Articles | Volume 18, issue 11
https://doi.org/10.5194/nhess-18-3007-2018
https://doi.org/10.5194/nhess-18-3007-2018
Research article
 | 
13 Nov 2018
Research article |  | 13 Nov 2018

Observations of positive sea surface temperature trends in the steadily shrinking Dead Sea

Pavel Kishcha, Rachel T. Pinker, Isaac Gertman, Boris Starobinets, and Pinhas Alpert

Related authors

Meridional distribution of aerosol optical thickness over the tropical Atlantic Ocean
P. Kishcha, A. M. da Silva, B. Starobinets, C. N. Long, O. Kalashnikova, and P. Alpert
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-23309-2014,https://doi.org/10.5194/acpd-14-23309-2014, 2014
Revised manuscript not accepted

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Global estimates of 100-year return values of daily precipitation from ensemble weather prediction data
Florian Ruff and Stephan Pfahl
Nat. Hazards Earth Syst. Sci., 24, 2939–2952, https://doi.org/10.5194/nhess-24-2939-2024,https://doi.org/10.5194/nhess-24-2939-2024, 2024
Short summary
Exploring the sensitivity of extreme event attribution of two recent extreme weather events in Sweden using long-running meteorological observations
Erik Holmgren and Erik Kjellström
Nat. Hazards Earth Syst. Sci., 24, 2875–2893, https://doi.org/10.5194/nhess-24-2875-2024,https://doi.org/10.5194/nhess-24-2875-2024, 2024
Short summary
Probabilistic short-range forecasts of high-precipitation events: optimal decision thresholds and predictability limits
François Bouttier and Hugo Marchal
Nat. Hazards Earth Syst. Sci., 24, 2793–2816, https://doi.org/10.5194/nhess-24-2793-2024,https://doi.org/10.5194/nhess-24-2793-2024, 2024
Short summary
Surprise floods: the role of our imagination in preparing for disasters
Joy Ommer, Jessica Neumann, Milan Kalas, Sophie Blackburn, and Hannah L. Cloke
Nat. Hazards Earth Syst. Sci., 24, 2633–2646, https://doi.org/10.5194/nhess-24-2633-2024,https://doi.org/10.5194/nhess-24-2633-2024, 2024
Short summary
Modelling crop hail damage footprints with single-polarization radar: the roles of spatial resolution, hail intensity, and cropland density
Raphael Portmann, Timo Schmid, Leonie Villiger, David N. Bresch, and Pierluigi Calanca
Nat. Hazards Earth Syst. Sci., 24, 2541–2558, https://doi.org/10.5194/nhess-24-2541-2024,https://doi.org/10.5194/nhess-24-2541-2024, 2024
Short summary

Cited articles

AL-Khlaifat, A.: Dead Sea rate of evaporation, Am. J. Appl. Sci., 5, 934–942, https://doi.org/10.3844/ajassp.2008.934.942, 2008. 
Alpert, P., Shafir, H., and Issahary, D.: Recent changes in the climate of the Dead Sea Valley – A Preliminary Study, Climatic Change, 37, 513–537, https://doi.org/10.1023/A:1005330908974, 1997. 
El-Hallaq, A. and Habboub, M. O.: Using GIS for time series analysis of the Dead Sea from remotely sensing data, Open J. Civ. Eng., 4, 386–396, https://doi.org/10.4236/ojce.2014.44033, 2014. 
Gertman, I. and Hecht, A.: The Dead Sea hydrography from 1992 to 2000, J. Mar. Syst., 35, 169–181, https://doi.org/10.1016/S0924-7963(02)00079-9, 2002. 
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote Sens. Environ., 202, 18–27, 2017. 
Download
Short summary
Increasing warming of steadily shrinking Dead Sea surface water was observed during the period of 2000–2016. We found that a positive feedback loop between the steady shrinking of the Dead Sea and positive sea surface temperature (SST) trends causes the acceleration of Dead Sea shrinking. Our findings imply the following essential point: any meteorological, hydrological or geophysical process causing steady shrinking of the Dead Sea will contribute to positive trends in SST.
Altmetrics
Final-revised paper
Preprint