Articles | Volume 18, issue 8
https://doi.org/10.5194/nhess-18-2081-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-18-2081-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessment of the peak tsunami amplitude associated with a large earthquake occurring along the southernmost Ryukyu subduction zone in the region of Taiwan
Department of Earth Sciences, National Central University, Taoyuan
City 32001, Taiwan, R.O.C.
Po-Fei Chen
Department of Earth Sciences, National Central University, Taoyuan
City 32001, Taiwan, R.O.C.
Chien-Chih Chen
Department of Earth Sciences, National Central University, Taoyuan
City 32001, Taiwan, R.O.C.
Earthquake-Disaster & Risk Evaluation and Management Center,
National Central University, Taoyuan City 32001, Taiwan, R.O.C.
Ya-Ting Lee
Department of Earth Sciences, National Central University, Taoyuan
City 32001, Taiwan, R.O.C.
Earthquake-Disaster & Risk Evaluation and Management Center,
National Central University, Taoyuan City 32001, Taiwan, R.O.C.
Kuo-Fong Ma
Department of Earth Sciences, National Central University, Taoyuan
City 32001, Taiwan, R.O.C.
Earthquake-Disaster & Risk Evaluation and Management Center,
National Central University, Taoyuan City 32001, Taiwan, R.O.C.
Tso-Ren Wu
Earthquake-Disaster & Risk Evaluation and Management Center,
National Central University, Taoyuan City 32001, Taiwan, R.O.C.
Graduate Institute of Hydrological and Oceanic Sciences, National
Central University, Taoyuan City 32001, Taiwan, R.O.C.
Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung, Taiwan
Related authors
No articles found.
Haekal A. Haridhi, Bor Shouh Huang, Kuo Liang Wen, Arif Mirza, Syamsul Rizal, Syahrul Purnawan, Ilham Fajri, Frauke Klingelhoefer, Char Shine Liu, Chao Shing Lee, Crispen R. Wilson, Tso-Ren Wu, Ichsan Setiawan, and Van Bang Phung
Nat. Hazards Earth Syst. Sci., 23, 507–523, https://doi.org/10.5194/nhess-23-507-2023, https://doi.org/10.5194/nhess-23-507-2023, 2023
Short summary
Short summary
Near the northern end of Sumatra, the horizontal movement Sumatran fault zone extended to its northern offshore. The movement of offshore fault segments trigger submarine landslides and induce tsunamis. Scenarios of a significant tsunami caused by the combined effect of an earthquake and its triggered submarine landslide at the coast were proposed in this study. Based on our finding, the landslide tsunami hazard assessment and early warning systems in this region should be urgently considered.
Tien-Chi Liu, Tso-Ren Wu, and Shu-Kun Hsu
Nat. Hazards Earth Syst. Sci., 22, 2517–2530, https://doi.org/10.5194/nhess-22-2517-2022, https://doi.org/10.5194/nhess-22-2517-2022, 2022
Short summary
Short summary
The findings from historical reports and numerical studies suggest the 1781 Jiateng Harbor flooding and the 1782 tsunami should be two independent incidents. Local tsunamis generated in southwest Taiwan could be responsible for the 1781 flooding, while the existence of the 1782 tsunami remains doubtful. With the documents of a storm event on 22 May 1782, the possibility that the significant water level of the 1782 tsunami was caused by storm surges or multiple hazards could not be ignored.
Haoyu Wen, Hong-Jia Chen, Chien-Chih Chen, Massimo Pica Ciamarra, and Siew Ann Cheong
Nat. Hazards Earth Syst. Sci., 22, 1931–1954, https://doi.org/10.5194/nhess-22-1931-2022, https://doi.org/10.5194/nhess-22-1931-2022, 2022
Short summary
Short summary
Recently, there has been growing interest from earth scientists to use the electric field deep underground to forecast earthquakes. We go one step further by using the electric fields, which can be directly measured, to separate/classify time periods with two labels only according to the statistical properties of the electric fields. By checking against historical earthquake records, we found time periods covered by one of the two labels to have significantly more frequent earthquakes.
Yi-Ying Wen, Chien-Chih Chen, Strong Wen, and Wei-Tsen Lu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-114, https://doi.org/10.5194/nhess-2022-114, 2022
Manuscript not accepted for further review
Short summary
Short summary
Knowing the spatiotemporial seismicity patterns prior to impending large earthquakes might help to the earthquake hazard assessment. Several recent moderate earthquakes occurred in the various regions of Taiwan, which help to further investigate the spatiotemporal seismic pattern related to the regional tectonic stress. We should pay attention when seismicity decrease of 2.5 < M < 4.5 events around southern Central Range, or the accelerating seismicity of 3 < M < 5 events appears in central Taiwan.
Cited articles
Aki, K.: Scaling law of seismic spectrum, J. Geophys. Res., 72, 1217–1231,
https://doi.org/10.1029/JZ072i004p01217, 1967.
Amante, C. and Eakins, B. W.: ETOPO1 1 arc-minute global relief model:
procedures, data sources and analysis, US Department of Commerce, National
Oceanic and Atmospheric Administration, National Environmental Satellite,
Data, and Information Service, National Geophysical Data Center, Marine
Geology and Geophysics Division Colorado, https://doi.org/10.7289/V5C8276M, 2009.
Andrews, D. J.: A stochastic fault model: 1. Static case, J. Geophys.
Res.-Sol. Ea., 85, 3867–3877, https://doi.org/10.1029/JB085iB07p03867, 1980.
Burroughs, S. M. and Tebbens, S. F.: Power-law scaling and probabilistic
forecasting of tsunami runup heights, Pure Appl. Geophys., 162, 331–342,
https://doi.org/10.1007/s00024-004-2603-5, 2005.
Chen, P.-F., Newman, A. V., Wu, T.-R., and Lin, C.-C.: Earthquake
Probabilities and Energy Characteristics of Seismicity Offshore Southwest
Taiwan, Terr. Atmos. Ocean. Sci., 19, 697–703, https://doi.org/10.3319/TAO.2008.19.6.697(PT),
2008.
Cheng, S.-N., Shaw, C.-F., and Yeh, Y. T.: Reconstructing the 1867 Keelung
Earthquake and Tsunami Based on Historical Documents, Terr. Atmos. Ocean.
Sci., 27, 431–449, https://doi.org/10.3319/TAO.2016.03.18.01(TEM), 2016.
Cornell, C. A.: Engineering seismic risk analysis, Bull. Seism. Soc. Am., 58,
1583–1606, 1968.
Davis, T. L. and Namson, J. S.: A Balanced Cross-Section of the 1994
Northridge Earthquake, Southern California, Nature, 372, 167–169,
https://doi.org/10.1038/372167a0, 1994.
Dean, R. G. and Dalrymple, R. A.: Water wave mechanics for engineers and
scientists, World Scientific Publishing Co Inc, Singapore,
https://doi.org/10.1142/9789812385512_0004, 1991.
Fowler, C. M. R.: The Solid Earth: An Introduction to Global Geophysics,
Cambridge University Press, Cambridge, 728pp., 2004.
Fritz, H. M., Petroff, C. M., Catalán, P. A., Cienfuegos, R., Winckler,
P., Kalligeris, N., Weiss, R., Barrientos, S. E., Meneses, G.,
Valderas-Bermejo, C., Ebeling, C., Papadopoulos, A., Contreras, M., Almar,
R., Dominguez, J. C., and Synolakis, C. E.: Field Survey of the 27 February
2010 Chile Tsunami, Pure Appl. Geophys., 168, 1989–2010,
https://doi.org/10.1007/s00024-011-0283-5, 2011.
Geist, E. L.: Complex earthquake rupture and local tsunamis, J. Geophys.
Res.-Sol. Ea., 107, ESE 2-1-ESE 2-15, https://doi.org/10.1029/2000JB000139, 2002.
Geist, E. L. and Dmowska, R.: Local Tsunamis and Distributed Slip at the
Source, in: Seismogenic and Tsunamigenic Processes in Shallow Subduction
Zones, edited by: Sauber, J. and Dmowska, R., Birkhäuser Basel, Basel,
https://doi.org/10.1007/978-3-0348-8679-6_6, 1999.
Geist, E. L. and Parsons, T.: Probabilistic Analysis of Tsunami Hazards*,
Nat. Hazards, 37, 277–314, https://doi.org/10.1007/s11069-005-4646-z, 2006.
Geist, E. L. and Parsons, T.: Assessment of source probabilities for
potential tsunamis affecting the U.S. Atlantic coast, Mar. Geol., 264,
98–108, https://doi.org/10.1016/j.margeo.2008.08.005, 2009.
Goda, K. and Song, J.: Uncertainty modeling and visualization for tsunami
hazard and risk mapping: a case study for the 2011 Tohoku earthquake, Stoch.
Environ. Res. Risk Assess., 30, 2271–2285, https://doi.org/10.1007/s00477-015-1146-x,
2016.
Goda, K., Yasuda, T., Mori, N., and Mai, P. M.: Variability of tsunami
inundation footprints considering stochastic scenarios based on a single
rupture model: Application to the 2011 Tohoku earthquake, J. Geophys.
Res.-Oceans, 120, 4552–4575, https://doi.org/10.1002/2014JC010626, 2015.
Gutenberg, B. and Richter, C. F.: Frequency of earthquakes in California,
Bull. Seism. Soc. Am., 34, 185–188, 1944.
Hanks, T. C. and Kanamori, H.: A moment magnitude scale, J. Geophys.
Res.-Sol. Ea., 84, 2348–2350, https://doi.org/10.1029/JB084iB05p02348, 1979.
Herrero, A. and Bernard, P.: A Kinematic Self-Similar Rupture Process for
Earthquakes, Bull. Seism. Soc. Am., 84, 1216–1228, 1994.
Horikawa, K. and Shuto, N.: Tsunami disasters and protection measures in
Japan, Tsunamis-Their Science and Engineering, Terra Scientific Publishing
Company, Tokyo, 9–22, 1983.
Houston, J. R., Carver, R. D., and Markle, D. G.: Tsunami-Wave Elevation
Frequency of Occurrence for the Hawaiian Islands, Army Engineer Waterways
Experiment Station, Vicksburg, MS, 66 pp., 1977.
Hsu, Y.-J., Yu, S.-B., Simons, M., Kuo, L.-C., and Chen, H.-Y.: Interseismic
crustal deformation in the Taiwan plate boundary zone revealed by GPS
observations, seismicity, and earthquake focal mechanisms, Tectonophysics,
479, 4–18, https://doi.org/10.1016/j.tecto.2008.11.016, 2009.
Hsu, Y.-J., Ando, M., Yu, S.-B., and Simons, M.: The potential for a great
earthquake along the southernmost Ryukyu subduction zone, Geophys. Res.
Lett., Geophys. Res. Lett., 39, L14302, https://doi.org/10.1029/2012GL052764, 2012.
Ide, S., Baltay, A., and Beroza, G. C.: Shallow dynamic overshoot and
energetic deep rupture in the 2011 Mw 9.0 Tohoku-Oki earthquake,
Science, 332, 1426–1429, https://doi.org/10.1126/science.1207020, 2011.
Kanamori, H. and Anderson, D. L.: Theoretical basis of some empirical
relations in seismology, Bull. Seism. Soc. Am., 65, 1073–1095, 1975.
Lavallée, D. and Archuleta, R. J.: Stochastic modeling of slip spatial
complexities for the 1979 Imperial Valley, California, earthquake, Geophys.
Res. Lett., 30, 1245, https://doi.org/10.1029/2002GL015839, 2003.
Lavallée, D., Liu, P., and Archuleta, R. J.: Stochastic model of
heterogeneity in earthquake slip spatial distributions, Geophys. J. Int.,
165, 622–640, https://doi.org/10.1111/j.1365-246X.2006.02943.x, 2006.
Lay, T. and Wallace, T. C.: Modern global seismology, Academic Press, San Diego,
California,
1995.
Lay, T., Kanamori, H., Ammon, C. J., Nettles, M., Ward, S. N., Aster, R. C.,
Beck, S. L., Bilek, S. L., Brudzinski, M. R., Butler, R., DeShon, H. R.,
Ekström, G., Satake, K., and Sipkin, S.: The Great Sumatra-Andaman
Earthquake of 26 December 2004, Science, 308, 1127–1133,
https://doi.org/10.1126/science.1112250, 2005.
Lay, T., Ammon, C. J., Kanamori, H., Koper, K. D., Sufri, O., and Hutko, A.
R.: Teleseismic inversion for rupture process of the 27 February 2010 Chile
(Mw 8.8) earthquake, Geophys. Res. Lett., 37, L13301,
https://doi.org/10.1029/2010GL043379, 2010.
Lay, T., Ammon, C. J., Kanamori, H., Xue, L., and Kim, M. J.: Possible large
near-trench slip during the 2011 Mw 9.0 off the Pacific coast of Tohoku
Earthquake, Earth Planets Space, 63, 687–692, https://doi.org/10.5047/eps.2011.05.033,
2011.
Liu, P. L. F., Cho, Y. S., Yoon, S. B., and Seo, S. N.: Numerical Simulations
of the 1960 Chilean Tsunami Propagation and Inundation at Hilo, Hawaii, in:
Tsunami: Progress in Prediction, Disaster Prevention and Warning, edited by:
Tsuchiya, Y. and Shuto, N., Springer Netherlands, Dordrecht, 1995.
Liu, P. L. F., Cho, Y. S., Briggs, M. J., Kanoglu, U., and Synolakis, C. E.:
Runup of solitary waves on a circular Island, J. Fluid Mech., 302, 259–285,
https://doi.org/10.1017/S0022112095004095, 1995.
Ma, K.-F. and Lee, M.-F.: Simulation of historical tsunamis in the Taiwan
region, Terr. Atmos. Ocean. Sci., 8, 13–30, 1997.
Ma, K.-F., Satake, K., and Kanamori, H.: The origin of the tsunami excited by
the 1989 Loma Prieta Earthquake – Faulting or slumping?, Geophys. Res.
Lett., 18, 637–640, https://doi.org/10.1029/91GL00818, 1991.
Mimura, N., Yasuhara, K., Kawagoe, S., Yokoki, H., and Kazama, S.: Damage
from the Great East Japan Earthquake and Tsunami – A quick report, Mitig.
Adapt. Strat. Gl., 16, 803–818, https://doi.org/10.1007/s11027-011-9297-7, 2011.
Nakamura, M.: Fault model of the 1771 Yaeyama earthquake along the Ryukyu
Trench estimated from the devastating tsunami, Geophys. Res. Lett., 36,
L19307, https://doi.org/10.1029/2009GL039730, 2009.
Okada, Y.: Surface deformation due to shear and tensile faults in a
half-space, Bull. Seism. Soc. Am., 75, 1135–1154, 1985.
Okal, E. A.: Mode-wave equivalence and other asymptotic problems in tsunami
theory, Phys. Earth Planet. Inter., 30, 1–11,
https://doi.org/10.1016/0031-9201(82)90123-6, 1982.
Piombo, A., Tallarico, A., and Dragoni, M.: Displacement, strain and stress
fields due to shear and tensile dislocations in a viscoelastic half-space,
Geophys. J. Int., 170, 1399–1417, https://doi.org/10.1111/j.1365-246X.2007.03283.x,
2007.
Ruiz, J. A., Fuentes, M., Riquelme, S., Campos, J., and Cisternas, A.:
Numerical simulation of tsunami runup in northern Chile based on non-uniform
k −2 slip distributions, Nat. Hazards, 79, 1177–1198,
https://doi.org/10.1007/s11069-015-1901-9, 2015.
Satake, K., Nishimura, Y., Putra, P. S., Gusman, A. R., Sunendar, H., Fujii,
Y., Tanioka, Y., Latief, H., and Yulianto, E.: Tsunami Source of the 2010
Mentawai, Indonesia Earthquake Inferred from Tsunami Field Survey and
Waveform Modeling, Pure Appl. Geophys., 170, 1567–1582,
https://doi.org/10.1007/s00024-012-0536-y, 2013.
Sella, G. F., Dixon, T. H., and Mao, A.: REVEL: A model for Recent plate
velocities from space geodesy, J. Geophys. Res.-Sol. Ea., 107, ETG 11-11-ETG
11-30, https://doi.org/10.1029/2000JB000033, 2002.
Senior Seismic Hazard Analysis Committee (SSHAC): Recommendations for
probabilistic seismic hazard analysis: guidance on uncertainty and use of
experts, US Nuclear Regulatory Commission Washington, DC, 1997.
Seno, T., Stein, S., and Gripp, A. E.: A model for the motion of the
Philippine Sea Plate consistent with NUVEL-1 and geological data, J. Geophys.
Res.-Sol. Ea., 98, 17941–17948, https://doi.org/10.1029/93JB00782, 1993.
Shao, G., Li, X., Ji, C., and Maeda, T.: Focal mechanism and slip history of
the 2011 Mw 9.1 off the Pacific coast of Tohoku Earthquake, constrained
with teleseismic body and surface waves, Earth Planets Space, 63, 559–564,
https://doi.org/10.5047/eps.2011.06.028, 2011.
Soloviev, S. L.: Recurrence of tsunamis in the Pacific, in:
Tsunamis in the Pacific Ocean, edited by: Adams, W. M., East-West Center Press,
149–163, 1969.
Theunissen, T., Font, Y., Lallemand, S., and Liang, W.-T.: The largest
instrumentally recorded earthquake in Taiwan: revised location and magnitude,
and tectonic significance of the 1920 event, Geophys. J. Int., 183,
1119–1133, https://doi.org/10.1111/j.1365-246X.2010.04813.x, 2010.
Tsai, C.-C. P.: Slip, Stress Drop and Ground Motion of Earthquakes: A View
from the Perspective of Fractional Brownian Motion, Pure Appl. Geophys., 149,
689–706, https://doi.org/10.1007/s000240050047, 1997.
Tsai, Y.-B.: A study of disastrous earthquakes in Taiwan, 1683–1895, Bull.
Inst. Earth Sci., Acad. Sin., 5, 1–44, 1985.
Wang, X.: User manual for COMCOT version 1.7 (first draft), Cornel
University, 65, 2009.
Wang, X. M. and Liu, P. L. F.: A numerical investigation of
Boumerdes-Zemmouri (Algeria) earthquake and tsunami, CMES Comput. Model. Eng.
Sci., 10, 171–183, https://doi.org/10.3970/cmes.2005.010.171, 2005.
Wang, X. and Liu, P. L. F.: An analysis of 2004 Sumatra earthquake fault
plane mechanisms and Indian Ocean tsunami, J. Hydraul. Res., 44, 147–154,
https://doi.org/10.1080/00221686.2006.9521671, 2006.
Wang, X. and Liu, P. L. F.: Numerical simulations of the 2004 Indian Ocean
tsunamis – coastal effects, J. Earthquake and Tsunami, 01, 273–297,
https://doi.org/10.1142/s179343110700016x, 2007.
Wang, Y.-J., Chan, C.-H., Lee, Y.-T., Ma, K.-F., Shyu, J., Rau, R.-J., and
Cheng, C.-T.: Probabilistic seismic hazard assessment for Taiwan, Terr.
Atmos. Ocean. Sci., 27, 325–340, https://doi.org/10.3319/TAO.2016.05.03.01(TEM),
2016.
Wu, T.-R., Chen, P.-F., Tsai, W.-T., and Chen, G.-Y.: Numerical Study on
Tsunamis Excited by 2006 Pingtung Earthquake Doublet, Terr. Atmos. Ocean.
Sci., 19, 705–715, https://doi.org/10.3319/TAO.2008.19.6.705(PT), 2008.
Wu, Y.-H., Chen, C.-C., Turcotte, D. L., and Rundle, J. B.: Quantifying the
seismicity on Taiwan, Geophys. J. Int., 194, 465–469,
https://doi.org/10.1093/gji/ggt101, 2013.
Yu, N.-T., Yen, J.-Y., Chen, W.-S., Yen, I. C., and Liu, J.-H.: Geological
records of western Pacific tsunamis in northern Taiwan: AD 1867 and earlier
event deposits, Mar. Geol., 372, 1–16, https://doi.org/10.1016/j.margeo.2015.11.010,
2016.
Yu, S.-B., Chen, H.-Y., and Kuo, L.-C.: Velocity field of GPS stations in the
Taiwan area, Tectonophysics, 274, 41–59, https://doi.org/10.1016/S0040-1951(96)00297-1,
1997.
Yue, H. and Lay, T.: Inversion of high-rate (1 sps) GPS data for rupture
process of the 11 March 2011 Tohoku earthquake (Mw 9.1), Geophys. Res.
Lett., 38, L00G09, https://doi.org/10.1029/2011GL048700, 2011.
Short summary
The maximum possible earthquake magnitude is Mw 8.15 with an average slip of 8.25 m in the southernmost portion of the Ryukyu Trench. One hundred slip distributions of the seismic rupture surface were generated by a stochastic slip model. The simulated results demonstrate that the complexity of the rupture plane has a significant influence on the near field for local tsunamis. The propagation of tsunami waves and the peak wave heights largely vary in response to the slip distribution.
The maximum possible earthquake magnitude is Mw 8.15 with an average slip of 8.25 m in the...
Altmetrics
Final-revised paper
Preprint