Articles | Volume 19, issue 12
https://doi.org/10.5194/nhess-19-2767-2019
https://doi.org/10.5194/nhess-19-2767-2019
Research article
 | 
05 Dec 2019
Research article |  | 05 Dec 2019

Framework to prioritize watersheds for diffuse pollution management in the Republic of Korea: application of multi-criteria analysis using the Delphi method

Gyumin Lee, Kyung Soo Jun, and Minji Kang

Related authors

Group decision-making approach for flood vulnerability identification using the fuzzy VIKOR method
G. Lee, K. S. Jun, and E.-S. Chung
Nat. Hazards Earth Syst. Sci., 15, 863–874, https://doi.org/10.5194/nhess-15-863-2015,https://doi.org/10.5194/nhess-15-863-2015, 2015
Short summary
Integrated multi-criteria flood vulnerability approach using fuzzy TOPSIS and Delphi technique
G. Lee, K.-S. Jun, and E.-S. Chung
Nat. Hazards Earth Syst. Sci., 13, 1293–1312, https://doi.org/10.5194/nhess-13-1293-2013,https://doi.org/10.5194/nhess-13-1293-2013, 2013

Related subject area

Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
An impact-chain-based exploration of multi-hazard vulnerability dynamics: the multi-hazard of floods and the COVID-19 pandemic in Romania
Andra-Cosmina Albulescu and Iuliana Armaș
Nat. Hazards Earth Syst. Sci., 24, 2895–2922, https://doi.org/10.5194/nhess-24-2895-2024,https://doi.org/10.5194/nhess-24-2895-2024, 2024
Short summary
Always on my mind: indications of post-traumatic stress disorder among those affected by the 2021 flood event in the Ahr valley, Germany
Marie-Luise Zenker, Philip Bubeck, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 2837–2856, https://doi.org/10.5194/nhess-24-2837-2024,https://doi.org/10.5194/nhess-24-2837-2024, 2024
Short summary
Earthquake insurance in Iran: solvency of local insurers in light of current market practices
Mohsen Ghafory-Ashtiany and Hooman Motamed
Nat. Hazards Earth Syst. Sci., 24, 2707–2726, https://doi.org/10.5194/nhess-24-2707-2024,https://doi.org/10.5194/nhess-24-2707-2024, 2024
Short summary
Micro-business participation in collective flood adaptation: lessons from scenario-based analysis in Ho Chi Minh City, Vietnam
Javier Revilla Diez, Roxana Leitold, Van Tran, and Matthias Garschagen
Nat. Hazards Earth Syst. Sci., 24, 2425–2440, https://doi.org/10.5194/nhess-24-2425-2024,https://doi.org/10.5194/nhess-24-2425-2024, 2024
Short summary
Brief communication: Storm Daniel flood impact in Greece in 2023: mapping crop and livestock exposure from synthetic-aperture radar (SAR)
Kang He, Qing Yang, Xinyi Shen, Elias Dimitriou, Angeliki Mentzafou, Christina Papadaki, Maria Stoumboudi, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 2375–2382, https://doi.org/10.5194/nhess-24-2375-2024,https://doi.org/10.5194/nhess-24-2375-2024, 2024
Short summary

Cited articles

Adler, M. and Ziglio, E.: Gazing into the Oracle: The Delphi method and its application to social policy and public health, Kingsley Publishers, London, 1996. 
Angus, A. J., Hodge, I. D., Mcnally, S. and Sutton, M. A.: The setting of standards for agricultural nitrogen emissions: a case study of the Delphi technique, J. Environ. Manage., 69, 323–337, https://doi.org/10.1016/j.jenvman.2003.09.006, 1996. 
Bang, K. W., Lee, J. H., and Yu, M. J.: Study of the runoff characteristics of nonpoint sources in small urban watersheds, J. Korean Soc. Water Qual., 13, 79-99, 1997. 
Candela, A., Freni, G., Mannina, G., and Viviani, G.: Quantification of diffuse and concentrated pollutant loads at the watershed-scale: An Italian case study, Water Sci. Technol., 59, 2125–2135, https://doi.org/10.2166/wst.2009.882, 2009. 
Choi, J. W., Lee, H., Shin, D. S., and Cheon, S. U.: Evaluation of Estimated Storm Runoff and Non-Point Pollutant Discharge from Upper Watershed of Daecheong Reservoir during Rainy Season Using L-THIA ArcView GIS Model, J. Korean Soc. Water Environ., 25, 984–993, 2009. 
Download
Short summary
This study proposes a system for the scientific selection of evaluation indices and priority areas for non-point source control. We developed a framework to prioritize catchments in terms of the risk of non-point source pollution considering the characteristics of polluted runoff from a non-point source using a multi-criteria decision-making method.
Altmetrics
Final-revised paper
Preprint