Articles | Volume 18, issue 9
Nat. Hazards Earth Syst. Sci., 18, 2603–2623, 2018
Nat. Hazards Earth Syst. Sci., 18, 2603–2623, 2018

Research article 21 Sep 2018

Research article | 21 Sep 2018

Extreme water levels, waves and coastal impacts during a severe tropical cyclone in northeastern Australia: a case study for cross-sector data sharing

Thomas R. Mortlock et al.

Related authors

Low-resolution Australasian palaeoclimate records of the last 2000 years
Bronwyn C. Dixon, Jonathan J. Tyler, Andrew M. Lorrey, Ian D. Goodwin, Joëlle Gergis, and Russell N. Drysdale
Clim. Past, 13, 1403–1433,,, 2017
Short summary
A glaciochemical study of the 120 m ice core from Mill Island, East Antarctica
Mana Inoue, Mark A. J. Curran, Andrew D. Moy, Tas D. van Ommen, Alexander D. Fraser, Helen E. Phillips, and Ian D. Goodwin
Clim. Past, 13, 437–453,,, 2017
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
Trivariate copula to design coastal structures
Olivier Orcel, Philippe Sergent, and François Ropert
Nat. Hazards Earth Syst. Sci., 21, 239–260,,, 2021
Short summary
Beachgoers' ability to identify rip currents at a beach in situ
Sebastian J. Pitman, Katie Thompson, Deirdre E. Hart, Kevin Moran, Shari L. Gallop, Robert W. Brander, and Adam Wooler
Nat. Hazards Earth Syst. Sci., 21, 115–128,,, 2021
Short summary
Wave height return periods from combined measurement–model data: a Baltic Sea case study
Jan-Victor Björkqvist, Sander Rikka, Victor Alari, Aarne Männik, Laura Tuomi, and Heidi Pettersson
Nat. Hazards Earth Syst. Sci., 20, 3593–3609,,, 2020
Short summary
Modeling dependence and coincidence of storm surges and high tide: methodology, discussion and recommendations based on a simplified case study in Le Havre (France)
Amine Ben Daoued, Yasser Hamdi, Nassima Mouhous-Voyneau, and Philippe Sergent
Nat. Hazards Earth Syst. Sci., 20, 3387–3398,,, 2020
Short summary
Laboratory study of non-linear wave–wave interactions of extreme focused waves in the nearshore zone
Iskander Abroug, Nizar Abcha, Armelle Jarno, and François Marin
Nat. Hazards Earth Syst. Sci., 20, 3279–3291,,, 2020
Short summary

Cited articles

Beaman, R. J.: 3DGBR: A high-resolution depth model for the Great Barrier Reef and Coral Sea, Marine and Tropical Sciences Research Facility (MTSRF) Project 2.5i.1a Final Report, MTSRF, Cairns, Australia, 13 pp., 2010. 
Boughton, G. N., Falck, D. J., Henderson, D. J., Smith, D. J., Parackal, K., Kloetzke, T., Mason, M., Krupar III, R., Humphreys, M., Navaratnam, S., Bodhinayake, G., Ingham, S., and Ginger, J. D.: Tropical Cyclone Debbie – Damage to buildings in the Whitsunday Region, Technical Report No. 63, Cyclone Testing Station, James Cook University, Townsville, 2017. 
Brocca, L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner, W., Dorigo, W., Matgen, P., Martínez-Fernandez, J., Llorens, P., Latron, J., Martin, C., and Bittelli, M.: Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe, Remote Sens. Environ., 115, 3390–3408,, 2011. 
Bureau of Meteorology [BoM]: The Australian Tropical Cyclone Database, available at:, last access: 24 October 2017. 
Bureau of Meteorology [BoM]: Tropical Cyclone Debbie Technical Report, Australian Government Bureau of Meteorology, Melbourne, Australia, 2018. 
Short summary
Tropical cyclone (TC) Debbie crossed the northeastern coast of Australia on 27 March 2017. A multi-sector consortium collected data throughout the event to produce a holistic picture of hazards and impacts at the coast. While water levels and waves were unprecedented for this area since monitoring began, TC Debbie can be regarded as a near miss in terms of widespread coastal flooding. This work provides a case study of cross-sector data sharing in a natural hazard context in Australia.
Final-revised paper