Research article
30 Jan 2017
Research article | 30 Jan 2017
Wave simulation for the design of an innovative quay wall: the case of Vlorë Harbour
Alessandro Antonini et al.
Related authors
A coupled wave–3-D hydrodynamics model of the Taranto Sea (Italy): a multiple-nesting approach
Maria Gabriella Gaeta, Achilleas G. Samaras, Ivan Federico, Renata Archetti, Francesco Maicu, and Giuliano Lorenzetti
Nat. Hazards Earth Syst. Sci., 16, 2071–2083, https://doi.org/10.5194/nhess-16-2071-2016,https://doi.org/10.5194/nhess-16-2071-2016, 2016
Short summary
Related subject area
Deep submarine landslide contribution to the 2010 Haiti earthquake tsunami
Adrien Poupardin, Eric Calais, Philippe Heinrich, Hélène Hébert, Mathieu Rodriguez, Sylvie Leroy, Hideo Aochi, and Roby Douilly
Nat. Hazards Earth Syst. Sci., 20, 2055–2065, https://doi.org/10.5194/nhess-20-2055-2020,https://doi.org/10.5194/nhess-20-2055-2020, 2020
Short summary
Risk assessment of sea ice disasters on fixed jacket platforms in Liaodong Bay
Ning Xu, Shuai Yuan, Xueqin Liu, Yuxian Ma, Wenqi Shi, and Dayong Zhang
Nat. Hazards Earth Syst. Sci., 20, 1107–1121, https://doi.org/10.5194/nhess-20-1107-2020,https://doi.org/10.5194/nhess-20-1107-2020, 2020
Short summary
Run-up, inundation, and sediment characteristics of the 22 December 2018 Sunda Strait tsunami, Indonesia
Wahyu Widiyanto, Shih-Chun Hsiao, Wei-Bo Chen, Purwanto B. Santoso, Rudy T. Imananta, and Wei-Cheng Lian
Nat. Hazards Earth Syst. Sci., 20, 933–946, https://doi.org/10.5194/nhess-20-933-2020,https://doi.org/10.5194/nhess-20-933-2020, 2020
Short summary
Quantifying processes contributing to coastal hazards to inform coastal climate resilience assessments, demonstrated for the Caribbean Sea
Svetlana Jevrejeva, Lucy Bricheno, Jennifer Brown, David Byrne, Michela De Dominicis, Andy Matthews, Stefanie Rynders, Hindumathi Palanisamy, and Judith Wolf
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-46,https://doi.org/10.5194/nhess-2020-46, 2020
Revised manuscript accepted for NHESS
Short summary
The 22 December 2018 Mount Anak Krakatau volcanogenic tsunami on Sunda Strait coasts, Indonesia: tsunami and damage characteristics
Syamsidik, Benazir, Mumtaz Luthfi, Anawat Suppasri, and Louise K. Comfort
Nat. Hazards Earth Syst. Sci., 20, 549–565, https://doi.org/10.5194/nhess-20-549-2020,https://doi.org/10.5194/nhess-20-549-2020, 2020
Short summary
Integrated sea storm management strategy: the 29 October 2018 event in the Adriatic Sea
Christian Ferrarin, Andrea Valentini, Martin Vodopivec, Dijana Klaric, Giovanni Massaro, Marco Bajo, Francesca De Pascalis, Amedeo Fadini, Michol Ghezzo, Stefano Menegon, Lidia Bressan, Silvia Unguendoli, Anja Fettich, Jure Jerman, Matjaz̆ Ličer, Lidija Fustar, Alvise Papa, and Enrico Carraro
Nat. Hazards Earth Syst. Sci., 20, 73–93, https://doi.org/10.5194/nhess-20-73-2020,https://doi.org/10.5194/nhess-20-73-2020, 2020
Short summary
Meteotsunami occurrence in the Gulf of Finland over the past century
Havu Pellikka, Terhi K. Laurila, Hanna Boman, Anu Karjalainen, Jan-Victor Björkqvist, and Kimmo K. Kahma
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-3,https://doi.org/10.5194/nhess-2020-3, 2020
Revised manuscript accepted for NHESS
Short summary
Tsunami hazard and risk assessment for multiple buildings by considering the spatial correlation of wave height using copulas
Yo Fukutani, Shuji Moriguchi, Kenjiro Terada, Takuma Kotani, Yu Otake, and Toshikazu Kitano
Nat. Hazards Earth Syst. Sci., 19, 2619–2634, https://doi.org/10.5194/nhess-19-2619-2019,https://doi.org/10.5194/nhess-19-2619-2019, 2019
Short summary
Comparing the efficiency of hypoxia mitigation strategies in an urban, turbid tidal river via a coupled hydro-sedimentary–biogeochemical model
Katixa Lajaunie-Salla, Aldo Sottolichio, Sabine Schmidt, Xavier Litrico, Guillaume Binet, and Gwenaël Abril
Nat. Hazards Earth Syst. Sci., 19, 2551–2564, https://doi.org/10.5194/nhess-19-2551-2019,https://doi.org/10.5194/nhess-19-2551-2019, 2019
Environmental controls on surf zone injuries on high-energy beaches
Bruno Castelle, Tim Scott, Rob Brander, Jak McCarroll, Arthur Robinet, Eric Tellier, Elias de Korte, Bruno Simonnet, and Louis-Rachid Salmi
Nat. Hazards Earth Syst. Sci., 19, 2183–2205, https://doi.org/10.5194/nhess-19-2183-2019,https://doi.org/10.5194/nhess-19-2183-2019, 2019
Short summary
Impact of hurricanes Irma and Maria on the Pacific Tsunami Warning Center initial tsunami warning capability for the Caribbean region
Victor Sardina, David Walsh, Kanoa Koyanagi, Stuart Weinstein, Nathan Becker, Charles McCreery, and Christa von Hillebrandt-Andrade
Nat. Hazards Earth Syst. Sci., 19, 1865–1880, https://doi.org/10.5194/nhess-19-1865-2019,https://doi.org/10.5194/nhess-19-1865-2019, 2019
Short summary
Assessment of the 1783 Scilla landslide–tsunami's effects on the Calabrian and Sicilian coasts through numerical modeling
Filippo Zaniboni, Gianluca Pagnoni, Glauco Gallotti, Maria Ausilia Paparo, Alberto Armigliato, and Stefano Tinti
Nat. Hazards Earth Syst. Sci., 19, 1585–1600, https://doi.org/10.5194/nhess-19-1585-2019,https://doi.org/10.5194/nhess-19-1585-2019, 2019
Short summary
Water-level attenuation in global-scale assessments of exposure to coastal flooding: a sensitivity analysis
Athanasios T. Vafeidis, Mark Schuerch, Claudia Wolff, Tom Spencer, Jan L. Merkens, Jochen Hinkel, Daniel Lincke, Sally Brown, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 19, 973–984, https://doi.org/10.5194/nhess-19-973-2019,https://doi.org/10.5194/nhess-19-973-2019, 2019
Short summary
From regional to local SPTHA: efficient computation of probabilistic tsunami inundation maps addressing near-field sources
Manuela Volpe, Stefano Lorito, Jacopo Selva, Roberto Tonini, Fabrizio Romano, and Beatriz Brizuela
Nat. Hazards Earth Syst. Sci., 19, 455–469, https://doi.org/10.5194/nhess-19-455-2019,https://doi.org/10.5194/nhess-19-455-2019, 2019
The Lituya Bay landslide-generated mega-tsunami – numerical simulation and sensitivity analysis
José Manuel González-Vida, Jorge Macías, Manuel Jesús Castro, Carlos Sánchez-Linares, Marc de la Asunción, Sergio Ortega-Acosta, and Diego Arcas
Nat. Hazards Earth Syst. Sci., 19, 369–388, https://doi.org/10.5194/nhess-19-369-2019,https://doi.org/10.5194/nhess-19-369-2019, 2019
Short summary
Reanalysis of the 1761 transatlantic tsunami
Martin Wronna, Maria Ana Baptista, and Jorge Miguel Miranda
Nat. Hazards Earth Syst. Sci., 19, 337–352, https://doi.org/10.5194/nhess-19-337-2019,https://doi.org/10.5194/nhess-19-337-2019, 2019
Short summary
Tsunamigenic potential of a Holocene submarine landslide along the North Anatolian Fault (northern Aegean Sea, off Thasos island): insights from numerical modelling
Alexandre Janin, Mathieu Rodriguez, Dimitris Sakellariou, Vasilis Lykousis, and Christian Gorini
Nat. Hazards Earth Syst. Sci., 19, 121–136, https://doi.org/10.5194/nhess-19-121-2019,https://doi.org/10.5194/nhess-19-121-2019, 2019
Short summary
Analysis of the risk associated with coastal flooding hazards: a new historical extreme storm surges dataset for Dunkirk, France
Yasser Hamdi, Emmanuel Garnier, Nathalie Giloy, Claire-Marie Duluc, and Vincent Rebour
Nat. Hazards Earth Syst. Sci., 18, 3383–3402, https://doi.org/10.5194/nhess-18-3383-2018,https://doi.org/10.5194/nhess-18-3383-2018, 2018
Short summary
Numerical and remote techniques for operational beach management under storm group forcing
Verónica Morales-Márquez, Alejandro Orfila, Gonzalo Simarro, Lluís Gómez-Pujol, Amaya Álvarez-Ellacuría, Daniel Conti, Álvaro Galán, Andrés F. Osorio, and Marta Marcos
Nat. Hazards Earth Syst. Sci., 18, 3211–3223, https://doi.org/10.5194/nhess-18-3211-2018,https://doi.org/10.5194/nhess-18-3211-2018, 2018
Short summary
Field survey of Typhoon Hato (2017) and a comparison with storm surge modeling in Macau
Linlin Li, Jie Yang, Chuan-Yao Lin, Constance Ting Chua, Yu Wang, Kuifeng Zhao, Yun-Ta Wu, Philip Li-Fan Liu, Adam D. Switzer, Kai Meng Mok, Peitao Wang, and Dongju Peng
Nat. Hazards Earth Syst. Sci., 18, 3167–3178, https://doi.org/10.5194/nhess-18-3167-2018,https://doi.org/10.5194/nhess-18-3167-2018, 2018
Short summary
Cited articles
Altomare, C. and Gironella, X.: An experimental study on scale effects in wave reflection of low reflective quay walls with internal rubble mound for regular and random waves, Coast. Eng., 90, 51–63, https://doi.org/10.1016/j.coastaleng.2014.04.002, 2014.
Antonini, A., Lamberti, A., Archetti, R., and Miquel, A. M.: CFD investigations of OXYFLUX device, an innovative wave pump technology for artificial downwelling of surface water, Appl. Ocean Res., 61, 16–31, https://doi.org/10.1016/j.apor.2016.10.002, 2016a.
Antonini, A., Lamberti, A., Archetti, R., and Miquel, A. M.: Dynamic overset rans simulation of a wave-driven device for the oxygenation of deep layers, Ocean Eng., 127, 335–348, https://doi.org/10.1016/j.oceaneng.2016.10.016, 2016b.
Antonini, A., Tedesco, G., Lamberti, A., Archetti, R., Ciabattoni, S., and Piacentini, L.: Innovative combiwall quay-wall with internal rubble mound chamber: numerical tools supporting design activities, The case of Vlora's harbor, Proceeding of 26th International Ocean and Polar Engineering Conference, ISOPE 2016, Rhodos, 26 June–1 July 2016c.
Battjes, J. A. and Janssen, J. P. F. M.: Energy loss and Set-up due to breaking of random Waves, Proceeding of the 16th Int. Conf. On Coastal engineering, ASCE, 569–587, 27 August–3 September 1978.
Belu, R. and Koracin, D.: Wind characteristics and wind energy potential in western Nevada, Renew. Energ., 34, 2246–2251, https://doi.org/10.1016/j.renene.2009.02.024, 2009.
Boccotti, P.: Some new results on statistical properties of wind waves, Appl. Ocean Res., 5, 134–140, https://doi.org/10.1016/0141-1187(83)90067-6, 1983.
Boccotti, P.: Design waves and risk analysis, Elsevier Oceanography Series, Vol. 64, Wave mechanics for ocean engineering, 207–247, https://doi.org/10.1017/S0022112093003714, 2000.
Boccotti, P., Barbaro, G., and Mannino, L. A.: Field experiment on the mechanics of irregular gravity waves, J. Fluid Mech., 252, 173–186, https://doi.org/10.1017/S0022112093003714, 1993.
Booij, N., Ris, R. C., and Holthuijsen, L. H.: A third-generation wave model for coastal Regions 2: Verification, J. Geophys. Res.-Oceans, 104, 7667–7682, https://doi.org/10.1029/1998JC900123, 1999.
Burharth, H. and Andersen, O.: On the one dimensional steady and unsteady porous flow equations, Coast. Eng., 24, 233–257, https://doi.org/10.1016/0378-3839(94)00025-S, 1995.
CD-Adapco:USER GUIDE STAR-CCM+ Version 10.02, London, 2013.
Cruz, E., Isobe, M., and Watanabe, A.. Boussinesq equations for wave transformation on porous flow equations, Coast. Eng., 30, 125–154, https://doi.org/10.1016/S0378-3839(96)00039-7, 1997.
Demirel, Y. K., Khorasanchi, M., Turan, O., Incecik, A., and Schultz, M. P.: A CFD model for the frictional resistance prediction of antifouling coatings, Ocean Eng., 89, 21–31, 2014.
DHI: MIKE 21 SW. Spectral Wave Module. Scientific documentation, Hørsholm, DHI Water & Environment, 2011.
El-Hawary, F.: The Ocean Eng. Handbook, CRC Press, Taylor & Francis Group, ISBN-13: 9780849385988, CAT# 8598, 2000.
Engelund, F.: On the laminar and turbulent flows of ground water through homogeneous sand, Danish academy of Technical sciences, Koebenhavn, Akademie for de tekniske videnskaber, 1953.
Faraci, C., Scandura, P., and Foti, E.: Reflection of Sea Waves by Combined Caissons, J. Waterway, Port, Coastal, Ocean Eng., 141, https://doi.org/10.1061/(ASCE)WW.1943-5460.0000275, 04014036, 2014.
Gaeta, M. G., Samaras, A. G., Federico, I., Archetti, R., Maicu, F., and Lorenzetti, G.: A coupled wave-3-D hydrodynamics model of the Taranto Sea (Italy): a multiple-nesting approach, Nat. Hazards Earth Syst. Sci., 16, 2071–2083, https://doi.org/10.5194/nhess-16-2071-2016, 2016.
Garcia-Espinel, J. D., Alvarez-Garcia-Luben, R., Gonzalez-Herrero, J. M., and Castro-Fresno, D.: Glass fiber-reinforced polymer caissons used for construction of mooring dolphins in Puerto del Rosario harbor (Fuerteventura, Canary Islands), Coast. Eng., 98, 16–25, https://doi.org/10.1016/j.coastaleng.2015.01.003, 2015.
Goda, Y.: Random Seas and Design of Maritime Structures, 2nd edition, World Scientifc Publishing Co., Singapore, ISBN-13: 978-981-4282-39-0, 2000.
Hasselmann, S., Sasselmann, K., Allender, J. H., and Barnett, T. P.: Computations and parameterizations of non-linear energy transfer in gravity wave spectrum. Part II: parameterisations of nonlinear energy transfer for applications in wave models, J. Phys. Oceanogr., 15, 1369–1377, 1985.
Janssen, P. A. E. M.: Wave-induced stress and the drag of airflow over sea waves, J. Phys. Oceanogr., 19, 745–754, 1989.
Janssen, P. A. E. M.: Quasi-linear theory of wind-wave generation applied to wave forecasting, J. Phys. Oceanogr., 21, 1631–1642, 1991.
Jarlan, G. E.: A perforated vertical breakwater, The Dock and Harbour Authority, 21, 394–398, 1961.
Lamberti, A., Antonini, A., and Ceccarelli, G.: What could happen if the parbuckling of Costa Concordia had failed: Analytical and CFD-based investigation of possible generated wave, Proc of 34rd International Conference on Coast. Eng., 16–20 June 2014.
Liu, Y. and Faraci, C.: Analysis of orthogonal wave reflection by a caisson with open front chamber filled with sloping rubble mound, Coast. Eng., 91, 151–163, https://doi.org/10.1016/j.coastaleng.2014.05.002, 2014.
Masina, M., Lamberti, A., and Archetti, R.: Coastal flooding: A copula based approach for estimating the joint probability of water levels and waves, Coast. Eng., 97, 37–52, https://doi.org/10.1016/j.coastaleng.2014.12.010, 2015.
Mathiesen, M., Goda, Y., Hawkes, P. J., Mansard, E., Martín, M. J., Peltier, E., Thompson, E. F., and Van Vledder, G.: Recommended practice for extreme wave analysis, J. Hydraul. Res., 32, 803–814, https://doi.org/10.1080/00221689409498691, 1994.
Matteotti, G.: The reflection coefficient of a wave dissipating quay wall, Dock and Harbour Authority, 71, 285–291, 1991.
Mazas, F., Kergadallan, X., Garat, P., and Hamm, L.: Applying POT methods to the Revised Joint Probability Method for determining extreme sea levels, Coast. Eng., 91, 140–150, 2014.
McConnell, K., Allsop, W., and Cruickshank, I.: Piers, jetties and related structures exposed to waves: Guidelines for hydraulic loading, HR Wallingford, Thomas Telford, London, 2004.
Medina, J. R., Gonzalez-Escriva, J. A., Fort, L., Martinez, S., Ponce de Leon, D., Manuel, J., Yagüe, D., Garrido, J., and Berruguete, A.: Vertical Maritime Structure with Multiple Chambers for Attenuation of Wave Reflection, International PCT/EP2010/068000, EPO, The Hague, 23 pp., 2010.
Mentaschi, L., Besio, G., Cassola, F. and Mazzino, A.: Performance evaluation of WavewatchIII in the Mediterranean Sea, Ocean Model., 90, 82–94, https://doi.org/10.1016/j.ocemod.2015.04.003, 2015a.
Mentaschi, L., Perez, J., Besio, G., Mendez, F., and Menendez, M.: Parameterization of unresolved obstacles in wave modeling: a source term approach, Ocean Model., 96, 93–102, https://doi.org/10.1016/j.ocemod.2015.05.004, 2015b.
Menter, F. R.: Two Equation Eddy Viscosity Turbulence Models For Engineering Applications, Aiaa, 32, 1598–1605, 1994.
Monbaliu, J., Padilla-Hernández, R., Hargreaves, J. C., Carretero-Albiach, J. C., Luo, W., Sclavo, M., and Günther, H.: The spectral wave model WAM adapted for applications with high spatial resolution, Coast. Eng., 41, 41–62, https://doi.org/10.1016/S0378-3839(00)00026-0, 2000.
Samaras, A. G., Gaeta, M. G., Miquel, A. M., and Archetti, R.: High-resolution wave and hydrodynamics modelling in coastal areas: operational applications for coastal planning, decision support and assessment, Nat. Hazards Earth Syst. Sci., 16, 1499–1518, https://doi.org/10.5194/nhess-16-1499-2016, 2016.
Sartini, L., Mentaschi, L., and Besio, G.: How an optimized meteocean modelling chain provided 30 years of wave hindcast statistics: the case of the Ligurian Sea, Proc. of the 23rd International Conference on Coast. Eng., Seoul, South Korea, 16–20 June 2014.
Sartini, L., Cassola, F., and Besio, G.: Extreme waves seasonality analysis: an application in the Mediterranean Sea, J. Geophys. Res.-Oceans, 120, 6266–6288, https://doi.org/10.1002/2015JC011061, 2015a.
Sartini, L., Mentaschi, L., and Besio, G.: Comparing different extreme wave analysis models for wave climate assessment along the Italian coast, Coast. Eng., 100, 1–10, https://doi.org/10.1016/j.coastaleng.2015.03.006, 2015b.
Schweizer, J., Antonini, A., Govoni, L., Gottardi, G., Archetti, R., Supino, E., Berretta, C., Casadei, C., and Ozzi, C.: Investigating the potential and feasibility of an offshore wind farm in the Northern Adriatic Sea, Appl. Energ., 177, 449–463, https://doi.org/10.1016/j.apenergy.2016.05.114, 2016.
The WAMDI Group: The WAM Model. A Third Generation Ocean Wave Prediction Model, J. Phys. Oceanogr., 18, 1775–1810, https://doi.org/10.1016/j.oceaneng.2015.01.011, 1988.
Viselli, A. M., Forristall, G. Z., Pearce, B. R., and Dagher, H. J.: Estimation of extreme wave and wind design parameters for offshore wind turbines in the Gulf of Maine using a POT method, Ocean Eng., 104, 649–658, https://doi.org/10.1016/j.oceaneng.2015.04.086, 2015.
Zelt, J. and Skjelbreia, E.: Estimating incident and reflected wave fields using an arbitrary number of wave gauges, Proc of 23rd International Conference on Coast. Eng., 4–9 October 1992.