, in: Applied Wave Mathematics, edited by: Quak, E. and Soomere, T., Springer, Berlin, Heidelberg, Germany, 265–296, https://doi.org/10.1007/978-3-642-00585-5_14, 2009. 
Download
Short summary
This work is based on the authors' idea that asymmetry of a tsunami wave gained during its propagation in the ocean should also influence its run-up height on the slope. This was previously analytically shown by the authors for sinusoidal waves. In the paper, this idea is elaborated for single waves using both semi-analytical and numerical methods. The corresponding formula for the maximum run-up height which takes into account the wave front steepness is proposed.
Altmetrics
Final-revised paper
Preprint