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Abstract. The estimate of an individual wave run-up is es-
pecially important for tsunami warning and risk assessment,
as it allows for evaluating the inundation area. Here, as a
model of tsunamis, we use the long single wave of posi-
tive polarity. The period of such a wave is rather long, which
makes it different from the famous Korteweg–de Vries soli-
ton. This wave nonlinearly deforms during its propagation in
the ocean, which results in a steep wave front formation. Sit-
uations in which waves approach the coast with a steep front
are often observed during large tsunamis, e.g. the 2004 In-
dian Ocean and 2011 Tohoku tsunamis. Here we study the
nonlinear deformation and run-up of long single waves of
positive polarity in the conjoined water basin, which consists
of the constant depth section and a plane beach. The work is
performed numerically and analytically in the framework of
the nonlinear shallow-water theory. Analytically, wave prop-
agation along the constant depth section and its run up on
a beach are considered independently without taking into
account wave interaction with the toe of the bottom slope.
The propagation along the bottom of constant depth is de-
scribed by the Riemann wave, while the wave run-up on a
plane beach is calculated using rigorous analytical solutions
of the nonlinear shallow-water theory following the Carrier–
Greenspan approach. Numerically, we use the finite-volume
method with the second-order UNO2 reconstruction in space
and the third-order Runge–Kutta scheme with locally adap-
tive time steps. During wave propagation along the constant
depth section, the wave becomes asymmetric with a steep
wave front. It is shown that the maximum run-up height de-
pends on the front steepness of the incoming wave approach-
ing the toe of the bottom slope. The corresponding formula

for maximum run-up height, which takes into account the
wave front steepness, is proposed.

1 Introduction

Evaluation of wave run-up characteristics is one of the most
important tasks in coastal oceanography, especially when
estimating tsunami hazard. This knowledge is required for
planning coastal structures and protection works as well as
for short-term tsunami forecasts and tsunami warning. Its im-
portance is also confirmed by a number of scientific papers
(see recent works, e.g. Tang et al., 2017; Touhami and Khel-
laf, 2017; Zainali et al., 2017; Raz et al., 2018; Yao et al.,
2018).

The general solution of the nonlinear shallow-water
equations on a plane beach was found by Carrier and
Greenspan (1958) using the hodograph transformation. Later
on, many other authors found specific solutions for different
types of waves climbing the beach (see, for instance, Ped-
ersen and Gjevik, 1983; Synolakis, 1987; Synolakis et al.,
1988; Mazova et al., 1991; Pelinovsky and Mazova, 1992;
Tadepalli and Synolakis, 1994; Brocchini and Gentile, 2001;
Carrier et al., 2003; Kânoğlu, 2004; Tinti and Tonini, 2005;
Kânoğlu and Synolakis 2006; Madsen and Fuhrman, 2008;
Didenkulova et al., 2007; Didenkulova, 2009; Madsen and
Schäffer, 2010).

Many of these analytical formulas have been validated ex-
perimentally in laboratory tanks (Synolakis, 1987; Li and
Raichlen, 2002; Lin et al., 1999; Didenkulova et al., 2013).
For most of them, the solitary waves have been used. The
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soliton is rather easy to generate in the flume; therefore, lab-
oratory studies of run-up of solitons are the most popular.
However, (Madsen et al., 2008) pointed out that the soli-
tons are inappropriate for describing the real tsunami and
proposed to use waves of longer duration than solitons and
downscaled records of real tsunami. Schimmels et al. (2016)
and Sriram et al. (2016) generated such long waves in the
Large Wave Flume of Hanover (GWK FZK) using the pis-
ton type of wave maker, while McGovern et al. (2018) did it
using the pneumatic wave generator.

It should be mentioned that the shape of tsunami varies a
lot depending on its origin and the propagation path. One of
the best examples of tsunami wave shape variability is given
in Shuto (1985) for the 1983 Sea of Japan tsunami, where
the same tsunami event resulted in very different tsunami
approaches in different locations along the Japanese coast.
These wave shapes included the following: single positive
pulses, undergoing both surging and spilling breaking sce-
narios; breaking bores; periodic wave trains, surging as well
as breaking; and a sequence of two or three waves and un-
dular bores. This is why there is no “typical tsunami wave
shape”, and therefore in the papers on wave run-up cited
above, many different wave shapes, such as single pulses, N
waves, and periodic symmetric and asymmetric wave trains,
are considered. In this paper, we focus on the nonlinear defor-
mation and run-up of long single pulses of positive polarity
on a plane beach.

A similar study was performed for periodic sine waves
(Didenkulova et al., 2007; Didenkulova, 2009). It was shown
that the run-up height increases with an increase in the wave
asymmetry (wave front steepness), which is a result of non-
linear wave deformation during its propagation in a basin
of constant depth. It was found analytically that the run-up
height of this nonlinearly deformed sine wave is proportional
to the square root of the wave front steepness. Later on, this
result was also confirmed experimentally (Didenkulova et al.,
2013).

It should be noted that these analytical findings also match
tsunami observations. Steep tsunami waves are often wit-
nessed and reported during large tsunami events, such as
2004 Indian Ocean and 2011 Tohoku tsunamis. Sometimes
the wave, which approaches the coast, represents a “wall of
water” or a bore, which is demonstrated by numerous photos
and videos of these events.

The nonlinear steepening of the long single waves of pos-
itive polarity has also been observed experimentally in Sri-
ram et al. (2016), but its effect on wave run-up has not been
studied yet. In this paper, we study this effect both analyti-
cally and numerically. Analytically, we apply the methodol-
ogy developed in Didenkulova (2009) and Didenkulova et al.
(2014), where we consider the processes of wave propagation
in the basin of constant depth and the following wave run-up
on a plane beach independently, not taking into account the
point of merging of these two bathymetries. Numerically, we
solve the nonlinear shallow-water equations.

The paper is organized as follows. In Sect. 2, we give the
main formulas and briefly describe the analytical solution.
The numerical model is described and validated in Sect. 3.
The nonlinear deformation and run-up of the long single
wave of positive polarity are described in Sect. 4. The main
results are summarized in Sect. 5.

2 Analytical solution

We solve the nonlinear shallow-water equations for the
bathymetry shown in Fig. 1:

∂u

∂t
+ u

∂u

∂x
+ g

∂η

∂x
= 0, (1)

∂η

∂t
+
∂

∂x
[(h(x)+ η)u]= 0. (2)

Here η(x, t) is the vertical displacement of the water sur-
face with respect to the still water level, u(x, t) is the depth-
averaged water flow, h(x) is the unperturbed water depth, g is
the gravitational acceleration, x is the coordinate directed on-
shore and t is time. The system of Eqs. (1) and (2) is solved
independently for the two bathymetries shown in Fig. 1: a
basin of constant depth h0 and length X0 and a plane beach,
where the water depth h(x)=−x tan α.

Equations (1) and (2) can be solved exactly for a few
specific cases. In the case of constant depth, the solution is
described by the Riemann wave (Stoker, 1957). Its adapta-
tion for the boundary problem can be found in Zahibo et
al. (2008). In the case of a plane beach, the corresponding
solution was found by Carrier and Greenspan (1958). Both
solutions are well-known and widely used, and we do not
reproduce them here but just provide some key formulas.

As already mentioned, during its propagation along the
basin of constant depth h0, the wave transforms as a Riemann
wave (Zahibo et al., 2008):

η(x, t)= η0

[
t −

x+X0+L

V (x, t)

]
, (3)

V (x, t)= 3
√
g [h0+ η(x, t)]− 2

√
gh0, (4)

where η0(x =−L−X0, t) is the water displacement at the
left boundary. After the propagation over the section of con-
stant depth h0, the incident wave has the following shape:

ηX0 (t)= η0

[
t −

X0

V (x, t)

]
,VX0 (t)

= 3
√
g [h0+ ηX0 (t)]− 2

√
gh0. (5)

Following the methodology developed in Di-
denkulova (2008), we let this nonlinearly deformed wave
described by Eq. (5) run up on a plane beach, characterized
by the water depth h(x)= – x tan α. This approach does not
take into account the merging point of the two bathymetries
and, therefore, does not account for reflection from the toe
of the slope and wave interaction with the reflected wave.
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Figure 1. Bathymetry sketch. The wavy curve at the toe of the slope
regards analytical solution, which does not take into account merg-
ing between the constant depth and sloping beach sections.

To do this, we represent the input wave ηX0 as a Fourier
integral:

ηX0 =

+∞∫
−∞

B (ω)exp(iωt)dω. (6)

Its complex spectrum B(ω) can be found in an explicit form
in terms of the inverse Fourier transform:

B (ω)=
1

2π

+∞∫
−∞

ηX0 (t)exp(−iωt)dt. (7)

Equation (7) can be rewritten in terms of the water displace-
ment, produced by the wave maker at the left boundary (Za-
hibo et al., 2008):

B (ω)=
1

2πiω

+∞∫
−∞

dη0

dz
exp

(
−iω

[
z+

x+X0+L

V (η0)

])
,

dz,z= t −
x+X0+L

V (η0)
. (8)

In this study we consider long single pulses of positive po-
larity:

η0 (t)= Asech2
(
t

T

)
, (9)

where A is the input wave height and T is the effective wave
period at the location with the water depth h0. The wave de-
scribed by Eq. (9) has an arbitrary height and period and,
therefore, does not satisfy properties of the soliton but just
has a sech2 shape. Substituting Eq. (9) into Eq. (8), we can
calculate the complex spectrum B(ω).

Wave run-up oscillations at the coast r(t) and the velocity
of the moving shoreline u(t) can be found from Didenkulova

et al. (2008):

r (t)= R

(
t +

u

g tanα

)
−
u2

2g
, (10)

u(t)= U

(
t +

u(t)

g tanα

)
, (11)

R(t)=
√

2πτ (L)

+∞∫
−∞

√
|ω|H (ω)

exp
{
i
(
ω(t − τ (L))+

π

4
sign(ω)

)}
dω, (12)

U (t)=
1

tanα
dR
dt
, (13)

where τ = 2L/
√
gh0 is the travel time to the coast.

We also compare this solution with the run-up of a sin-
gle wave of positive polarity described by Eq. (9) (without
nonlinear deformation). The maximum run-up height Rmax
of such a wave (Eq. 9) can be found from Didenkulova et al.
(2008) and Sriram et al. (2016):

Rmax

A
= 2.8312

√
cotα

(
1
gh0

(
2h0
√

3T

)2
)1/4

. (14)

If the initial wave is a soliton, Eq. (14) coincides with the
famous Synolakis formula (Synolakis, 1987).

3 Numerical model

Numerically, we solve the nonlinear shallow-water equations
Eqs. (1) and (2), written in a conservative form for a total wa-
ter depth. We include the effect of the varying bathymetry (in
space) and neglect all friction effects. However, the resulting
numerical model will be taken into account for some dissi-
pation thanks to the numerical scheme dissipation, which is
necessary for the stability of the scheme and should not in-
fluence many run-up characteristics. Namely, we employ the
natural numerical method, which was developed especially
for conservation laws – the finite-volume schemes.

The numerical scheme is based on the second order in
space UNO2 reconstruction, which is briefly described in
Dutykh et al. (2011b). In time we employ the third-order
Runge–Kutta scheme with locally adaptive time steps in or-
der to satisfy the Courant–Friedrichs–Lewy stability condi-
tion along with the local error estimator to bound the error
term to the prescribed tolerance parameter. The numerical
technique to simulate the wave run-up was described previ-
ously in Dutykh et al. (2011a). The bathymetry source term
is discretized using the hydrostatic reconstruction technique,
which implies the well-balanced property of the numerical
scheme (Gosse, 2013).

The numerical scheme is validated against experimental
data of wave propagation and run-up in the Large Wave
Flume (GWK) in Hanover, Germany. The experiments were
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Figure 2. Water elevations along the 251 m long constant depth
section of the Large Wave Flume (GWK), where h0 = 3.5 m, A=
0.1 m, T = 20 s and tan α = 1 : 6. Results of numerical simulations
are shown by the red line, and experimental data are shown by the
blue line.

set with a flat bottom, with a constant depth of h0 = 3.5 m,
length of [a, b]= 251 m and a plane beach with a slope of tan
α = 1 : 6 (see Fig. 1). The flume had 16 wave gauges along
the constant depth section and a run-up gauge on the slope.
The incident wave had an amplitude ofA= 0.1 m and period
of T = 20 s. The detailed description of the experiments can
be found in Didenkulova et al. (2013). The results of numer-
ical simulations are in good agreement with the laboratory
experiments along the constant depth section (see Fig. 2) as
well as on the beach (Fig. 3). The comparison of the run-
up height is calculated numerically and analytically using
the approach described in Sect. 2 and with the experimental
record shown in Fig. 3. It can be seen that the experimen-
tally recorded wave is slightly smaller, which may be caused
by the bottom friction, especially on the slope. Both numer-
ical and analytical models describe the first wave of posi-
tive polarity rather well. The numerical prediction of run-up
height is slightly higher than the analytical one. This addi-
tional increase in the run-up height in the numerical model
may be explained by the nonlinear interaction with the re-
flected wave, which is not taken into account in the analytical
model. The wave of negative polarity is much more sensitive
to all the effects mentioned above than the wave of positive
polarity and, therefore, looks different for all three lines in
Fig. 3. By introducing additional dissipation in the numeri-
cal model, one can easily reach perfect agreement between
the numerical simulations and experimental data. However,
we do not do so, since below we focus on the analysis of an-
alytical results and for clarity would like to avoid additional
parameters in the numerical model. Also, we focus on the
maximum run-up height and, therefore, expect small differ-
ences between the results of analytical and numerical mod-
els. The data used for all figures of this paper are available at
https://doi.org/10.13140/rg.2.2.27658.41922 (Abdalazeez et
al., 2019).

Figure 3. Run-up height of the long single wave with A= 0.1 m
and T = 20 s on a beach slope, where tan α = 1 : 6. The numerical
solution is shown by the red dotted line, the analytical solution is
shown by the blue dashed line and the experimental record is shown
by the black solid line.

4 Results of numerical and analytical calculations

It is reported in Didenkulova et al. (2007) and Didenkulova
(2009), for a periodic sine wave, that the extreme run-up
height increases proportionally with the square root of the
wave front steepness. In this section, we study the nonlinear
deformation and steepening of waves described by Eq. (9)
and their effect on the extreme wave run-up height. The cor-
responding bathymetry used in analytical and numerical cal-
culations is normalized on the water depth in the section of
constant depth h0 and is shown in Fig. 1. The input wave pa-
rameters such as wave amplitude, A/h0, and effective wave
length, λ/X0, where λ= T

√
gh0, are changed. The beach

slope is taken as tan α = 1 : 20 for all simulations.
We underline that in order to have analytical solution, the

criterion of no wave breaking should be satisfied. Therefore,
all analytical and numerical calculations below are chosen
for non-breaking waves.

Figure 4 shows the dimensionless maximum run-up
height, Rmax/A, as a function of the initial wave amplitude,
A/h0. The incident wave propagates over different distances
to the bottom slope, X0/λ= 1.7, 3.4, 5.1 and 6.8, where
kh0 = 0.38. The analytical solution described in Sect. 2 is
shown with lines, and the numerical solution described in
Sect. 3 is shown with symbols (diamonds, triangles, squares
and circles). It can be seen that in most cases and espe-
cially for small values of X0/λ= 1.7 and 3.4, numerical
simulations give larger run-up heights than analytical predic-
tions. These differences can be explained by the effects of
wave interaction with the toe of the underwater beach slope,
which are not taken into account in the analytical solution.
For larger distances X0/λ= 6.8, both analytical and numer-
ical solutions give similar results, supported by the numer-
ical scheme dissipation described in Sect. 3, which can be
considered a “numerical error”. It should be mentioned that
we use a physical dissipation rate of zero for these simula-
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Figure 4. Maximum run-up height, Rmax/A, as a function of initial
wave amplitude, A/h0, for different distances to the slope, X0/λ.
Analytical solution described in Sect. 2 is shown by lines, and nu-
merical solution described in Sect. 3 is shown by symbols (dia-
monds, triangles, squares and circles) with matching colours. The
thick black line corresponds to Eq. (14) for wave run-up on a beach
without constant depth section, where kh0 = 0.38.

Figure 5. Maximum run-up height, Rmax/A, as a function of dis-
tance to the slope, X0/λ, for different amplitudes of the initial
wave, A/h0. Analytical solution described in Sect. 2 is shown by
lines, and numerical solution described in Sect. 3 is shown by sym-
bols (triangles, squares and circles) with matching colours, where
kh0 = 0.38.

tions; however, a small dissipation for stability of the numer-
ical scheme is still needed, and this may become noticeable
at large distances. For the sech2-shaped wave (A/h0 = 0.03,
λ/X0 = 0.12) propagation, the reduction of initial wave am-
plitude constitutes ∼ 2 %.

It is worth mentioning that for small initial wave ampli-
tudes, all run-up heights are close to each other and are close
to the thick black line, which corresponds to Eq. (14) for
wave run-up on a beach without constant depth section. This
means that the effects we are talking about are important only
for nonlinear waves and irrelevant for weakly nonlinear or al-
most linear waves.

Figure 6. Maximum run-up height, Rmax/A, as a function of kh0
for different distances to the slope, X0/λ. Analytical solution de-
scribed in Sect. 2 is shown by lines, and numerical solution de-
scribed in Sect. 3 is shown by symbols (diamonds, triangles, squares
and circles) with matching colours. The thick black line corresponds
to Eq. (14) for wave run-up on a beach without constant depth sec-
tion (A/h0 = 0.03).

The same effects can be seen in Fig. 5, which shows the
maximum run-up height, Rmax/A, as a function of distance
to the slope, X0/λ, for different amplitudes of the initial
wave, A/h0. The distance X0/λ changes from 0.8 to 9.4,
where kh0 = 0.38. The analytical solution is shown with
lines, while the numerical solution is shown with symbols
(triangles, squares and circles). It can be seen in Fig. 5 that
for smaller values of X0/λ<6, numerical predictions pro-
vide relatively larger run-up values compared with analytical
predictions, while for higher values of X0/λ>6, the differ-
ences are significantly reduced. A relevant change of this be-
haviour is given for A/h0 = 0.06. We can observe that nu-
merical predictions for this amplitude become smaller than
analytical predictions for X0/λ>8. As stated above, we be-
lieve that this can be a result of interplay of two effects: inter-
action with the underwater bottom slope, which is not taken
into account in the analytical prediction, and the numerical
scheme dissipation (“numerical error”), which affects the nu-
merical results.

The dependence of maximum run-up height, Rmax/A, on
kh0 is shown in Fig. 6 for A/h0 = 0.03. It can be seen that
the difference between numerical and analytical results de-
creases with an increase in kh0. We relate this effect with
the wave interaction with the slope, which is not properly ac-
counted in our analytical approach. As one can see in Fig. 7,
this difference for a milder beach slope tan α = 1 : 50 is re-
duced.

The next figure, Fig. 8, supports all the conclusions drawn
above. It also shows that the difference between analytical
and numerical results increases with an increase in the wave
period. As pointed out before for small wave periods, the nu-
merical solution may coincide with the analytical one or even
become smaller as in kh0 = 0.38 for X0/λ> 8.
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Figure 7. Maximum run-up height, Rmax/A, as a function of ini-
tial effective wave length, λ/X0 (blue axes) and kh0 (black axes).
Analytical solutions for tan α = 1 : 20 and tan α = 1 : 50 are shown
by dotted and dashed lines, respectively, while numerical simula-
tions for tan α = 1 : 20 and tan α = 1 : 50 are shown by circles and
crosses, respectively (A/h0 = 0.03).

It is important that both analytical and numerical results
in Figs. 5 and 8 demonstrate an increase in maximum run-
up height with an increase in the distance X0/λ. This re-
sult is in agreement with the conclusions of Didenkulova
et al. (2007) and Didenkulova (2009) for sinusoidal waves.
In order to be consistent with the results of Didenkulova et
al. (2007) and Didenkulova (2009), we connect the distance
X0/λ with the incident wave front steepness in the begin-
ning of the bottom slope. The wave front steepness s is de-
fined as the maximum of the time derivative of water dis-
placement, d(η/A)/d(t/T ), and is studied in relation with
the initial wave front steepness, s0, where

s(x)=
max(dη(x, t)/dt)

A/T
, s0 =

max(dη(x = a, t)/dt)
A/T

. (15)

In order to calculate the incident wave front steepness in the
beginning of the bottom slope from results of numerical sim-
ulations, we should separate the incident wave and the wave
reflected from the bottom slope. At the same time, the wave
steepening along the basin of constant depth is very well de-
scribed analytically, as demonstrated in Fig. 9.

It can be seen that the wave transformation described by
the analytical model is in a good agreement with numerical
simulations. Therefore, below we make reference to the an-
alytically defined wave front steepness, keeping in mind that
it coincides well with the numerical one. Having said this,
we approach the main result of this paper, which is shown in
Fig. 10. The red solid line gives the analytical prediction. It
is universal for single waves of positive polarity for different
amplitudes A/h0 and kh0 and can be approximated well by
the power fit (coefficient of determination R2

= 0.99):

Rmax/R0 = (s/s0)
0.42, (16)

Figure 8. Maximum run-up height, Rmax/A, as a function of the
distance to the slope, X0/λ , for different values of kh0. Analytical
solution described in Sect. 2 is shown by lines, and numerical so-
lution described in Sect. 3 is shown by symbols (triangles, squares
and circles) with matching colours (A/h0 = 0.03).

Figure 9. Wave evolution at different locations, x/λ= 0, 0.85, 1.71,
2.56, 3.41, 4.27 and 5.12, along the section of constant depth for a
basin with X0/λ= 5.12 and tan α = 1 : 20. Numerical results are
shown by solid lines, while the analytical predictions are given by
the black dotted lines. The parameters of the wave are A/h0 = 0.03
and kh0 = 0.19.

where Rmax/A is the maximum run-up height in the con-
joined basin (with a section of constant depth); R0/A is
the corresponding maximum run-up height on a plane beach
(without a section of constant depth).

The fit is shown in Fig. 10 by the black dashed line. For
comparison, the dependence of the maximum run-up height
on the wave front steepness obtained using the same method
for a sine wave is stronger than for a single wave of positive
polarity (Didenkulova et al., 2007) and is proportional to the
square root of the wave front steepness. This is logical, as
the sinusoidal wave has a sign-variable form and, therefore,
excites a higher run-up. For possible mechanisms, see the
discussion on N waves in Tadepalli and Synolakis (1994).
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Figure 10. The ratio of maximum run-up height in the conjoined
basin, Rmax/A, and the maximum run-up height on a plane beach,
R0/A, versus the wave front steepness, s/s0, for A/h0 = 0.057,
kh0 = 0.38 (brown points); A/h0 = 0.086, kh0 = 0.38 (red plus
signs); A/h0 = 0.057, kh0 = 0.29 (blue points); A/h0 = 0.086,
kh0 = 0.29 (turquoise plus signs); A/h0 = 0.057, kh0 = 0.22 (vi-
olet points); A/h0 = 0.086, kh0 = 0.22 (pink plus signs); A/h0 =
0.057, kh0 = 0.19 (dark-green points); and A/h0 = 0.086, kh0 =
0.19 (light-green plus signs). All markers correspond to the results
of numerical simulations, while the asymptotic analytical predic-
tions are given by the red solid line. Black dashed line corresponds
to the power fit of the analytical results of Eq. (16).

The results of numerical simulations are shown in Fig. 10
with different markers. It can be seen that numerical data
for the same period but different amplitudes follow the same
curve. The run-up is higher for waves with smaller kh0. In
our opinion, this dependence on kh0 is a result of merg-
ing a plane beach with a flat bottom. This effect can be pa-
rameterized with the factor (L/λ)1/4. The result of this pa-
rameterization is shown in Fig. 11. Here we can see that
for smaller face front wave steepness, s/s0<1.5, the run-
up height is proportional to the analytically estimated curve
shown by Eq. (16), while for larger face front wave steep-
ness, s/s0>1.5, the dependence on s/s0 is weaker. This de-
pendence for all numerical run-up height data, presented in
Fig. 11, can be approximated by the power fit (coefficient of
determination R2

= 0.85):

Rmax/R0 = 1.17(λ/L)1/4(s/s0)1/4. (17)

5 Conclusions and discussion

In this paper, we study the nonlinear deformation and run-
up of tsunami waves, represented by single waves of positive
polarity. We consider the conjoined water basin, which con-
sists of a section of constant depth and a plane beach. While
propagating in such basin, the wave shape changes forming
a steep front. Tsunamis often approach the coast with a steep

Figure 11. The normalized maximum run-up height, Rmax/R0
(L/λ)1/4, calculated numerically versus the wave front steepness,
s/s0, for the same values of A/h0 and kh0 as in Fig. 10. Red solid
line is proportional to the “analytically estimated” Eq. (16), while
black solid line corresponds to Eq. (17).

wave front, as was observed during large tsunami events, e.g.
the 2004 Indian Ocean Tsunami and 2011 Tohoku tsunami.

The study is performed both analytically and numerically
in the framework of the nonlinear shallow-water theory. The
analytical solution considers nonlinear wave steepening in
the constant depth section and wave run-up on a plane beach
independently and, therefore, does not take into account
wave interaction with the toe of the bottom slope. The prop-
agation along the bottom of constant depth is described by
a Riemann wave, while the wave run-up on a plane beach
is calculated using rigorous analytical solutions of the non-
linear shallow-water theory following the Carrier–Greenspan
approach. The numerical scheme does not have this limita-
tion. It employs the finite-volume method and is based on the
second-order UNO2 reconstruction in space and the third-
order Runge–Kutta scheme with locally adaptive time steps.
The model is validated against experimental data.

The main conclusions of the paper are the following.

– It is found analytically that the maximum tsunami run-
up height on a beach depends on the wave front steep-
ness at the toe of the bottom slope. This dependence
is general for single waves of different amplitudes and
periods and can be approximated by the power fit:
Rmax/R0 = (s/s0)

0.42.

– This dependence is slightly weaker than the correspond-
ing dependence for a sine wave, proportional to the
square root of the wave front steepness (Didenkulova
et al., 2007). The stronger dependence of a sine wave
run-up on the wave front steepness is consistent with
the philosophy of N waves (Tadepalli and Synolakis,
1994).

– Numerical simulations in general support this analyt-
ical finding. For smaller face front wave steepness

www.nat-hazards-earth-syst-sci.net/19/2905/2019/ Nat. Hazards Earth Syst. Sci., 19, 2905–2913, 2019



2912 A. A. Abdalazeez et al.: Nonlinear deformation and run-up of single tsunami waves

(s/s0<1.5), numerical curves of the maximum tsunami
run-up height are parallel to the analytical ones, while
for larger face front wave steepness (s/s0>1.5), this
dependence is milder. The latter may be a result of nu-
merical dissipation (error), which is larger for a longer
wave propagation and, consequently, larger wave steep-
ness. The suggested formula, which gives the best fit
with the data of numerical simulations in general, is
Rmax/R0 = 1.17(λ/L)1/4(s/s0)1/4.

– These results can also be used in tsunami forecasts.
Sometimes, in order to save time for tsunami fore-
casts, especially for long distance wave propagation, the
tsunami run-up height is not simulated directly but es-
timated using analytical or empirical formulas (Glims-
dal et al., 2019; Løvholt et al., 2012). In these cases we
recommend using formulas which take into account the
face front wave steepness. The face front steepness of
the approaching tsunami wave can be estimated from
the data of the virtual (computed) or real tide-gauge sta-
tions and then be used to estimate the tsunami maximum
run-up height on a beach.

The nonlinear shallow-water equations, which are used in
this study and commonly utilized for tsunami modelling,
are also known to neglect dispersive effects. In this con-
text, it is important to mention the recent work of Larsen
and Fuhrman (2019). They used Reynolds-averaged Navier–
Stokes (RANS) equations and k–ω model for turbulence clo-
sure to simulate the propagation and run-up of positive sin-
gle waves, including full resolution of dispersive short waves
(and their breaking) that can develop near a positive tsunami
front. They similarly showed that this effect depends on the
propagation distance prior to the slope if a simple toe with
a slope type of bathymetry is utilized. This work shows that
these short waves have little effect on the overall run-up and
hence give additional credence to the use of shallow-water
equations. These results largely confirm what was previously
hypothesized by Madsen et al. (2008), namely that these
short waves would have little effect on the overall run-up and
inundation of tsunamis (though they found that they could
significantly increase the maximum flow velocities).
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