Articles | Volume 14, issue 12
https://doi.org/10.5194/nhess-14-3231-2014
https://doi.org/10.5194/nhess-14-3231-2014
Research article
 | 
04 Dec 2014
Research article |  | 04 Dec 2014

Developing fragility functions for the areas affected by the 2009 Samoa earthquake and tsunami

H. Gokon, S. Koshimura, K. Imai, M. Matsuoka, Y. Namegaya, and Y. Nishimura

Related authors

INVESTIGATING LOSS FUNCTIONS FOR SEGMENTING AND DETECTING SHIPS ON SAR IMAGERY
M. L. R. Lagahit and M. Matsuoka
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W8-2023, 321–326, https://doi.org/10.5194/isprs-archives-XLVIII-4-W8-2023-321-2024,https://doi.org/10.5194/isprs-archives-XLVIII-4-W8-2023-321-2024, 2024
MFSCNN: APPENDING A MASKED BRANCH TO FAST-SCNN TO IMPROVE ROAD MARKING EXTRACTION ON SPARSE MLS POINT CLOUD-DERIVED IMAGES
M. L. R. Lagahit and M. Matsuoka
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 829–834, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-829-2023,https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-829-2023, 2023
EXPLORING GROUND SEGMENTATION FROM LIDAR SCANNING-DERIVED IMAGES USING CONVOLUTIONAL NEURAL NETWORKS
M. L. R. Lagahit, Z. Li, K. Sakaguchi, and M. Matsuoka
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W1-2023, 221–226, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-221-2023,https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-221-2023, 2023
BOOSTING U-NET WITH FOCAL LOSS FOR ROAD MARKING CLASSIFICATION ON SPARSE MOBILE LIDAR POINT CLOUD DERIVED IMAGES
M. L. R. Lagahit and M. Matsuoka
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-5-2022, 33–38, https://doi.org/10.5194/isprs-annals-V-5-2022-33-2022,https://doi.org/10.5194/isprs-annals-V-5-2022-33-2022, 2022
Brief communication: Radar images for monitoring informal urban settlements in vulnerable zones in Lima, Peru
Luis Moya, Fernando Garcia, Carlos Gonzales, Miguel Diaz, Carlos Zavala, Miguel Estrada, Fumio Yamazaki, Shunichi Koshimura, Erick Mas, and Bruno Adriano
Nat. Hazards Earth Syst. Sci., 22, 65–70, https://doi.org/10.5194/nhess-22-65-2022,https://doi.org/10.5194/nhess-22-65-2022, 2022
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
The potential of global coastal flood risk reduction using various DRR measures
Eric Mortensen, Timothy Tiggeloven, Toon Haer, Bas van Bemmel, Dewi Le Bars, Sanne Muis, Dirk Eilander, Frederiek Sperna Weiland, Arno Bouwman, Willem Ligtvoet, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 24, 1381–1400, https://doi.org/10.5194/nhess-24-1381-2024,https://doi.org/10.5194/nhess-24-1381-2024, 2024
Short summary
Thresholds for estuarine compound flooding using a combined hydrodynamic–statistical modelling approach
Charlotte Lyddon, Nguyen Chien, Grigorios Vasilopoulos, Michael Ridgill, Sogol Moradian, Agnieszka Olbert, Thomas Coulthard, Andrew Barkwith, and Peter Robins
Nat. Hazards Earth Syst. Sci., 24, 973–997, https://doi.org/10.5194/nhess-24-973-2024,https://doi.org/10.5194/nhess-24-973-2024, 2024
Short summary
Nearshore tsunami amplitudes across the Maldives archipelago due to worst-case seismic scenarios in the Indian Ocean
Shuaib Rasheed, Simon C. Warder, Yves Plancherel, and Matthew D. Piggott
Nat. Hazards Earth Syst. Sci., 24, 737–755, https://doi.org/10.5194/nhess-24-737-2024,https://doi.org/10.5194/nhess-24-737-2024, 2024
Short summary
Evidence of Middle Holocene landslide-generated tsunamis recorded in lake sediments from Saqqaq, West Greenland
Niels J. Korsgaard, Kristian Svennevig, Anne S. Søndergaard, Gregor Luetzenburg, Mimmi Oksman, and Nicolaj K. Larsen
Nat. Hazards Earth Syst. Sci., 24, 757–772, https://doi.org/10.5194/nhess-24-757-2024,https://doi.org/10.5194/nhess-24-757-2024, 2024
Short summary
Investigation of historical severe storms and storm tides in the German Bight with century reanalysis data
Elke Magda Inge Meyer and Lidia Gaslikova
Nat. Hazards Earth Syst. Sci., 24, 481–499, https://doi.org/10.5194/nhess-24-481-2024,https://doi.org/10.5194/nhess-24-481-2024, 2024
Short summary

Cited articles

Aburaya, T. and Imamura, F.: The proposal of a tsunami run-up simulation using combined equivalent roughness, Annual Journal of Coastal Engineering, Japan Soc. Civil Eng., 49, 276–280, 2002 (in Japanese).
Aida, I.: Reliability of a tsunami source model derived from fault parameters, J. Phys. Earth, 26, 57–73, 1978.
Apotsos, A., Gelfenbaum, G., Jaffe, B., Watt, S., Peck, B., Buckley, M., and Stevens, A.: Tsunami inundation and sediment transport in a sediment-limited embayment on American Samoa, Earth-Sci. Rev., 107, 1–11, 2011.
Beavan, J., Wang, X., Holden, C., Wilson, K., Power, W., Prasetya, G., Bevis, M., and Kautoke, R.: Near-simultaneous great earthquakes at Tongan megathrust and outer rise in September 2009, Nature, 466, 959–963, 2010.
Charvet, I., Ioannou, I., Rossetto, T., Suppasri, A., and Imamura, F.: Empirical fragility assessment of buildings affected by the 2011 Great East Japan tsunami using improved statistical models, Nat. Hazards, 73, 951–973, 2014a.
Download
Altmetrics
Final-revised paper
Preprint