Articles | Volume 18, issue 4
https://doi.org/10.5194/nhess-18-1013-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-18-1013-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Pre-seismic anomalies from optical satellite observations: a review
State Key Laboratory of Earthquake Dynamics, Institute of Geology,
China Earthquake Administration, Beijing 100029, China
Jing Zhao
Harbin Institute of Technology Shenzhen Graduate School, Shenzhen
518000, China
Xinjian Shan
State Key Laboratory of Earthquake Dynamics, Institute of Geology,
China Earthquake Administration, Beijing 100029, China
Related authors
No articles found.
Ronghu Zuo, Chunyan Qu, XinJian Shan, Yingfeng Zhang, Guohong Zhang, Xiaogang Song, Yunhua Liu, and Guifang Zhang
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2015-342, https://doi.org/10.5194/nhess-2015-342, 2016
Revised manuscript not accepted
Short summary
Short summary
We obtain the coseismic surface deformation fields of the Chile Mw8.3 earthquake through analyzing Sentinel-1A/IW InSAR data from ascending and descending tracks. Based on an elastic dislocation model, we invert the coseismic fault slip.The depth where coseismic slip is near zero appears to a depth of 50 km, quantitatively indicating the down-dip limit of the seismogenic zone. At the same time, we find increased coseismic Coulomb stress change correlate well with the location of aftershocks.
Related subject area
Earthquake Hazards
Risk-informed representative earthquake scenarios for Valparaíso and Viña del Mar, Chile
Harmonizing seismicity information in Central Asian countries: earthquake catalogue and active faults
Comparing components for seismic risk modelling using data from the 2019 Le Teil (France) earthquake
Modelling seismic ground motion and its uncertainty in different tectonic contexts: challenges and application to the 2020 European Seismic Hazard Model (ESHM20)
Scoring and ranking probabilistic seismic hazard models: an application based on macroseismic intensity data
A dense micro-electromechanical system (MEMS)-based seismic network in populated areas: rapid estimation of exposure maps in Trentino (NE Italy)
Exploring inferred geomorphological sediment thickness as a new site proxy to predict ground-shaking amplification at regional scale: application to Europe and eastern Türkiye
Surface rupture kinematics of the 2020 Mw 6.6 Masbate (Philippines) earthquake determined from optical and radar data
The influence of aftershocks on seismic hazard analysis: a case study from Xichang and the surrounding areas
Characteristics and mechanisms of near-surface negative atmospheric electric field anomalies preceding the 5 September 2022, Ms 6.8 Luding earthquake in China
Seismogenic depth and seismic coupling estimation in the transition zone between Alps, Dinarides and Pannonian Basin for the new Slovenian seismic hazard model
Co- and postseismic subaquatic evidence for prehistoric fault activity near Coyhaique, Aysén Region, Chile
Towards a dynamic earthquake risk framework for Switzerland
Understanding flow characteristics from tsunami deposits at Odaka, Joban Coast, using a deep neural network (DNN) inverse model
Spring water anomalies before two consecutive earthquakes (Mw 7.7 and Mw 7.6) in Kahramanmaraş (Türkiye) on 6 February 2023
Update on the seismogenic potential of the Upper Rhine Graben southern region
Forearc crustal faulting and estimated worst-case tsunami scenario in the upper plate of subduction zones. Case study of the Morne Piton Fault system (Lesser Antilles, Guadeloupe Archipelago)
Earthquake forecasting model for Albania: the area source model and the smoothing model
Estimating Ground Motion Intensities Using Simulation-Based Estimates of Local Crustal Seismic Response
The 2020 European Seismic Hazard Model: Overview and Results
Probabilistic Seismic Hazard Assessment of Sweden
The footprint of a historical paleoearthquake: the sixth-century-CE event in the European western Southern Alps
Strategies for Comparison of Modern Probabilistic Seismic Hazard Models and Insights from the Germany and France Border Region
Seismic background noise levels in the Italian strong-motion network
Testing machine learning models for heuristic building damage assessment applied to the Italian Database of Observed Damage (DaDO)
The seismic hazard from the Lembang Fault, Indonesia, derived from InSAR and GNSS data
The European Fault-Source Model 2020 (EFSM20): geologic input data for the European Seismic Hazard Model 2020
Rapid estimation of seismic intensities by analyzing early aftershock sequences using the robust locally weighted regression program (LOWESS)
A 2700-yr record of Cascadia megathrust and crustal/slab earthquakes from Upper and Lower Squaw Lakes, Oregon
Towards improving the spatial testability of aftershock forecast models
The Earthquake Risk Model of Switzerland ERM-CH23
Accounting for path and site effects in spatial ground-motion correlation models using Bayesian inference
Seismogenic potential and tsunami threat of the strike-slip Carboneras fault in the western Mediterranean from physics-based earthquake simulations
Earthquake hazard characterization by using entropy: application to northern Chilean earthquakes
Seismic risk scenarios for the residential buildings in the Sabana Centro province in Colombia
Looking for undocumented earthquake effects: a probabilistic analysis of Italian macroseismic data
Spatiotemporal seismicity pattern of the Taiwan orogen
A web-based GIS (web-GIS) database of the scientific articles on earthquake-triggered landslides
Evaluation of liquefaction triggering potential in Italy: a seismic-hazard-based approach
Earthquake vulnerability assessment of the built environment in the city of Srinagar, Kashmir Himalaya, using a geographic information system
Earthquake-induced landslides in Norway
PERL: a dataset of geotechnical, geophysical, and hydrogeological parameters for earthquake-induced hazards assessment in Terre del Reno (Emilia-Romagna, Italy)
Development of a seismic loss prediction model for residential buildings using machine learning – Ōtautahi / Christchurch, New Zealand
A non-extensive approach to probabilistic seismic hazard analysis
Inferring the depth and magnitude of pre-instrumental earthquakes from intensity attenuation curves
Tsunami scenario triggered by a submarine landslide offshore of northern Sumatra Island and its hazard assessment
Scrutinizing and rooting the multiple anomalies of Nepal earthquake sequence in 2015 with the deviation–time–space criterion and homologous lithosphere–coversphere–atmosphere–ionosphere coupling physics
On the calculation of smoothing kernels for seismic parameter spatial mapping: methodology and examples
Mass flows, turbidity currents and other hydrodynamic consequences of small and moderate earthquakes in the Sea of Marmara
Brief communication: The crucial assessment of possible significant vertical movements preceding the 28 December 1908, Mw = 7.1, Messina Straits earthquake
Hugo Rosero-Velásquez, Mauricio Monsalve, Juan Camilo Gómez Zapata, Elisa Ferrario, Alan Poulos, Juan Carlos de la Llera, and Daniel Straub
Nat. Hazards Earth Syst. Sci., 24, 2667–2687, https://doi.org/10.5194/nhess-24-2667-2024, https://doi.org/10.5194/nhess-24-2667-2024, 2024
Short summary
Short summary
Seismic risk management uses reference earthquake scenarios, but the criteria for selecting them do not always consider consequences for exposed assets. Hence, we adopt a definition of representative scenarios associated with a return period and loss level to select such scenarios among a large set of possible earthquakes. We identify the scenarios for the residential-building stock and power supply in Valparaíso and Viña del Mar, Chile. The selected scenarios depend on the exposed assets.
Valerio Poggi, Stefano Parolai, Natalya Silacheva, Anatoly Ischuk, Kanatbek Abdrakhmatov, Zainalobudin Kobuliev, Vakhitkhan Ismailov, Roman Ibragimov, Japar Karaev, Paola Ceresa, and Paolo Bazzurro
Nat. Hazards Earth Syst. Sci., 24, 2597–2613, https://doi.org/10.5194/nhess-24-2597-2024, https://doi.org/10.5194/nhess-24-2597-2024, 2024
Short summary
Short summary
As part of the Strengthening Financial Resilience and Accelerating Risk Reduction in Central Asia (SFRARR) programme, funded by the European Union in collaboration with the World Bank and GFDRR, a regionally consistent probabilistic multi-hazard and multi-asset risk assessment has been developed. This paper describes the preparation of the input datasets (earthquake catalogue and active-fault database) required for the implementation of the probabilistic seismic hazard model.
Konstantinos Trevlopoulos, Pierre Gehl, Caterina Negulescu, Helen Crowley, and Laurentiu Danciu
Nat. Hazards Earth Syst. Sci., 24, 2383–2401, https://doi.org/10.5194/nhess-24-2383-2024, https://doi.org/10.5194/nhess-24-2383-2024, 2024
Short summary
Short summary
The models used to estimate the probability of exceeding a level of earthquake damage are essential to the reduction of disasters. These models consist of components that may be tested individually; however testing these types of models as a whole is challenging. Here, we use observations of damage caused by the 2019 Le Teil earthquake and estimations from other models to test components of seismic risk models.
Graeme Weatherill, Sreeram Reddy Kotha, Laurentiu Danciu, Susana Vilanova, and Fabrice Cotton
Nat. Hazards Earth Syst. Sci., 24, 1795–1834, https://doi.org/10.5194/nhess-24-1795-2024, https://doi.org/10.5194/nhess-24-1795-2024, 2024
Short summary
Short summary
The ground motion models (GMMs) selected for the 2020 European Seismic Hazard Model (ESHM20) and their uncertainties require adaptation to different tectonic environments. Using insights from new data, local experts and developments in the scientific literature, we further calibrate the ESHM20 GMM logic tree to capture previously unmodelled regional variation. We also propose a new scaled-backbone logic tree for application to Europe's subduction zones and the Vrancea deep seismic source.
Vera D'Amico, Francesco Visini, Andrea Rovida, Warner Marzocchi, and Carlo Meletti
Nat. Hazards Earth Syst. Sci., 24, 1401–1413, https://doi.org/10.5194/nhess-24-1401-2024, https://doi.org/10.5194/nhess-24-1401-2024, 2024
Short summary
Short summary
We propose a scoring strategy to rank multiple models/branches of a probabilistic seismic hazard analysis (PSHA) model that could be useful to consider specific requests from stakeholders responsible for seismic risk reduction actions. In fact, applications of PSHA often require sampling a few hazard curves from the model. The procedure is introduced through an application aimed to score and rank the branches of a recent Italian PSHA model according to their fit with macroseismic intensity data.
Davide Scafidi, Alfio Viganò, Jacopo Boaga, Valeria Cascone, Simone Barani, Daniele Spallarossa, Gabriele Ferretti, Mauro Carli, and Giancarlo De Marchi
Nat. Hazards Earth Syst. Sci., 24, 1249–1260, https://doi.org/10.5194/nhess-24-1249-2024, https://doi.org/10.5194/nhess-24-1249-2024, 2024
Short summary
Short summary
Our paper concerns the use of a dense network of low-cost seismic accelerometers in populated areas to achieve rapid and reliable estimation of exposure maps in Trentino (northeast Italy). These additional data, in conjunction with the automatic monitoring procedure, allow us to obtain dense measurements which only rely on actual recorded data, avoiding the use of ground motion prediction equations. This leads to a more reliable picture of the actual ground shaking.
Karina Loviknes, Fabrice Cotton, and Graeme Weatherill
Nat. Hazards Earth Syst. Sci., 24, 1223–1247, https://doi.org/10.5194/nhess-24-1223-2024, https://doi.org/10.5194/nhess-24-1223-2024, 2024
Short summary
Short summary
Earthquake ground shaking can be strongly affected by local geology and is often amplified by soft sediments. In this study, we introduce a global geomorphological model for sediment thickness as a protentional parameter for predicting this site amplification. The results show that including geology and geomorphology in site-amplification predictions adds important value and that global or regional models for sediment thickness from fields beyond engineering seismology are worth considering.
Khelly Shan Sta. Rita, Sotiris Valkaniotis, and Alfredo Mahar Francisco Lagmay
Nat. Hazards Earth Syst. Sci., 24, 1135–1161, https://doi.org/10.5194/nhess-24-1135-2024, https://doi.org/10.5194/nhess-24-1135-2024, 2024
Short summary
Short summary
The ground movement and rupture produced by the 2020 Masbate earthquake in the Philippines were studied using satellite data. We highlight the importance of the complementary use of optical and radar datasets. The slip measurements and field observations helped improve our understanding of the seismotectonics of the region, which is critical for seismic hazard studies.
Qing Wu, Guijuan Lai, Jian Wu, and Jinmeng Bi
Nat. Hazards Earth Syst. Sci., 24, 1017–1033, https://doi.org/10.5194/nhess-24-1017-2024, https://doi.org/10.5194/nhess-24-1017-2024, 2024
Short summary
Short summary
Aftershocks are typically ignored for traditional probabilistic seismic hazard analyses, which underestimate the seismic hazard to some extent and may cause potential risks. A probabilistic seismic hazard analysis based on the Monte Carlo method was combined with the Omi–Reasenberg–Jones model to systematically study how aftershocks impact seismic hazard analyses. The influence of aftershocks on probabilistic seismic hazard analysis can exceed 50 %.
Lixin Wu, Xiao Wang, Yuan Qi, Jingchen Lu, and Wenfei Mao
Nat. Hazards Earth Syst. Sci., 24, 773–789, https://doi.org/10.5194/nhess-24-773-2024, https://doi.org/10.5194/nhess-24-773-2024, 2024
Short summary
Short summary
The atmospheric electric field (AEF) is the bridge connecting the surface charges and atmospheric particle changes before an earthquake, which is essential for the study of the coupling process between the coversphere and atmosphere caused by earthquakes. This study discovers AEF anomalies before the Luding earthquake in 2022 and clarifies the relationship between the surface changes and atmosphere changes possibly caused by the earthquake.
Polona Zupančič, Barbara Šket Motnikar, Michele M. C. Carafa, Petra Jamšek Rupnik, Mladen Živčić, Vanja Kastelic, Gregor Rajh, Martina Čarman, Jure Atanackov, and Andrej Gosar
Nat. Hazards Earth Syst. Sci., 24, 651–672, https://doi.org/10.5194/nhess-24-651-2024, https://doi.org/10.5194/nhess-24-651-2024, 2024
Short summary
Short summary
We considered two parameters that affect seismic hazard assessment in Slovenia. The first parameter we determined is the thickness of the lithosphere's section where earthquakes are generated. The second parameter is the activity of each fault, which is expressed by its average displacement per year (slip rate). Since the slip rate can be either seismic or aseismic, we estimated both components. This analysis was based on geological and seismological data and was validated through comparisons.
Morgan Vervoort, Katleen Wils, Kris Vanneste, Roberto Urrutia, Mario Pino, Catherine Kissel, Marc De Batist, and Maarten Van Daele
EGUsphere, https://doi.org/10.5194/egusphere-2024-8, https://doi.org/10.5194/egusphere-2024-8, 2024
Short summary
Short summary
This study identified a prehistoric earthquake around 4400 years ago near the city of Coyhaique (Aysén Region, Chilean Patagonia) and illustrates the potential seismic hazard in the region. We found deposits in lakes and a fjord that can be related to subaquatic and onshore landslides, all with a similar age, indicating that they were most likely caused by an earthquake. Through modelling we found that this was a magnitude 5.6 to 6.8 earthquake on a fault near the city of Coyhaique.
Maren Böse, Laurentiu Danciu, Athanasios Papadopoulos, John Clinton, Carlo Cauzzi, Irina Dallo, Leila Mizrahi, Tobias Diehl, Paolo Bergamo, Yves Reuland, Andreas Fichtner, Philippe Roth, Florian Haslinger, Frédérick Massin, Nadja Valenzuela, Nikola Blagojević, Lukas Bodenmann, Eleni Chatzi, Donat Fäh, Franziska Glueer, Marta Han, Lukas Heiniger, Paulina Janusz, Dario Jozinović, Philipp Kästli, Federica Lanza, Timothy Lee, Panagiotis Martakis, Michèle Marti, Men-Andrin Meier, Banu Mena Cabrera, Maria Mesimeri, Anne Obermann, Pilar Sanchez-Pastor, Luca Scarabello, Nicolas Schmid, Anastasiia Shynkarenko, Bozidar Stojadinović, Domenico Giardini, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 583–607, https://doi.org/10.5194/nhess-24-583-2024, https://doi.org/10.5194/nhess-24-583-2024, 2024
Short summary
Short summary
Seismic hazard and risk are time dependent as seismicity is clustered and exposure can change rapidly. We are developing an interdisciplinary dynamic earthquake risk framework for advancing earthquake risk mitigation in Switzerland. This includes various earthquake risk products and services, such as operational earthquake forecasting and early warning. Standardisation and harmonisation into seamless solutions that access the same databases, workflows, and software are a crucial component.
Rimali Mitra, Hajime Naruse, and Tomoya Abe
Nat. Hazards Earth Syst. Sci., 24, 429–444, https://doi.org/10.5194/nhess-24-429-2024, https://doi.org/10.5194/nhess-24-429-2024, 2024
Short summary
Short summary
This study estimates the behavior of the 2011 Tohoku-oki tsunami from its deposit distributed in the Joban coastal area. In this study, the flow characteristics of the tsunami were reconstructed using the DNN (deep neural network) inverse model, suggesting that the tsunami inundation occurred in the very high-velocity condition.
Sedat İnan, Hasan Çetin, and Nurettin Yakupoğlu
Nat. Hazards Earth Syst. Sci., 24, 397–409, https://doi.org/10.5194/nhess-24-397-2024, https://doi.org/10.5194/nhess-24-397-2024, 2024
Short summary
Short summary
Two devastating earthquakes, Mw 7.7 and Mw 7.6, occurred in Türkiye on 6 February 2023. We obtained commercially bottled waters from two springs, 100 km from the epicenter of Mw 7.7. Samples of the first spring emanating from fault zone in hard rocks showed positive anomalies in major ions lasting for 6 months before the earthquake. Samples from the second spring accumulated in an alluvium deposit showed no anomalies. We show that pre-earthquake anomalies are geologically site-dependent.
Sylvain Michel, Clara Duverger, Laurent Bollinger, Jorge Jara, and Romain Jolivet
Nat. Hazards Earth Syst. Sci., 24, 163–177, https://doi.org/10.5194/nhess-24-163-2024, https://doi.org/10.5194/nhess-24-163-2024, 2024
Short summary
Short summary
The Upper Rhine Graben, located in France and Germany, is bordered by north–south-trending faults, posing a potential threat to dense population and infrastructures on the Alsace plain. We build upon previous seismic hazard studies of the graben by exploring uncertainties in greater detail, revisiting a number of assumptions. There is a 99 % probability that a maximum-magnitude earthquake would be below 7.3 if assuming a purely dip-slip mechanism or below 7.6 if assuming a strike-slip one.
Melody Philippon, Jean Roger, Jean Frédéric Lebrun, Isabelle Thinon, Océane Foix, Stéphane Mazzotti, Marc-André Gutscher, Leny Montheil, and Jean-Jacques Cornée
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-222, https://doi.org/10.5194/nhess-2023-222, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Using novel geophysical datasets we reassess the slip rate of the Morne Piton Fault (Lesser Antilles) at 0.2 mm.yr-1, dividing by five previous estimations and thus increasing the earthquake time recurrence and lowering the associated hazard. We evaluate a plausible magnitude for a potential seismic event of Mw 6.5 ± 0.5. Our multi-segment tsunami model representative for the worst-case scenario gives an overview of tsunami generation if the whole Fault segments would ruptured together.
Edlira Xhafaj, Chung-Han Chan, and Kuo-Fong Ma
Nat. Hazards Earth Syst. Sci., 24, 109–119, https://doi.org/10.5194/nhess-24-109-2024, https://doi.org/10.5194/nhess-24-109-2024, 2024
Short summary
Short summary
Our study introduces new earthquake forecasting models for Albania, aiming to map out future seismic hazards. By analysing earthquakes from 1960 to 2006, we have developed models that predict where activity is most likely to occur, highlighting the western coast and southern regions as high-hazard zones. Our validation process confirms these models are effective tools for anticipating seismic events, offering valuable insights for earthquake preparedness and hazard assessment efforts.
Himanshu Agrawal and John McCloskey
EGUsphere, https://doi.org/10.22541/essoar.169504548.82107207/v1, https://doi.org/10.22541/essoar.169504548.82107207/v1, 2024
Short summary
Short summary
Rapidly growing cities in earthquake-prone Global South regions lack seismic event records, hindering accurate ground motion predictions for hazard assessment. Our study shows that even with these limitations, it is possible to generate reasonable predictions of the spatial variability in expected ground motions using high-resolution local geological information and simulation-based methods. We emphasize that substantial investments in the measurement of subsurface properties can prove valuable.
Laurentiu Danciu, Domenico Giardini, Graeme Weatherill, Roberto Basili, Shyam Nandan, Andrea Rovida, Céline Beauval, Pierre-Yves Bard, Marco Pagani, Celso Guillermo Reyes, Karin Sesetyan, Susana Vilanova, Fabrice Cotton, and Stefan Wiemer
EGUsphere, https://doi.org/10.5194/egusphere-2023-3062, https://doi.org/10.5194/egusphere-2023-3062, 2024
Short summary
Short summary
The 2020 European Seismic Hazard Model (ESHM20) is the latest seismic hazard assessment update for the Euro-Mediterranean region. This state-of-the-art model delivers a broad range of hazard results, including hazard curves, maps, and uniform hazard spectra. ESHM20 provides two hazard maps as informative reference in the next update of the European Seismic Design Codes (CEN EC8) and it also provides a key input to the first earthquake risk model for Europe (Crowley et al., 2021).
Niranjan Joshi, Björn Lund, and Roland Roberts
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-213, https://doi.org/10.5194/nhess-2023-213, 2023
Revised manuscript under review for NHESS
Short summary
Short summary
Few large earthquakes and low occurrence rates makes seismic hazard assessment of Sweden a challenging task. Since 2000, expansion of the seismic network has improved the quality and quantity of the data recorded. We use this new data to estimate the Swedish seismic hazard using probabilistic methods. We find that hazard was previously underestimated in the north, which we find to have the highest hazard in Sweden with mean peak ground acceleration of up to 0.05 g for a 475 year return period.
Franz Livio, Maria Francesca Ferrario, Elisa Martinelli, Sahra Talamo, Silvia Cercatillo, and Alessandro Maria Michetti
Nat. Hazards Earth Syst. Sci., 23, 3407–3424, https://doi.org/10.5194/nhess-23-3407-2023, https://doi.org/10.5194/nhess-23-3407-2023, 2023
Short summary
Short summary
Here we document the occurrence of an historical earthquake that occurred in the European western Southern Alps in the sixth century CE. Analysis of the effects due to earthquake shaking in the city of Como (N Italy) and a comparison with dated offshore landslides in the Alpine lakes allowed us to make an inference about the possible magnitude and the location of the seismic source for this event.
Graeme Weatherill, Fabrice Cotton, Guillaume Daniel, Irmela Zentner, Pablo Iturrieta, and Christian Bosse
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-98, https://doi.org/10.5194/nhess-2023-98, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
New generations of seismic hazard models are developed with sophisticated approaches to quantify uncertainties in our knowledge of earthquake process. To understand why and how recent state-of-the-art seismic hazard models for France, Germany and Europe differ despite similar underlying assumptions, we present a systematic approach to investigate model-to-model differences and to quantify and visualise them while accounting for their respective uncertainties.
Simone Francesco Fornasari, Deniz Ertuncay, and Giovanni Costa
Nat. Hazards Earth Syst. Sci., 23, 3219–3234, https://doi.org/10.5194/nhess-23-3219-2023, https://doi.org/10.5194/nhess-23-3219-2023, 2023
Short summary
Short summary
We analysed the background seismic noise for the Italian strong motion network by developing the Italian accelerometric low- and high-noise models. Spatial and temporal variations of the noise levels have been analysed. Several stations located near urban areas are affected by human activities, with high noise levels in the low periods. Our results provide an overview of the background noise of the strong motion network and can be used as a station selection criterion for future research.
Subash Ghimire, Philippe Guéguen, Adrien Pothon, and Danijel Schorlemmer
Nat. Hazards Earth Syst. Sci., 23, 3199–3218, https://doi.org/10.5194/nhess-23-3199-2023, https://doi.org/10.5194/nhess-23-3199-2023, 2023
Short summary
Short summary
This study explores the efficacy of several machine learning models for damage characterization, trained and tested on the Database of Observed Damage (DaDO) for Italian earthquakes. Reasonable damage prediction effectiveness (68 % accuracy) is observed, particularly when considering basic structural features and grouping the damage according to the traffic-light-based system used during the post-disaster period (green, yellow, and red), showing higher relevancy for rapid damage prediction.
Ekbal Hussain, Endra Gunawan, Nuraini Rahma Hanifa, and Qori'atu Zahro
Nat. Hazards Earth Syst. Sci., 23, 3185–3197, https://doi.org/10.5194/nhess-23-3185-2023, https://doi.org/10.5194/nhess-23-3185-2023, 2023
Short summary
Short summary
The earthquake potential of the Lembang Fault, located near the city of Bandung in West Java, Indonesia, is poorly understood. Bandung has a population of over 8 million people. We used satellite data to estimate the energy storage on the fault and calculate the likely size of potential future earthquakes. We use simulations to show that 1.9–2.7 million people would be exposed to high levels of ground shaking in the event of a major earthquake on the fault.
Roberto Basili, Laurentiu Danciu, Céline Beauval, Karin Sesetyan, Susana Pires Vilanova, Shota Adamia, Pierre Arroucau, Jure Atanackov, Stephane Baize, Carolina Canora, Riccardo Caputo, Michele Matteo Cosimo Carafa, Edward Marc Cushing, Susana Custódio, Mine Betul Demircioglu Tumsa, João C. Duarte, Athanassios Ganas, Julián García-Mayordomo, Laura Gómez de la Peña, Eulàlia Gràcia, Petra Jamšek Rupnik, Hervé Jomard, Vanja Kastelic, Francesco Emanuele Maesano, Raquel Martín-Banda, Sara Martínez-Loriente, Marta Neres, Hector Perea, Barbara Šket Motnikar, Mara Monica Tiberti, Nino Tsereteli, Varvara Tsironi, Roberto Vallone, Kris Vanneste, Polona Zupančič, and Domenico Giardini
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-118, https://doi.org/10.5194/nhess-2023-118, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
This study presents the European Fault-Source Model 2020 (EFSM20), a dataset of 1,248 geologic crustal faults and four subduction systems, each having the necessary parameters to forecast long-term earthquake occurrences in the European continent. This dataset constituted one of the main inputs for the recently released European Seismic Hazard Model 2020, a key instrument to mitigate seismic risk in Europe. EFSM20 adopts recognized open-standard formats, and it is openly accessible and reusable.
Huaiqun Zhao, Wenkai Chen, Can Zhang, and Dengjie Kang
Nat. Hazards Earth Syst. Sci., 23, 3031–3050, https://doi.org/10.5194/nhess-23-3031-2023, https://doi.org/10.5194/nhess-23-3031-2023, 2023
Short summary
Short summary
Early emergency response requires improving the utilization value of the data available in the early post-earthquake period. We proposed a method for assessing seismic intensities by analyzing early aftershock sequences using the robust locally weighted regression program. The seismic intensity map evaluated by the method can reflect the range of the hardest-hit areas and the spatial distribution of the possible property damage and casualties caused by the earthquake.
Ann Elizabeth Morey and Chris Goldfinger
EGUsphere, https://doi.org/10.21203/rs.3.rs-2277419/v2, https://doi.org/10.21203/rs.3.rs-2277419/v2, 2023
Short summary
Short summary
This study uses the characteristics from a deposit attributed to the 1700 CE Cascadia earthquake to identify other subduction earthquake deposits in sediments from two lakes located near the California/Oregon border. Seven deposits were identified in these records and an age-depth model suggests that these correlate in time to the largest Cascadia earthquakes preserved in the offshore record suggesting that inland lakes can be good recorders of Cascadia earthquakes.
Asim M. Khawaja, Behnam Maleki Asayesh, Sebastian Hainzl, and Danijel Schorlemmer
Nat. Hazards Earth Syst. Sci., 23, 2683–2696, https://doi.org/10.5194/nhess-23-2683-2023, https://doi.org/10.5194/nhess-23-2683-2023, 2023
Short summary
Short summary
Testing of earthquake forecasts is important for model verification. Forecasts are usually spatially discretized with many equal-sized grid cells, but often few earthquakes are available for evaluation, leading to meaningless tests. Here, we propose solutions to improve the testability of earthquake forecasts and give a minimum ratio between the number of earthquakes and spatial cells for significant tests. We show applications of the proposed technique for synthetic and real case studies.
Athanasios N. Papadopoulos, Philippe Roth, Laurentiu Danciu, Paolo Bergamo, Francesco Panzera, Donat Fäh, Carlo Cauzzi, Blaise Duvernay, Alireza Khodaverdian, Pierino Lestuzzi, Ömer Odabaşi, Ettore Fagà, Paolo Bazzurro, Michèle Marti, Nadja Valenzuela, Irina Dallo, Nicolas Schmid, Philip Kästli, Florian Haslinger, and Stefan Wiemer
EGUsphere, https://doi.org/10.5194/egusphere-2023-1504, https://doi.org/10.5194/egusphere-2023-1504, 2023
Short summary
Short summary
The Earthquake Risk Model of Switzerland (ERM-CH23), released in early 2023, is the culmination of a multidisciplinary effort aiming to achieve, for the first time, a comprehensive assessment of the potential consequences of earthquakes on the Swiss building stock and population. ERM-CH23 provides risk estimates for various impact metrics, ranging from economic loss as a result of damage to buildings and their contents, to human losses, such as deaths, injuries and displaced population.
Lukas Bodenmann, Jack W. Baker, and Božidar Stojadinović
Nat. Hazards Earth Syst. Sci., 23, 2387–2402, https://doi.org/10.5194/nhess-23-2387-2023, https://doi.org/10.5194/nhess-23-2387-2023, 2023
Short summary
Short summary
Understanding spatial patterns in earthquake-induced ground motions is key for assessing the seismic risk of distributed infrastructure systems. To study such patterns, we propose a novel model that accounts for spatial proximity, as well as site and path effects, and estimate its parameters from past earthquake data by explicitly quantifying the inherent uncertainties.
José A. Álvarez-Gómez, Paula Herrero-Barbero, and José J. Martínez-Díaz
Nat. Hazards Earth Syst. Sci., 23, 2031–2052, https://doi.org/10.5194/nhess-23-2031-2023, https://doi.org/10.5194/nhess-23-2031-2023, 2023
Short summary
Short summary
The strike-slip Carboneras fault is one of the largest sources in the Alboran Sea, with it being one of the faster faults in the eastern Betics. The dimensions and location of the Carboneras fault imply a high seismic and tsunami threat. In this work, we present tsunami simulations from sources generated with physics-based earthquake simulators. We show that the Carboneras fault has the capacity to generate locally damaging tsunamis with inter-event times between 2000 and 6000 years.
Antonio Posadas, Denisse Pasten, Eugenio E. Vogel, and Gonzalo Saravia
Nat. Hazards Earth Syst. Sci., 23, 1911–1920, https://doi.org/10.5194/nhess-23-1911-2023, https://doi.org/10.5194/nhess-23-1911-2023, 2023
Short summary
Short summary
In this paper we understand an earthquake from a thermodynamics point of view as an irreversible transition; then it must suppose an increase in entropy. We use > 100 000 earthquakes in northern Chile to test the theory that Shannon entropy, H, is an indicator of the equilibrium state. Using variation in H, we were able to detect major earthquakes and their foreshocks and aftershocks, including the 2007 Mw 7.8 Tocopilla earthquake and 2014 Mw 8.1 Iquique earthquake.
Dirsa Feliciano, Orlando Arroyo, Tamara Cabrera, Diana Contreras, Jairo Andrés Valcárcel Torres, and Juan Camilo Gómez Zapata
Nat. Hazards Earth Syst. Sci., 23, 1863–1890, https://doi.org/10.5194/nhess-23-1863-2023, https://doi.org/10.5194/nhess-23-1863-2023, 2023
Short summary
Short summary
This article presents the number of damaged buildings and estimates the economic losses from a set of earthquakes in Sabana Centro, a region of 11 towns in Colombia.
Andrea Antonucci, Andrea Rovida, Vera D'Amico, and Dario Albarello
Nat. Hazards Earth Syst. Sci., 23, 1805–1816, https://doi.org/10.5194/nhess-23-1805-2023, https://doi.org/10.5194/nhess-23-1805-2023, 2023
Short summary
Short summary
The earthquake effects undocumented at 228 Italian localities were calculated through a probabilistic approach starting from the values obtained through the use of an intensity prediction equation, taking into account the intensity data documented at close localities for a given earthquake. The results showed some geographical dependencies and correlations with the intensity levels investigated.
Yi-Ying Wen, Chien-Chih Chen, Strong Wen, and Wei-Tsen Lu
Nat. Hazards Earth Syst. Sci., 23, 1835–1846, https://doi.org/10.5194/nhess-23-1835-2023, https://doi.org/10.5194/nhess-23-1835-2023, 2023
Short summary
Short summary
Knowing the spatiotemporal seismicity patterns prior to impending large earthquakes might help earthquake hazard assessment. Several recent moderate earthquakes occurred in the various regions of Taiwan, which help to further investigate the spatiotemporal seismic pattern related to the regional tectonic stress. We should pay attention when a seismicity decrease of 2.5 < M < 4.5 events around the southern Central Range or an accelerating seismicity of 3 < M < 5 events appears in central Taiwan.
Luca Schilirò, Mauro Rossi, Federica Polpetta, Federica Fiorucci, Carolina Fortunato, and Paola Reichenbach
Nat. Hazards Earth Syst. Sci., 23, 1789–1804, https://doi.org/10.5194/nhess-23-1789-2023, https://doi.org/10.5194/nhess-23-1789-2023, 2023
Short summary
Short summary
We present a database of the main scientific articles published on earthquake-triggered landslides in the last 4 decades. To enhance data viewing, the articles were catalogued into a web-based GIS, which was specifically designed to show different types of information, such as bibliometric information, the relevant topic and sub-topic category (or categories), and earthquake(s) addressed. Such information can be useful to obtain a general overview of the topic, especially for a broad readership.
Simone Barani, Gabriele Ferretti, and Davide Scafidi
Nat. Hazards Earth Syst. Sci., 23, 1685–1698, https://doi.org/10.5194/nhess-23-1685-2023, https://doi.org/10.5194/nhess-23-1685-2023, 2023
Short summary
Short summary
In the present study, we analyze ground-motion hazard maps and hazard disaggregation in order to define areas in Italy where liquefaction triggering due to seismic activity can not be excluded. The final result is a screening map for all of Italy that classifies sites in terms of liquefaction triggering potential according to their seismic hazard level. The map and the associated data are freely accessible at the following web address: www.distav.unige.it/rsni/milq.php.
Midhat Fayaz, Shakil A. Romshoo, Irfan Rashid, and Rakesh Chandra
Nat. Hazards Earth Syst. Sci., 23, 1593–1611, https://doi.org/10.5194/nhess-23-1593-2023, https://doi.org/10.5194/nhess-23-1593-2023, 2023
Short summary
Short summary
Earthquakes cause immense loss of lives and damage to properties, particularly in major urban centres. The city of Srinagar, which houses around 1.5 million people, is susceptible to high seismic hazards due to its peculiar geological setting, urban setting, demographic profile, and tectonic setting. Keeping in view all of these factors, the present study investigates the earthquake vulnerability of buildings in Srinagar, an urban city in the northwestern Himalayas, India.
Mathilde B. Sørensen, Torbjørn Haga, and Atle Nesje
Nat. Hazards Earth Syst. Sci., 23, 1577–1592, https://doi.org/10.5194/nhess-23-1577-2023, https://doi.org/10.5194/nhess-23-1577-2023, 2023
Short summary
Short summary
Most Norwegian landslides are triggered by rain or snowmelt, and earthquakes have not been considered a relevant trigger mechanism even though some cases have been reported. Here we systematically search historical documents and databases and find 22 landslides induced by eight large Norwegian earthquakes. The Norwegian earthquakes induce landslides at distances and over areas that are much larger than those found for global datasets.
Chiara Varone, Gianluca Carbone, Anna Baris, Maria Chiara Caciolli, Stefania Fabozzi, Carolina Fortunato, Iolanda Gaudiosi, Silvia Giallini, Marco Mancini, Luca Paolella, Maurizio Simionato, Pietro Sirianni, Rose Line Spacagna, Francesco Stigliano, Daniel Tentori, Luca Martelli, Giuseppe Modoni, and Massimiliano Moscatelli
Nat. Hazards Earth Syst. Sci., 23, 1371–1382, https://doi.org/10.5194/nhess-23-1371-2023, https://doi.org/10.5194/nhess-23-1371-2023, 2023
Short summary
Short summary
In 2012, Italy was struck by a seismic crisis characterized by two main shocks and relevant liquefaction events. Terre del Reno is one of the municipalities that experienced the most extensive liquefaction effects; thus it was chosen as case study for a project devoted to defining a new methodology to assess the liquefaction susceptibility. In this framework, about 1800 geotechnical, geophysical, and hydrogeological investigations were collected and stored in the publicly available PERL dataset.
Samuel Roeslin, Quincy Ma, Pavan Chigullapally, Joerg Wicker, and Liam Wotherspoon
Nat. Hazards Earth Syst. Sci., 23, 1207–1226, https://doi.org/10.5194/nhess-23-1207-2023, https://doi.org/10.5194/nhess-23-1207-2023, 2023
Short summary
Short summary
This paper presents a new framework for the rapid seismic loss prediction for residential buildings in Christchurch, New Zealand. The initial model was trained on insurance claims from the Canterbury earthquake sequence. Data science techniques, geospatial tools, and machine learning were used to develop the prediction model, which also delivered useful insights. The model can rapidly be updated with data from new earthquakes. It can then be applied to predict building loss in Christchurch.
Sasan Motaghed, Mozhgan Khazaee, Nasrollah Eftekhari, and Mohammad Mohammadi
Nat. Hazards Earth Syst. Sci., 23, 1117–1124, https://doi.org/10.5194/nhess-23-1117-2023, https://doi.org/10.5194/nhess-23-1117-2023, 2023
Short summary
Short summary
We modify the probabilistic seismic hazard analysis (PSHA) formulation by replacing the Gutenberg–Richter power law with the SCP (Sotolongo-Costa and Posadas) non-extensive model for earthquake size distribution and call it NEPSHA. The proposed method (NEPSHA) is implemented in the Tehran region, and the results are compared with the classic PSHA method. The hazard curves show that NEPSHA gives a higher hazard, especially in the range of practical return periods.
Paola Sbarra, Pierfrancesco Burrato, Valerio De Rubeis, Patrizia Tosi, Gianluca Valensise, Roberto Vallone, and Paola Vannoli
Nat. Hazards Earth Syst. Sci., 23, 1007–1028, https://doi.org/10.5194/nhess-23-1007-2023, https://doi.org/10.5194/nhess-23-1007-2023, 2023
Short summary
Short summary
Earthquakes are fundamental for understanding how the earth works and for assessing seismic risk. We can easily measure the magnitude and depth of today's earthquakes, but can we also do it for pre-instrumental ones? We did it by analyzing the decay of earthquake effects (on buildings, people, and objects) with epicentral distance. Our results may help derive data that would be impossible to obtain otherwise, for any country where the earthquake history extends for centuries, such as Italy.
Haekal A. Haridhi, Bor Shouh Huang, Kuo Liang Wen, Arif Mirza, Syamsul Rizal, Syahrul Purnawan, Ilham Fajri, Frauke Klingelhoefer, Char Shine Liu, Chao Shing Lee, Crispen R. Wilson, Tso-Ren Wu, Ichsan Setiawan, and Van Bang Phung
Nat. Hazards Earth Syst. Sci., 23, 507–523, https://doi.org/10.5194/nhess-23-507-2023, https://doi.org/10.5194/nhess-23-507-2023, 2023
Short summary
Short summary
Near the northern end of Sumatra, the horizontal movement Sumatran fault zone extended to its northern offshore. The movement of offshore fault segments trigger submarine landslides and induce tsunamis. Scenarios of a significant tsunami caused by the combined effect of an earthquake and its triggered submarine landslide at the coast were proposed in this study. Based on our finding, the landslide tsunami hazard assessment and early warning systems in this region should be urgently considered.
Lixin Wu, Yuan Qi, Wenfei Mao, Jingchen Lu, Yifan Ding, Boqi Peng, and Busheng Xie
Nat. Hazards Earth Syst. Sci., 23, 231–249, https://doi.org/10.5194/nhess-23-231-2023, https://doi.org/10.5194/nhess-23-231-2023, 2023
Short summary
Short summary
Multiple seismic anomalies were reported to be related to the 2015 Nepal earthquake. By sufficiently investigating both the space–time features and the physical models of the seismic anomalies, the coupling mechanisms of these anomalies in 3D space were revealed and an integrated framework to strictly root the sources of various anomalies was proposed. This study provides a practical solution for scrutinizing reliable seismic anomalies from diversified earthquake observations.
David Montiel-López, Sergio Molina, Juan José Galiana-Merino, and Igor Gómez
Nat. Hazards Earth Syst. Sci., 23, 91–106, https://doi.org/10.5194/nhess-23-91-2023, https://doi.org/10.5194/nhess-23-91-2023, 2023
Short summary
Short summary
One of the most effective ways to describe the seismicity of a region is to map the b-value parameter of the Gutenberg-Richter law. This research proposes the study of the spatial cell-event distance distribution to define the smoothing kernel that controls the influence of the data. The results of this methodology depict tectonic stress changes before and after intense earthquakes happen, so it could enable operational earthquake forecasting (OEF) and tectonic source profiling.
Pierre Henry, M. Sinan Özeren, Nurettin Yakupoğlu, Ziyadin Çakir, Emmanuel de Saint-Léger, Olivier Desprez de Gésincourt, Anders Tengberg, Cristele Chevalier, Christos Papoutsellis, Nazmi Postacıoğlu, Uğur Dogan, Hayrullah Karabulut, Gülsen Uçarkuş, and M. Namık Çağatay
Nat. Hazards Earth Syst. Sci., 22, 3939–3956, https://doi.org/10.5194/nhess-22-3939-2022, https://doi.org/10.5194/nhess-22-3939-2022, 2022
Short summary
Short summary
Seafloor instruments at the bottom of the Sea of Marmara recorded disturbances caused by earthquakes, addressing the minimum magnitude that may be recorded in the sediment. A magnitude 4.7 earthquake caused turbidity but little current. A magnitude 5.8 earthquake caused a mudflow and strong currents that spread sediment on the seafloor over several kilometers. However, most known earthquake deposits in the Sea of Marmara spread over larger zones and should correspond to larger earthquakes.
Nicola Alessandro Pino
Nat. Hazards Earth Syst. Sci., 22, 3787–3792, https://doi.org/10.5194/nhess-22-3787-2022, https://doi.org/10.5194/nhess-22-3787-2022, 2022
Short summary
Short summary
The 1908 Messina Straits earthquake is one of the most severe seismic catastrophes in human history and is periodically back in the public discussion because of a project of building a bridge across the Straits. Some models proposed for the fault assume precursory subsidence preceding the quake, resulting in a structure significantly different from the previously debated ones and important hazard implications. The analysis of the historical sea level data allows the rejection of this hypothesis.
Cited articles
Akhoondzadeh, M.: An Adaptive Network-based Fuzzy Inference System for the detection of thermal and TEC anomalies around the time of the Varzeghan, Iran, (Mw = 6.4) earthquake of 11 August 2012, Adv. Space Res., 52, 837–852, 2013.
Akhoondzadeh, M.: Ant Colony Optimization detects anomalous aerosol variations associated with the Chile earthquake of 27 February 2010, Adv. Space Res., 55, 1754–1763, 2015.
Aliano, C., Corrado, R., Filizzola, C., Genzano, N., Pergola, N., and Tramutoli, V.: Robust TIR satellite techniques for monitoring earthquake active regions: limits, main achievements and perspectives, Ann. Geophys., 51, 303–318, 2008.
Alvan, H. V., Azad, F. H., and Mansor, S.: Latent heat flux and air temperature anomalies along an active fault zone associated with recent Iran earthquakes, Adv. Space Res., 52, 1678–1687, 2013.
Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E., McMillin, L. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L., Staelin, D. H., Strow, L. L., and Susskind, J.: AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems, IEEE Trans. Geosci. Remote Sens., 41, 253–264, 2003.
Bhardwaj, A., Singh, S., Sam, L., Bhardwaj, A., Martín-Torres, F. J., Singh, A., and Kumar, R.: MODIS-based estimates of strong snow surface temperature anomaly related to high altitude earthquakes of 2015, Remote Sens. Environ., 188, 1–8, 2017.
Blackett, M., Wooster, M. J., and Malamud, B. D.: Exploring land surface temperature earthquake precursors: A focus on the Gujarat (India) earthquake of 2001, Geophys. Res. Lett., 38, L15303, doi:10.1029/2011GL048282, 2011.
Cervone, G., Kafatos, M., Napoletani, D., and Singh, R. P.: Wavelet maxima curves of surface latent heat flux associated with two recent Greek earthquakes, Nat. Hazards Earth Syst. Sci., 4, 359–374, https://doi.org/10.5194/nhess-4-359-2004, 2004.
Cervone, G., Maekawa, S., Singh, R. P., Hayakawa, M., Kafatos, M., and Shvets, A.: Surface latent heat flux and nighttime LF anomalies prior to the Mw = 8.3 Tokachi-Oki earthquake, Nat. Hazards Earth Syst. Sci., 6, 109–114, https://doi.org/10.5194/nhess-6-109-2006, 2006.
Chahine, M. T., Pagano, T. S., Aumann, H. H., Atlas, R., Barnet, C., Blaisdell, J., Chen, L., Divakarla, M., Fetzer, E. J., Goldberg, M., Gautier, C., Granger, S., Hannon, S., Irion, F. W., Kakar, R., Kalnay, E., Lambrigtsen, B. H., Lee, S.-Y., Marshall, J. L., McMillan, W. W., McMillin, L., Olsen, E. T., Revercomb, H., Rosenkranz, P., Smith, W. L., Staelin, D., Strow, L. L., Susskind, J., Tobin, D., Wolf, W., and Zhou, L.: AIRS: Improving weather forecasting and providing new data on greenhouse gases, Bull. Am. Meteorol. Soc., 87, 911–926, 2006.
Chen, S., Liu, P., Guo, Y., Liu, L., and Ma, J.: An experiment on temperature variations in sandstone during biaxial loading, Phys. Chem. Earth, 85–86, 3–8, 2015.
Chen, S., Ma, J., Liu, P., Liu, L., and Hu, X.: Exploring co-seismic thermal response of Wenchuan earthquake by using Land Surface Temperatures of Terra and Aqua Satellites, Chinese J. Geophys., 56, 3788–3799, 2013.
Chen, S., Ma, J., Liu, P., Liu, L., Hu, X., and Ren, Y.: Exploring the current tectonic activity with satellite remote sensing thermal information: a case of the wenchuan earthquake, Earthquake Geol., 36, 775–793, 2014.
Chesters, D., Uccellini, L. W., and Robinson, W. D.: Low-level water vapor fields from the VISSR Atmospheric Sounder (VAS) “split window” channels, J. Clim. Appl. Meteorol., 22, 725–743, 1983.
Chiodini, G., Caliro, S., Cardellini, C., Frondini, F., Inguaggiato, S., and Matteucci, F.: Geochemical evidence for and characterization of CO2 rich gas sources in the epicentral area of the Abruzzo 2009 earthquakes, Earth Planet. Sci. Lett., 304, 389–398, 2011.
Chmyrev, V., Smith, A., Kataria, D., Nesterov, B., Owen, C., Sammonds, P., Sorokin, V., and Vallianatos, F.: Detection and monitoring of earthquake precursors: TwinSat, a Russia – UK satellite project, Adv. Space Res., 52, 1135–1145, 2013.
Choudhury, S., Dasgupta, S., Saraf, A. K., and Panda, S.: Remote sensing observations of pre-earthquake thermal anomalies in Iran, Int. J. Remote Sens., 27, 4381–4396, 2006.
Cicerone, R. D., Ebel, J. E., and Britton, J.: A systematic compilation of earthquake precursors, Tectonophysics, 476, 371–396, 2009.
Clarisse, L., R'Honi, Y., Coheur, P.-F., Hurtmans, D., and Clerbaux, C.: Thermal infrared nadir observations of 24 atmospheric gases, Geophys. Res. Lett., 38, L10802, doi:10.1029/2011GL047271, 2011.
Cui, Y., Du, J., Zhang, D., and Sun, Y.: Anomalies of total column CO and O3 associated with great earthquakes in recent years, Nat. Hazards Earth Syst. Sci., 13, 2513–2519, https://doi.org/10.5194/nhess-13-2513-2013, 2013.
Da, C.: Preliminary assessment of the Advanced Himawari Imager (AHI) measurement onboard Himawari-8 geostationary satellite, Remote Sens. Lett., 6, 637–646, 2015.
Dey, S., Sarkar, S., and Singh, R. P.: Anomalous changes in column water vapor after Gujarat earthquake, Adv. Space Res., 33, 274–278, 2004.
Dey, S. and Singh, R. P.: Surface latent heat flux as an earthquake precursor, Nat. Hazards Earth Syst. Sci., 3, 749–755, https://doi.org/10.5194/nhess-3-749-2003, 2003.
Duan, S.-B., Li, Z.-L., and Leng, P.: A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting thermal infrared and passive microwave data, Remote Sens. Environ., 195, 107–117, 2017.
Dziak, R. P., Chadwick, W. W., Fox, C. G., and Embley, R. W.: Hydrothermal temperature changes at the southern Juan de Fuca Ridge associated with MW 6.2 Blanco Transform earthquake, Geology, 31, 119–122, 2003.
Eleftheriou, A., Filizzola, C., Genzano, N., Lacava, T., Lisi, M., Paciello, R., Pergola, N., Vallianatos, F., and Tramutoli, V.: Long-term RST analysis of anomalous TIR sequences in relation with earthquakes occurred in Greece in the period 2004–2013, Pure Appl. Geophys., 173, 285–303, 2016.
Ferraro, R. R., Grody, N. C., Weng, F., and Basist, A.: An eight-Year (1987–1994) time series of rainfall, clouds, water vapor, snow cover, and sea ice derived from SSM/I Measurements, Bull. Am. Meteorol. Soc., 77, 891–905, 1996.
Filizzola, C., Pergola, N., Pietrapertosa, C., and Tramutoli, V.: Robust satellite techniques for seismically active areas monitoring: a sensitivity analysis on September 7, 1999 Athens's earthquake, Phys. Chem. Earth, 29, 517–527, 2004.
Freund, F.: Pre-earthquake signals: Underlying physical processes, J. Asian Earth Sci., 41, 383–400, 2011.
Freund, F. T., Kulahci, I. G., Cyr, G., Ling, J., Winnick, M., Tregloan-Reed, J., and Freund, M. M.: Air ionization at rock surfaces and pre-earthquake signals, J. Atmos. Solar-Terres. Phys., 71, 1824–1834, 2009.
Ganguly, N. D.: Atmospheric changes observed during April 2015 Nepal earthquake, J. Atmos. Solar-Terres. Phys., 140, 16–22, 2016.
Gao, B.-C. and Kaufman, Y. J.: Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared channels, J. Geophys. Res. Atmos., 108, 4389, doi:10.1029/2002JD003023, 2003.
Geiß, C. and Taubenböck, H.: Remote sensing contributing to assess earthquake risk: from a literature review towards a roadmap, Nat. Hazards, 68, 7–48, 2013.
Geller, R. J.: Shake-up time for Japanese seismology, Nature, 472, 407–409, 2011.
Genzano, N., Filizzola, C., Paciello, R., Pergola, N., and Tramutoli, V.: Robust Satellite Techniques (RST) for monitoring earthquake prone areas by satellite TIR observations: The case of 1999 Chi-Chi earthquake (Taiwan), J. Asian Earth Sci., 114, 289–298, 2015.
Gorny, V., Salman, A., Tronin, A., and Shilin, B.: Terrestrial outgoing infrared radiation as an indicator of seismic activity, 67–69, 1988.
Gruber, A. and Krueger, A. F.: The status of the NOAA outgoing longwave radiation data set, Bull. Am. Meteorol. Soc., 65, 958–962, 1984.
Guillevic, P. C., Biard, J. C., Hulley, G. C., Privette, J. L., Hook, S. J., Olioso, A., Göttsche, F. M., Radocinski, R., Román, M. O., Yu, Y., and Csiszar, I.: Validation of Land Surface Temperature products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) using ground-based and heritage satellite measurements, Remote Sens. Environ., 154, 19–37, 2014.
Jackson, J. M., Liu, H., Laszlo, I., Kondragunta, S., Remer, L. A., Huang, J., and Huang, H.-C.: Suomi-NPP VIIRS aerosol algorithms and data products, J. Geophys. Res. Atmos., 118, 12, 673–612, 2013.
Jing, F., Shen, X. H., Kang, C. L., and Xiong, P.: Variations of multi-parameter observations in atmosphere related to earthquake, Nat. Hazards Earth Syst. Sci., 13, 27–33, https://doi.org/10.5194/nhess-13-27-2013, 2013.
Kilpatrick, K. A., Podestá, G., Walsh, S., Williams, E., Halliwell, V., Szczodrak, M., Brown, O. B., Minnett, P. J., and Evans, R.: A decade of sea surface temperature from MODIS, Remote Sens. Environ., 165, 27–41, 2015.
Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., and Hsu, N. C.: The Collectio Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., and Hsu, N. C.: The Collection 6 MODIS aerosol products over land and ocean, Atmos. Meas. Tech., 6, 2989–3034, https://doi.org/10.5194/amt-6-2989-2013, 2013.
Liebmann, B.: Description of a complete (interpolated) outgoing longwave radiation dataset, Bull. Amer. Meteor. Soc., 77, 1275–1277, 1996.
Liperovsky, V. A., Meister, C.-V., Liperovskaya, E. V., Davidov, V. F., and Bogdanov, V. V.: On the possible influence of radon and aerosol injection on the atmosphere and ionosphere before earthquakes, Nat. Hazards Earth Syst. Sci., 5, 783–789, https://doi.org/10.5194/nhess-5-783-2005, 2005.
Lisi, M., Filizzola, C., Genzano, N., Grimaldi, C. S. L., Lacava, T., Marchese, F., Mazzeo, G., Pergola, N., and Tramutoli, V.: A study on the Abruzzo 6 April 2009 earthquake by applying the RST approach to 15 years of AVHRR TIR observations, Nat. Hazards Earth Syst. Sci., 10, 395–406, https://doi.org/10.5194/nhess-10-395-2010, 2010.
Lisi, M., Filizzola, C., Genzano, N., Paciello, R., Pergola, N., and Tramutoli, V.: Reducing atmospheric noise in RST analysis of TIR satellite radiances for earthquakes prone areas satellite monitoring, Phys. Chem. Earth, 85–97, 2015.
Ma, W., Ma, W., Zhao, H., and Li, H.: Temperature changing process of the Hokkaido (Japan) earthquake on 25 September 2003, Nat. Hazards Earth Syst. Sci., 8, 985–989, https://doi.org/10.5194/nhess-8-985-2008, 2008.
Maddy, E. S., Barnet, C. D., Goldberg, M., Sweeney, C., and Liu, X.: CO2 retrievals from the Atmospheric Infrared Sounder: Methodology and validation, J. Geophys. Res. Atmos., 113, D11301, doi:10.1029/2007JD009402, 2008.
Mahmood, I., Iqbal, M. F., Shahzad, M. I., and Qaiser, S.: Investigation of atmospheric anomalies associated with Kashmir and Awaran Earthquakes, J. Atmos. Sol.-Terr. Phy., 154, 75–85, 2017.
Mansouri Daneshvar, M. R. and Freund, F. T.: Remote sensing of atmospheric and ionospheric signals prior to the Mw 8.3 Illapel earthquake, Chile 2015, Pure Appl. Geophys., 174, 11–45, 2017.
Mansouri Daneshvar, M. R., Khosravi, M., and Tavousi, T.: Seismic triggering of atmospheric variables prior to the major earthquakes in the Middle East within a 12-year time-period of 2002–2013, Nat. Hazards, 74, 1539–1553, 2014.
McMillan, W. W., Evans, K. D., Barnet, C. D., Maddy, E. S., Sachse, G. W., and Diskin, G. S.: Validating the AIRS Version 5 CO Retrieval With DACOM In Situ Measurements During INTEX-A and -B, IEEE Trans. Geosci. Remote Sens., 49, 2802–2813, 2011.
Molchanov, O., Fedorov, E., Schekotov, A., Gordeev, E., Chebrov, V., Surkov, V., Rozhnoi, A., Andreevsky, S., Iudin, D., Yunga, S., Lutikov, A., Hayakawa, M., and Biagi, P. F.: Lithosphere-atmosphere-ionosphere coupling as governing mechanism for preseismic short-term events in atmosphere and ionosphere, Nat. Hazards Earth Syst. Sci., 4, 757–767, 2004.
Mu, Q., Zhao, M., and Running, S. W.: Improvements to a MODIS global terrestrial evapotranspiration algorithm, Remote Sens. Environ., 115, 1781–1800, 2011.
Ohring, G., Gruber, A., and Ellingson, R.: Satellite Determinations of the Relationship between Total Longwave Radiation Flux and Infrared Window Radiance, J. Clim. Appl. Meteorol., 23, 416–425, 1984.
Okada, Y., Mukai, S., and Singh, R. P.: Changes in atmospheric aerosol parameters after Gujarat earthquake of 26 January 2001, Adv. Space Res., 33, 254–258, 2004.
Ouzounov, D., Bryant, N., Logan, T., Pulinets, S., and Taylor, P.: Satellite thermal IR phenomena associated with some of the major earthquakes in 1999–2003, Phys. Chem. Earth, 31, 154–163, 2006.
Ouzounov, D. and Freund, F.: Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data, Adv. Space Res., 33, 268–273, 2004.
Ouzounov, D., Liu, D., Chunli, K., Cervone, G., Kafatos, M., and Taylor, P.: Outgoing long wave radiation variability from IR satellite data prior to major earthquakes, Tectonophys., 431, 211–220, 2007.
Ouzounov, D., Pulinets, S., Romanov, A., Romanov, A., Tsybulya, K., Davidenko, D., Kafatos, M., and Taylor, P.: Atmosphere-ionosphere response to the M9 Tohoku earthquake revealed by multi-instrument space-borne and ground observations: Preliminary results, Earthquake Sci., 24, 557–564, 2011.
Panda, S. K., Choudhury, S., Saraf, A. K., and Das, J. D.: MODIS land surface temperature data detects thermal anomaly preceding 8 October 2005 Kashmir earthquake, Int. J. Remote Sens., 28, 4587–4596, 2007.
Pergola, N., Aliano, C., Coviello, I., Filizzola, C., Genzano, N., Lacava, T., Lisi, M., Mazzeo, G., and Tramutoli, V.: Using RST approach and EOS-MODIS radiances for monitoring seismically active regions: a study on the 6 April 2009 Abruzzo earthquake, Nat. Hazards Earth Syst. Sci., 10, 239–249, https://doi.org/10.5194/nhess-10-239-2010, 2010.
Piroddi, L. and Ranieri, G.: Night thermal gradient: A new potential tool for earthquake precursors studies. An application to the seismic area of L'Aquila (central Italy), IEEE J. Sel. Top. Appl., 5, 307–312, 2012.
Piroddi, L., Ranieri, G., Freund, F., and Trogu, A.: Geology, tectonics and topography underlined by L'Aquila earthquake TIR precursors, Geophys. J. Int., 197, 1532–1536, 2014.
Pulinets, S. and Ouzounov, D.: Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model – An unified concept for earthquake precursors validation, J. Asian Earth Sci., 41, 371–382, 2011.
Pulinets, S. A. and Dunajecka, M. A.: Specific variations of air temperature and relative humidity around the time of Michoacan earthquake M8.1 Sept. 19, 1985 as a possible indicator of interaction between tectonic plates, Tectonophys., 431, 221–230, 2007.
Pulinets, S. A., Ouzounov, D., Ciraolo, L., Singh, R., Cervone, G., Leyva, A., Dunajecka, M., Karelin, A. V., Boyarchuk, K. A., and Kotsarenko, A.: Thermal, atmospheric and ionospheric anomalies around the time of the Colima M7.8 earthquake of 21 January 2003, Ann. Geophys., 24, 835–849, https://doi.org/10.5194/angeo-24-835-2006, 2006a.
Pulinets, S. A., Ouzounov, D., Karelin, A. V., Boyarchuk, K. A., and Pokhmelnykh, L. A.: The physical nature of thermal anomalies observed before strong earthquakes, Phys. Chem. Earth,, 31, 143–153, 2006b.
Qin, K., Wu, L. X., De Santis, A., and Cianchini, G.: Preliminary analysis of surface temperature anomalies that preceded the two major Emilia 2012 earthquakes (Italy), Ann. Geophys-Italy, 55, 823–828, doi:10.4401/ag-6123, 2012.
Qin, K., Wu, L. X., Ouyang, X. Y., Shen, X. H., and Zheng, S.: Surface latent heat flux anomalies quasi-synchronous with ionospheric disturbances before the 2007 Pu'er earthquake in China, Adv. Space Res., 53, 266–271, 2014a.
Qin, K., Wu, L. X., Zheng, S., Bai, Y., and Lv, X.: Is there an abnormal enhancement of atmospheric aerosol before the 2008 Wenchuan earthquake?, Adv. Space Res., 54, 1029–1034, 2014b.
Rawat, V., Saraf, A. K., Das, J., Sharma, K., and Shujat, Y.: Anomalous land surface temperature and outgoing long-wave radiation observations prior to earthquakes in India and Romania, Nat. Hazards, 59, 33–46, 2011.
Remer, L. A., Mattoo, S., Levy, R. C., and Munchak, L. A.: MODIS 3 km aerosol product: algorithm and global perspective, Atmos. Meas. Tech., 6, 1829–1844, https://doi.org/10.5194/amt-6-1829-2013, 2013.
Ren, Y., Ma, J., Liu, P., and Chen, S.: Experimental Study of Thermal Field Evolution in the Short-Impending Stage Before Earthquakes, Pure Appl. Geophys., 1–13, https://doi.org/10.1007/s00024-017-1626-7, 2017.
Rose, F. G., Rutan, D. A., Charlock, T., Smith, G. L., and Kato, S.: An algorithm for the constraining of radiative transfer calculations to CERES-observed broadband top-of-atmosphere irradiance, J. Atmos. Ocean. Tech., 30, 1091–1106, 2013.
Saradjian, M. R. and Akhoondzadeh, M.: Thermal anomalies detection before strong earthquakes (M > 6.0) using interquartile, wavelet and Kalman filter methods, Nat. Hazards Earth Syst. Sci., 11, 1099–1108, https://doi.org/10.5194/nhess-11-1099-2011, 2011.
Saraf, A. K., Rawat, V., Banerjee, P., Choudhury, S., Panda, S. K., Dasgupta, S., and Das, J. D.: Satellite detection of earthquake thermal infrared precursors in Iran, Nat. Hazards, 47, 119–135, 2008.
Saraf, A. K., Rawat, V., Choudhury, S., Dasgupta, S., and Das, J.: Advances in understanding of the mechanism for generation of earthquake thermal precursors detected by satellites, Int. J. Appl. Earth. Obs., 11, 373–379, 2009.
Saraf, A. K., Rawat, V., Das, J., Zia, M., and Sharma, K.: Satellite detection of thermal precursors of Yamnotri, Ravar and Dalbandin earthquakes, Nat. Hazards, 61, 861–872, 2012.
Seemann, S. W., Li, J., Menzel, W. P., and Gumley, L. E.: Operational retrieval of atmospheric temperature, moisture, and ozone from MODIS infrared radiances, J. Appl. Meteorol., 42, 1072–1091, 2003.
Singh, R. P., Cervone, G., Kafatos, M., Prasad, A. K., Sahoo, A. K., Sun, D., Tang, D. L., and Yang, R.: Multi-sensor studies of the Sumatra earthquake and tsunami of 26 December 2004, Int. J. Remote Sens., 28, 2885–2896, 2007.
Singh, R. P., Mehdi, W., Gautam, R., Senthil Kumar, J., Zlotnicki, J., and Kafatos, M.: Precursory signals using satellite and ground data associated with the Wenchuan Earthquake of 12 May 2008, Int. J. Remote Sens., 31, 3341-3354, 2010a.
Singh, R. P., Senthil Kumar, J., Zlotnicki, J., and Kafatos, M.: Satellite detection of carbon monoxide emission prior to the Gujarat earthquake of 26 January 2001, Appl. Geochem., 25, 580–585, 2010b.
Tramutoli, V., Aliano, C., Corrado, R., Filizzola, C., Genzano, N., Lisi, M., Martinelli, G., and Pergola, N.: On the possible origin of thermal infrared radiation (TIR) anomalies in earthquake-prone areas observed using robust satellite techniques (RST), Chem. Geol., 339, 157–168, 2013.
Tramutoli, V., Cuomo, V., Filizzola, C., Pergola, N., and Pietrapertosa, C.: Assessing the potential of thermal infrared satellite surveys for monitoring seismically active areas: The case of Kocaeli (Ízmit) earthquake, August 17, 1999, Remote Sens. Environ., 96, 409–426, 2005.
Tramutoli, V., Di Bello, G., Pergola, N., and Piscitelli, S.: Robust satellite techniques for remote sensing of seismically active areas, Ann. Geophys-Italy, 44, 295–312, doi:10.4401/ag-3596, 2001.
Trigo, I. F., Monteiro, I. T., Olesen, F., and Kabsch, E.: An assessment of remotely sensed land surface temperature, J. Geophys. Res. Atmos., 113, D17108, doi:10.1029/2008JD010035, 2008.
Tronin, A. A.: Remote sensing and earthquakes: A review, Phys. Chem. Earth,, 31, 138–142, 2006.
Tronin, A. A.: Satellite remote sensing in seismology. A review, Remote Sens., 2, 124–150, 2010.
Tronin, A. A.: Satellite thermal survey – a new tool for the study of seismoactive regions, Int. J. Remote Sens., 17, 1439–1455, 1996.
Tronin, A. A., Hayakawa, M., and Molchanov, O. A.: Thermal IR satellite data application for earthquake research in Japan and China, J. Geodynam., 33, 519–534, 2002.
Tronin, A. A., Molchanov, O. A., and Biagi, P. F.: Thermal anomalies and well observations in Kamchatka, Int. J. Remote Sens., 25, 2649–2655, 2004.
Tu, Q., Pan, D., and Hao, Z.: Validation of S-NPP VIIRS Sea Surface Temperature Retrieved from NAVO, Remote Sens., 7, 17234–17245, 2015.
Turner, E. C., Lee, H.-T., and Tett, S. F. B.: Using IASI to simulate the total spectrum of outgoing long-wave radiances, Atmos. Chem. Phys., 15, 6561–6575, https://doi.org/10.5194/acp-15-6561-2015, 2015.
Venkatanathan, N., Yang, Y.-C., and Lyu, J.: Observation of abnormal thermal and infrasound signals prior to the earthquakes: a study on Bonin Island earthquake M7.8 (May 30, 2015), Environ. Earth Sci., 76, 228, 2017.
Wan, Z.: New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product, Remote Sens. Environ., 140, 36–45, 2014.
Wang, T., Shi, J., Yan, G., Zhao, T., Ji, D., and Xiong, C.: Recovering land surface temperature under cloudy skies for potentially deriving surface emitted longwave radiation by fusing MODIS and AMSR-E measurements, 13–18 July 2014, 1805–180, 2014.
Wu, L., Liu, S., Wu, Y., and Wang, C.: Precursors for rock fracturing and failure – Part I: IRR image abnormalities, Int. J. Rock. Mech Min., 43, 473–482, 2006.
Wu, L., Zheng, S., De Santis, A., Qin, K., Di Mauro, R., Liu, S., and Rainone, M. L.: Geosphere coupling and hydrothermal anomalies before the 2009 Mw 6.3 L'Aquila earthquake in Italy, Nat. Hazards Earth Syst. Sci., 16, 1859–1880, https://doi.org/10.5194/nhess-16-1859-2016, 2016.
Wu, L. X., Qin, K., and Liu, S. J.: GEOSS-based thermal parameters analysis for earthquake anomaly recognition, P. IEEE, 100, 2891–2907, 2012.
Wyss, M.: Cannot earthquakes be predicted?, Science, 278, 487–490, 1997.
Xie, T., Kang, C. L., and Ma, W. Y.: Thermal infrared brightness temperature anomalies associated with the Yushu (China) Ms = 7.1 earthquake on 14 April 2010, Nat. Hazards Earth Syst. Sci., 13, 1105–1111, https://doi.org/10.5194/nhess-13-1105-2013, 2013.
Xiong, P., Gu, X. F., Bi, Y. X., Shen, X. H., Meng, Q. Y., Zhao, L. M., Kang, C. L., Chen, L. Z., Jing, F., Yao, N., Zhao, Y. H., Li, X. M., Li, Y., and Dong, J. T.: Detecting seismic IR anomalies in bi-angular Advanced Along-Track Scanning Radiometer data, Nat. Hazards Earth Syst. Sci., 13, 2065–2074, https://doi.org/10.5194/nhess-13-2065-2013, 2013.
Xiong, P. and Shen, X.: Outgoing longwave radiation anomalies analysis associated with different types of seismic activity, Adv. Space Res., 59, 1408–1415, 2017.
Xiong, P., Shen, X. H., Bi, Y. X., Kang, C. L., Chen, L. Z., Jing, F., and Chen, Y.: Study of outgoing longwave radiation anomalies associated with Haiti earthquake, Nat. Hazards Earth Syst. Sci., 10, 2169–2178, https://doi.org/10.5194/nhess-10-2169-2010, 2010.
Xiong, X., Barnet, C., Maddy, E., Sweeney, C., Liu, X., Zhou, L., and Goldberg, M.: Characterization and validation of methane products from the Atmospheric Infrared Sounder (AIRS), J. Geophys. Res.-Biogeo., 113, G00A01, doi:10.1029/2007JG000500, 2008.
Zhang, W., Zhao, J., Wang, W., Ren, H., Chen, L., and Yan, G.: A preliminary evaluation of surface latent heat flux as an earthquake precursor, Nat. Hazards Earth Syst. Sci., 13, 2639–2647, https://doi.org/10.5194/nhess-13-2639-2013, 2013.
Zhang, Y., Guo, X., Zhong, M., Shen, W., Li, W., and He, B.: Wenchuan earthquake: Brightness temperature changes from satellite infrared information, Chinese Sci. Bull., 55, 1917–1924, 2010.
Zoback, M. D. and Gorelick, S. M.: Earthquake triggering and large-scale geologic storage of carbon dioxide, P. Natl. Acad. Sci., 109, 10164–10168, 2012.
Zoran, M.: MODIS and NOAA-AVHRR l and surface temperature data detect a thermal anomaly preceding the 11 March 2011 Tohoku earthquake, Int. J. Remote Sens., 33, 6805–6817, 2012.
Short summary
This paper dedicatedly reviews the progress and development of pre-seismic precursors and anomaly detection methods in this decade. Although several important problems still remain in this domain at present, developments of these two aspects can enrich available information sources, provide advanced tools for multilevel earthquake monitoring, and improve short- and medium-term forecasting, which should play a large and growing role in pre-seismic anomaly research from optical satellite data.
This paper dedicatedly reviews the progress and development of pre-seismic precursors and...
Altmetrics
Final-revised paper
Preprint