Articles | Volume 19, issue 12
Nat. Hazards Earth Syst. Sci., 19, 2905–2913, 2019
https://doi.org/10.5194/nhess-19-2905-2019
Nat. Hazards Earth Syst. Sci., 19, 2905–2913, 2019
https://doi.org/10.5194/nhess-19-2905-2019
Research article
20 Dec 2019
Research article | 20 Dec 2019

Nonlinear deformation and run-up of single tsunami waves of positive polarity: numerical simulations and analytical predictions

Ahmed A. Abdalazeez et al.

Related authors

Freak wave events in 2005–2021: statistics and analysis of favourable wave and wind conditions
Ekaterina Didenkulova, Ira Didenkulova, and Igor Medvedev
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-215,https://doi.org/10.5194/nhess-2022-215, 2022
Preprint under review for NHESS
Short summary
Subharmonic resonant excitation of edge waves by breaking surface waves
Nizar Abcha, Tonglei Zhang, Alexander Ezersky, Efim Pelinovsky, and Ira Didenkulova
Nonlin. Processes Geophys., 24, 157–165, https://doi.org/10.5194/npg-24-157-2017,https://doi.org/10.5194/npg-24-157-2017, 2017
Short summary
Preface: New challenges for tsunami science: understanding tsunami processes to improve mitigation and enhance early warning
Héléne Hébert, Ira Didenkulova, Hermann M. Fritz, and Gerassimos A. Papadopoulos
Nat. Hazards Earth Syst. Sci., 16, 1855–1857, https://doi.org/10.5194/nhess-16-1855-2016,https://doi.org/10.5194/nhess-16-1855-2016, 2016
A typical wave wake from high-speed vessels: its group structure and run-up
I. Didenkulova and A. Rodin
Nonlin. Processes Geophys., 20, 179–188, https://doi.org/10.5194/npg-20-179-2013,https://doi.org/10.5194/npg-20-179-2013, 2013

Related subject area

Sea, Ocean and Coastal Hazards
Importance of non-stationary analysis for assessing extreme sea levels under sea level rise
Damiano Baldan, Elisa Coraci, Franco Crosato, Maurizio Ferla, Andrea Bonometto, and Sara Morucci
Nat. Hazards Earth Syst. Sci., 22, 3663–3677, https://doi.org/10.5194/nhess-22-3663-2022,https://doi.org/10.5194/nhess-22-3663-2022, 2022
Short summary
Wind-wave characteristics and extremes along the Emilia-Romagna coast
Umesh Pranavam Ayyappan Pillai, Nadia Pinardi, Ivan Federico, Salvatore Causio, Francesco Trotta, Silvia Unguendoli, and Andrea Valentini
Nat. Hazards Earth Syst. Sci., 22, 3413–3433, https://doi.org/10.5194/nhess-22-3413-2022,https://doi.org/10.5194/nhess-22-3413-2022, 2022
Short summary
Partitioning the contributions of dependent offshore forcing conditions in the probabilistic assessment of future coastal flooding
Jeremy Rohmer, Deborah Idier, Remi Thieblemont, Goneri Le Cozannet, and François Bachoc
Nat. Hazards Earth Syst. Sci., 22, 3167–3182, https://doi.org/10.5194/nhess-22-3167-2022,https://doi.org/10.5194/nhess-22-3167-2022, 2022
Short summary
Identification and ranking of subaerial volcanic tsunami hazard sources in Southeast Asia
Edgar U. Zorn, Aiym Orynbaikyzy, Simon Plank, Andrey Babeyko, Herlan Darmawan, Ismail Fata Robbany, and Thomas R. Walter
Nat. Hazards Earth Syst. Sci., 22, 3083–3104, https://doi.org/10.5194/nhess-22-3083-2022,https://doi.org/10.5194/nhess-22-3083-2022, 2022
Short summary
Modelling geographical and built-environment attributes as predictors of human vulnerability during tsunami evacuations: a multi-case-study and paths to improvement
Jorge León, Alejandra Gubler, and Alonso Ogueda
Nat. Hazards Earth Syst. Sci., 22, 2857–2878, https://doi.org/10.5194/nhess-22-2857-2022,https://doi.org/10.5194/nhess-22-2857-2022, 2022
Short summary

Cited articles

Abdalazeez, A. A., Didenkulova, I., and Dutykh, D.: Data_Nonlinear deformation and run-up of single tsunami waves of positive polarity numerical simulations and analytical predictions.zip, https://doi.org/10.13140/rg.2.2.27658.41922, 2019. 
Brocchini, M. and Gentile, R.: Modelling the run-up of significant wave groups, Cont. Shelf Res., 21, 1533–1550, https://doi.org/10.1016/S0278-4343(01)00015-2, 2001. 
Carrier, G. F. and Greenspan, H. P.: Water waves of finite amplitude on a sloping beach, J. Fluid Mech., 4, 97–109, https://doi.org/10.1017/S0022112058000331, 1958. 
Carrier, G. F., Wu, T. T., and Yeh, H.: Tsunami run-up and draw-down on a plane beach, J. Fluid Mech., 475, 79–99, https://doi.org/10.1017/S0022112002002653, 2003. 
Didenkulova, I.: New trends in the analytical theory of long sea wave runup, in: Applied Wave Mathematics, edited by: Quak, E. and Soomere, T., Springer, Berlin, Heidelberg, Germany, 265–296, https://doi.org/10.1007/978-3-642-00585-5_14, 2009. 
Download
Short summary
This work is based on the authors' idea that asymmetry of a tsunami wave gained during its propagation in the ocean should also influence its run-up height on the slope. This was previously analytically shown by the authors for sinusoidal waves. In the paper, this idea is elaborated for single waves using both semi-analytical and numerical methods. The corresponding formula for the maximum run-up height which takes into account the wave front steepness is proposed.
Altmetrics
Final-revised paper
Preprint