Articles | Volume 16, issue 2
https://doi.org/10.5194/nhess-16-559-2016
https://doi.org/10.5194/nhess-16-559-2016
Research article
 | 
29 Feb 2016
Research article |  | 29 Feb 2016

Quantifying the effect of sea level rise and flood defence – a point process perspective on coastal flood damage

M. Boettle, D. Rybski, and J. P. Kropp

Related authors

Damage functions for climate-related hazards: unification and uncertainty analysis
Boris F. Prahl, Diego Rybski, Markus Boettle, and Jürgen P. Kropp
Nat. Hazards Earth Syst. Sci., 16, 1189–1203, https://doi.org/10.5194/nhess-16-1189-2016,https://doi.org/10.5194/nhess-16-1189-2016, 2016
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
An interdisciplinary agent-based evacuation model: integrating the natural environment, built environment, and social system for community preparedness and resilience
Chen Chen, Charles Koll, Haizhong Wang, and Michael K. Lindell
Nat. Hazards Earth Syst. Sci., 23, 733–749, https://doi.org/10.5194/nhess-23-733-2023,https://doi.org/10.5194/nhess-23-733-2023, 2023
Short summary
Coastal extreme sea levels in the Caribbean Sea induced by tropical cyclones
Ariadna Martín, Angel Amores, Alejandro Orfila, Tim Toomey, and Marta Marcos
Nat. Hazards Earth Syst. Sci., 23, 587–600, https://doi.org/10.5194/nhess-23-587-2023,https://doi.org/10.5194/nhess-23-587-2023, 2023
Short summary
Characteristics of consecutive tsunamis and resulting tsunami behaviors in southern Taiwan induced by the Hengchun earthquake doublet on 26 December 2006
An-Chi Cheng, Anawat Suppasri, Kwanchai Pakoksung, and Fumihiko Imamura
Nat. Hazards Earth Syst. Sci., 23, 447–479, https://doi.org/10.5194/nhess-23-447-2023,https://doi.org/10.5194/nhess-23-447-2023, 2023
Short summary
Potential tsunami hazard of the southern Vanuatu subduction zone: tectonics, case study of the Matthew Island tsunami of 10 February 2021 and implication in regional hazard assessment
Jean Roger, Bernard Pelletier, Aditya Gusman, William Power, Xiaoming Wang, David Burbidge, and Maxime Duphil
Nat. Hazards Earth Syst. Sci., 23, 393–414, https://doi.org/10.5194/nhess-23-393-2023,https://doi.org/10.5194/nhess-23-393-2023, 2023
Short summary
Detecting anomalous sea-level states in North Sea tide gauge data using an autoassociative neural network
Kathrin Wahle, Emil V. Stanev, and Joanna Staneva
Nat. Hazards Earth Syst. Sci., 23, 415–428, https://doi.org/10.5194/nhess-23-415-2023,https://doi.org/10.5194/nhess-23-415-2023, 2023
Short summary

Cited articles

Barbosa, S. M., Fernandes, M. J., and Silva, M. E.: Long-range dependence in North Atlantic sea level, Physica A, 371, 725–731, https://doi.org/10.1016/j.physa.2006.03.046, 2006.
Beichelt, F.: Stochastic Processes in Science, Engineering, and Finance, Chapman & Hall/CRC, Boca Raton, FL, USA, 2006.
Boettle, M., Kropp, J. P., Reiber, L., Roithmeier, O., Rybski, D., and Walther, C.: About the influence of elevation model quality and small-scale damage functions on flood damage estimation, Nat. Hazards Earth Syst. Sci., 11, 3327–3334, https://doi.org/10.5194/nhess-11-3327-2011, 2011.
Boettle, M., Rybski, D., and Kropp, J. P.: How changing sea level extremes and protection measures alter coastal flood damages, Water Resour. Res., 49, 1199–1210, https://doi.org/10.1002/wrcr.20108, 2013.
Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, Springer, London, UK, 2001.
Download
Short summary
We provide simple functional expressions to characterise the development of coastal flood damage for rising mean sea levels as well as implemented flood protection levels. Furthermore, we are able to quantify the aleatory uncertainty of our estimates. All results are mathematically proven and their usability confirmed by employing two case study regions. Thus, we gain fundamental insights into the interplay of coastal flood damage, the mean sea level, and flood defence.
Altmetrics
Final-revised paper
Preprint