Articles | Volume 25, issue 3
https://doi.org/10.5194/nhess-25-991-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-25-991-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Towards a harmonized operational earthquake forecasting model for Europe
Swiss Seismological Service (SED), ETH Zurich, Zurich, Switzerland
Leila Mizrahi
Swiss Seismological Service (SED), ETH Zurich, Zurich, Switzerland
Stefan Wiemer
Swiss Seismological Service (SED), ETH Zurich, Zurich, Switzerland
Related authors
Maren Böse, Laurentiu Danciu, Athanasios Papadopoulos, John Clinton, Carlo Cauzzi, Irina Dallo, Leila Mizrahi, Tobias Diehl, Paolo Bergamo, Yves Reuland, Andreas Fichtner, Philippe Roth, Florian Haslinger, Frédérick Massin, Nadja Valenzuela, Nikola Blagojević, Lukas Bodenmann, Eleni Chatzi, Donat Fäh, Franziska Glueer, Marta Han, Lukas Heiniger, Paulina Janusz, Dario Jozinović, Philipp Kästli, Federica Lanza, Timothy Lee, Panagiotis Martakis, Michèle Marti, Men-Andrin Meier, Banu Mena Cabrera, Maria Mesimeri, Anne Obermann, Pilar Sanchez-Pastor, Luca Scarabello, Nicolas Schmid, Anastasiia Shynkarenko, Bozidar Stojadinović, Domenico Giardini, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 583–607, https://doi.org/10.5194/nhess-24-583-2024, https://doi.org/10.5194/nhess-24-583-2024, 2024
Short summary
Short summary
Seismic hazard and risk are time dependent as seismicity is clustered and exposure can change rapidly. We are developing an interdisciplinary dynamic earthquake risk framework for advancing earthquake risk mitigation in Switzerland. This includes various earthquake risk products and services, such as operational earthquake forecasting and early warning. Standardisation and harmonisation into seamless solutions that access the same databases, workflows, and software are a crucial component.
Sandro Truttmann, Tobias Diehl, Marco Herwegh, and Stefan Wiemer
Solid Earth, 16, 641–662, https://doi.org/10.5194/se-16-641-2025, https://doi.org/10.5194/se-16-641-2025, 2025
Short summary
Short summary
Our study investigates the statistical relationship between geological fractures and earthquakes in the southwestern Swiss Alps. We analyze how the fracture size and earthquake rupture are related and find differences in how fractures at different depths rupture seismically. While shallow fractures tend to rupture only partially, deeper fractures are more likely to rupture along their entire length, potentially resulting in larger earthquakes.
Miriam Larissa Schwarz, Hansruedi Maurer, Anne Christine Obermann, Paul Antony Selvadurai, Alexis Shakas, Stefan Wiemer, and Domenico Giardini
EGUsphere, https://doi.org/10.5194/egusphere-2025-1094, https://doi.org/10.5194/egusphere-2025-1094, 2025
Short summary
Short summary
This study applied fat ray travel time tomography to image the geothermal testbed at the BedrettoLab. An active seismic crosshole survey provided a dataset of 42'843 manually picked first breaks. The complex major fault zone was successfully imaged by a 3D velocity model and validated with wireline logs and geological observations. Seismic events from hydraulic stimulation correlated with velocity structures, "avoiding" very high and low velocities, speculatively due to stress gradients.
Athanasios N. Papadopoulos, Philippe Roth, Laurentiu Danciu, Paolo Bergamo, Francesco Panzera, Donat Fäh, Carlo Cauzzi, Blaise Duvernay, Alireza Khodaverdian, Pierino Lestuzzi, Ömer Odabaşi, Ettore Fagà, Paolo Bazzurro, Michèle Marti, Nadja Valenzuela, Irina Dallo, Nicolas Schmid, Philip Kästli, Florian Haslinger, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3561–3578, https://doi.org/10.5194/nhess-24-3561-2024, https://doi.org/10.5194/nhess-24-3561-2024, 2024
Short summary
Short summary
The Earthquake Risk Model of Switzerland (ERM-CH23), released in early 2023, is the culmination of a multidisciplinary effort aiming to achieve, for the first time, a comprehensive assessment of the potential consequences of earthquakes on the Swiss building stock and population. ERM-CH23 provides risk estimates for various impact metrics, ranging from economic loss as a result of damage to buildings and their contents to human losses, such as deaths, injuries, and displaced population.
Laurentiu Danciu, Domenico Giardini, Graeme Weatherill, Roberto Basili, Shyam Nandan, Andrea Rovida, Céline Beauval, Pierre-Yves Bard, Marco Pagani, Celso G. Reyes, Karin Sesetyan, Susana Vilanova, Fabrice Cotton, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3049–3073, https://doi.org/10.5194/nhess-24-3049-2024, https://doi.org/10.5194/nhess-24-3049-2024, 2024
Short summary
Short summary
The 2020 European Seismic Hazard Model (ESHM20) is the latest seismic hazard assessment update for the Euro-Mediterranean region. This state-of-the-art model delivers a broad range of hazard results, including hazard curves, maps, and uniform hazard spectra. ESHM20 provides two hazard maps as informative references in the next update of the European Seismic Design Code (CEN EC8), and it also provides a key input to the first earthquake risk model for Europe.
Peter Achtziger-Zupančič, Alberto Ceccato, Alba Simona Zappone, Giacomo Pozzi, Alexis Shakas, Florian Amann, Whitney Maria Behr, Daniel Escallon Botero, Domenico Giardini, Marian Hertrich, Mohammadreza Jalali, Xiaodong Ma, Men-Andrin Meier, Julian Osten, Stefan Wiemer, and Massimo Cocco
Solid Earth, 15, 1087–1112, https://doi.org/10.5194/se-15-1087-2024, https://doi.org/10.5194/se-15-1087-2024, 2024
Short summary
Short summary
We detail the selection and characterization of a fault zone for earthquake experiments in the Fault Activation and Earthquake Ruptures (FEAR) project at the Bedretto Lab. FEAR, which studies earthquake processes, overcame data collection challenges near faults. The fault zone in Rotondo granite was selected based on geometry, monitorability, and hydro-mechanical properties. Remote sensing, borehole logging, and geological mapping were used to create a 3D model for precise monitoring.
Maren Böse, Laurentiu Danciu, Athanasios Papadopoulos, John Clinton, Carlo Cauzzi, Irina Dallo, Leila Mizrahi, Tobias Diehl, Paolo Bergamo, Yves Reuland, Andreas Fichtner, Philippe Roth, Florian Haslinger, Frédérick Massin, Nadja Valenzuela, Nikola Blagojević, Lukas Bodenmann, Eleni Chatzi, Donat Fäh, Franziska Glueer, Marta Han, Lukas Heiniger, Paulina Janusz, Dario Jozinović, Philipp Kästli, Federica Lanza, Timothy Lee, Panagiotis Martakis, Michèle Marti, Men-Andrin Meier, Banu Mena Cabrera, Maria Mesimeri, Anne Obermann, Pilar Sanchez-Pastor, Luca Scarabello, Nicolas Schmid, Anastasiia Shynkarenko, Bozidar Stojadinović, Domenico Giardini, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 583–607, https://doi.org/10.5194/nhess-24-583-2024, https://doi.org/10.5194/nhess-24-583-2024, 2024
Short summary
Short summary
Seismic hazard and risk are time dependent as seismicity is clustered and exposure can change rapidly. We are developing an interdisciplinary dynamic earthquake risk framework for advancing earthquake risk mitigation in Switzerland. This includes various earthquake risk products and services, such as operational earthquake forecasting and early warning. Standardisation and harmonisation into seamless solutions that access the same databases, workflows, and software are a crucial component.
Irina Dallo, Michèle Marti, Nadja Valenzuela, Helen Crowley, Jamal Dabbeek, Laurentiu Danciu, Simone Zaugg, Fabrice Cotton, Domenico Giardini, Rui Pinho, John F. Schneider, Céline Beauval, António A. Correia, Olga-Joan Ktenidou, Päivi Mäntyniemi, Marco Pagani, Vitor Silva, Graeme Weatherill, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 291–307, https://doi.org/10.5194/nhess-24-291-2024, https://doi.org/10.5194/nhess-24-291-2024, 2024
Short summary
Short summary
For the release of cross-country harmonised hazard and risk models, a communication strategy co-defined by the model developers and communication experts is needed. The strategy should consist of a communication concept, user testing, expert feedback mechanisms, and the establishment of a network with outreach specialists. Here we present our approach for the release of the European Seismic Hazard Model and European Seismic Risk Model and provide practical recommendations for similar efforts.
Xiaodong Ma, Marian Hertrich, Florian Amann, Kai Bröker, Nima Gholizadeh Doonechaly, Valentin Gischig, Rebecca Hochreutener, Philipp Kästli, Hannes Krietsch, Michèle Marti, Barbara Nägeli, Morteza Nejati, Anne Obermann, Katrin Plenkers, Antonio P. Rinaldi, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Falko Bethmann, Raymi Castilla, Francisco Seberto, Peter Meier, Thomas Driesner, Simon Loew, Hansruedi Maurer, Martin O. Saar, Stefan Wiemer, and Domenico Giardini
Solid Earth, 13, 301–322, https://doi.org/10.5194/se-13-301-2022, https://doi.org/10.5194/se-13-301-2022, 2022
Short summary
Short summary
Questions on issues such as anthropogenic earthquakes and deep geothermal energy developments require a better understanding of the fractured rock. Experiments conducted at reduced scales but with higher-resolution observations can shed some light. To this end, the BedrettoLab was recently established in an existing tunnel in Ticino, Switzerland, with preliminary efforts to characterize realistic rock mass behavior at the hectometer scale.
Alba Zappone, Antonio Pio Rinaldi, Melchior Grab, Quinn C. Wenning, Clément Roques, Claudio Madonna, Anne C. Obermann, Stefano M. Bernasconi, Matthias S. Brennwald, Rolf Kipfer, Florian Soom, Paul Cook, Yves Guglielmi, Christophe Nussbaum, Domenico Giardini, Marco Mazzotti, and Stefan Wiemer
Solid Earth, 12, 319–343, https://doi.org/10.5194/se-12-319-2021, https://doi.org/10.5194/se-12-319-2021, 2021
Short summary
Short summary
The success of the geological storage of carbon dioxide is linked to the availability at depth of a capable reservoir and an impermeable caprock. The sealing capacity of the caprock is a key parameter for long-term CO2 containment. Faults crosscutting the caprock might represent preferential pathways for CO2 to escape. A decameter-scale experiment on injection in a fault, monitored by an integrated network of multiparamerter sensors, sheds light on the mobility of fluids within the fault.
Camilla Rossi, Francesco Grigoli, Simone Cesca, Sebastian Heimann, Paolo Gasperini, Vala Hjörleifsdóttir, Torsten Dahm, Christopher J. Bean, Stefan Wiemer, Luca Scarabello, Nima Nooshiri, John F. Clinton, Anne Obermann, Kristján Ágústsson, and Thorbjörg Ágústsdóttir
Adv. Geosci., 54, 129–136, https://doi.org/10.5194/adgeo-54-129-2020, https://doi.org/10.5194/adgeo-54-129-2020, 2020
Short summary
Short summary
We investigate the microseismicity occurred at Hengill area, a complex tectonic and geothermal site, where the origin of earthquakes may be either natural or anthropogenic. We use a very dense broadband seismic monitoring network and apply full-waveform based method for location. Our results and first characterization identified different types of microseismic clusters, which might be associated to either production/injection or the tectonic activity of the geothermal area.
Cited articles
Bayona, J. A., Savran, W. H., Iturrieta, P., Gerstenberger, M. C., Graham, K. M., Marzocchi, W., Schorlemmer, D., and Werner, M. J.: Are Regionally Calibrated Seismicity Models More Informative than Global Models? Insights from California, New Zealand, and Italy, Seismic Record, 3, 86–95, https://doi.org/10.1785/0320230006, 2023. a
Becker, J., Gerstenberger, M., Potter, S., Christophersen, A., and McBride, S.: Effective Communication of Operational Earthquake Forecasts (OEFs): Findings from a New Zealand Workshop, Lower Hutt, NZ, GNS Science report 2016/45, GNS Science, p. 49, https://doi.org/10.21420/G2DH00, 2018. a
Böse, M., Andrews, J., Hartog, R., and Felizardo, C.: Performance and Next-Generation Development of the Finite-Fault Rupture Detector (FinDer) within the United States West Coast ShakeAlert Warning System, B. Seismol. Soc. Am., 113, 648–663, https://doi.org/10.1785/0120220183, 2023. a
Crowley, H., Dabbeek, J., Despotaki, V., Rodrigues, D., Martins, L., Silva, V., Romão, X., Pereira, N., Weatherill, G., and Danciu, L.: European seismic risk model (ESRM20), EFEHR Technical Report, 2, V1.0.1, 84 pp., https://doi.org/10.7414/EUC-EFEHR-TR002-ESRM20, 2021. a
Danciu, L., Nandan, S., Reyes, C. G., Basili, R., Weatherill, G., Beauval, C., Rovida, A., Vilanova, S., Sesetyan, K., and Bard, P.-Y.: The 2020 update of the European Seismic Hazard Model-ESHM20: Model Overview, EFEHR Technical Report 001, v1.0.0, EFEHR, https://doi.org/10.12686/a15, 2021. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
Dascher-Cousineau, K., Brodsky, E. E., Lay, T., and Goebel, T. H. W.: What Controls Variations in Aftershock Productivity?, J. Geophys. Res.-Sol. Ea., 125, e2019JB018111, https://doi.org/10.1029/2019JB018111, 2020. a
Davis, S. D. and Frohlich, C.: Single-link cluster analysis of earthquake aftershocks: Decay laws and regional variations, J. Geophys. Res.-Sol. Ea., 96, 6335–6350, https://doi.org/10.1029/90JB02634, 1991. a
Field, E., Milner, K., Hardebeck, J., Page, M., Elst, N., Jordan, T., Michael, A., Shaw, B., and Werner, M.: A Spatiotemporal Clustering Model for the Third Uniform California Earthquake Rupture Forecast (UCERF3-ETAS): Toward an Operational Earthquake Forecast, B. Seismol. Soc. Am., 107, 1049, https://doi.org/10.1785/0120160173, 2017. a, b, c
Field, E. H., Jordan, T. H., Jones, L. M., Michael, A. J., Blanpied, M. L., and Participants, O. W.: The Potential Uses of Operational Earthquake Forecasting, Seismol. Res. Lett., 87, 313–322, https://doi.org/10.1785/0220150174, 2016. a
Grünthal, G. and Wahlström, R.: The European-Mediterranean Earthquake Catalogue (EMEC) for the last millennium, J. Seismol., 16, 535–570, https://doi.org/10.1007/s10950-012-9302-y, 2012. a, b, c
Grünthal, G., Wahlström, R., and Stromeyer, D.: The unified catalogue of earthquakes in central, northern, and northwestern Europe (CENEC) – Updated and expanded to the last millennium, J. Seismol., 13, 517–541, https://doi.org/10.1007/s10950-008-9144-9, 2009. a
Gutenberg, B. and Richter, C. F.: Magnitude and Energy of Earthquakes, Science, 83, 183–185, https://doi.org/10.1126/science.83.2147.183, 1936. a, b
Hainzl, S., Christophersen, A., and Enescu, B.: Impact of Earthquake Rupture Extensions on Parameter Estimations of Point-Process Models, B. Seismol. Soc. Am., 98, 2066–2072, https://doi.org/10.1785/0120070256, 2008. a
Hainzl, S., Zakharova, O., and Marsan, D.: Impact of Aseismic Transients on the Estimation of Aftershock Productivity Parameters, B. the Seismol. Soc. Am., 103, 1723–1732, https://doi.org/10.1785/0120120247, 2013. a, b
Hardebeck, J. L., Llenos, A. L., Michael, A. J., Page, M. T., Schneider, M., and Van Der Elst, N. J.: Aftershock Forecasting, Annu. Rev. Earth Planet. Sc., 52, 61–84, https://doi.org/10.1146/annurev-earth-040522-102129, 2024. a
Harte, D. S.: Bias in fitting the ETAS model: a case study based on New Zealand seismicity, Geophys. J. Int., 192, 390–412, https://doi.org/10.1093/gji/ggs026, 2013. a
Helmstetter, A.: Is Earthquake Triggering Driven by Small Earthquakes?, Phys. Rev. Lett., 91, 058501, https://doi.org/10.1103/PhysRevLett.91.058501, 2003. a, b
Helmstetter, A., Kagan, Y. Y., and Jackson, D. D.: Importance of small earthquakes for stress transfers and earthquake triggering, J. Geophys. Res.-Sol. Ea., 110, https://doi.org/10.1029/2004JB003286, 2005. a
Iturrieta, P., Savran, W. H., Khawaja, M. A. M., Bayona, J., Maechling, P. J., Silva, F., Herrmann, M., Graham, K. M., Rhoades, D. A., Gerstenberger, M., Marzocchi, W., Cotton, F., Jackson, D. D., Schorlemmer, D., and Werner, M. J.: Modernizing Earthquake Forecasting Experiments: The CSEP Floating Experiments, AGU, https://agu.confex.com/agu/fm23/meetingapp.cgi/Paper/1354141 (last access: 28 February 2025), 2023. a
Iturrieta, P., Bayona, J. A., Werner, M. J., Schorlemmer, D., Taroni, M., Falcone, G., Cotton, F., Khawaja, A. M., Savran, W. H., and Marzocchi, W.: Evaluation of a Decade-Long Prospective Earthquake Forecasting Experiment in Italy, Seismol. Res. Lett., 95, 3174–3191, https://doi.org/10.1785/0220230247, 2024. a
Jordan, T. H., Chen, Y.-T., Gasparini, P., Madariaga, R., Main, I., Marzocchi, W., Papadopoulos, G., Yamaoka, K., and Zschau, J.: Operational Earthquake Forecasting: State of Knowledge and Guidelines for Implementation, Ann. Geophys., 54, 316–391, https://doi.org/10.4401/ag-5350, 2011. a, b, c
Jordan, T. H., Marzocchi, W., Michael, A. J., and Gerstenberger, M. C.: Operational Earthquake Forecasting Can Enhance Earthquake Preparedness, Seismol. Res. Lett., 85, 955–959, https://doi.org/10.1785/0220140143, 2014. a
Kagan, Y. Y.: Short-Term Properties of Earthquake Catalogs and Models of Earthquake Source, B. Seismol. Soc. Am., 94, 1207–1228, https://doi.org/10.1785/012003098, 2004. a
Lammers, S., Weatherill, G., Grünthal, G., and Cotton, F.: EMEC-2021 – The European-Mediterranean Earthquake Catalogue – Version 2021, gFZ Data Services [data set], https://doi.org/10.5880/GFZ.EMEC.2021.001, 2023. a, b
Mancini, S. and Marzocchi, W.: SimplETAS: A Benchmark Earthquake Forecasting Model Suitable for Operational Purposes and Seismic Hazard Analysis, Seismol. Res. Lett., 95, 38–49, https://doi.org/10.1785/0220230199, 2023. a
Marsan, D. and Helmstetter, A.: How variable is the number of triggered aftershocks?, J. Geophys. Res.-Sol. Ea., 122, 5544–5560, https://doi.org/10.1002/2016JB013807, 2017. a
Marzocchi, W., Zechar, J., and Jordan, T.: Bayesian Forecast Evaluation and Ensemble Earthquake Forecasting, B. Seismol. Soc. Am., 102, 2574–2584, https://doi.org/10.1785/0120110327, 2012. a
Mizrahi, L. and Jozinović, D.: Modeling the Asymptotic Behavior of Higher Order Aftershocks with Deep Learning, Seismol. Res. Lett., 95, 3295–3305, https://doi.org/10.1785/0220240028, 2024. a
Mizrahi, L., Nandan, S., and Wiemer, S.: The Effect of Declustering on the Size Distribution of Mainshocks, Seismol. Res. Lett., 92, 2333–2342, https://doi.org/10.1785/0220200231, 2021a. a, b
Mizrahi, L., Schmid, N., and Han, M.: lmizrahi/etas: ETAS with fit visualization, Zenodo [code], https://doi.org/10.5281/zenodo.7584575, 2023. a, b, c
Mizrahi, L., Nandan, S., Mena Cabrera, B., and Wiemer, S.: suiETAS: Developing and testing ETAS-based earthquake forecasting models for Switzerland, B. Seismol. Soc. Am., 114, 2591–2612, https://doi.org/10.1785/0120240007, 2024a. a, b, c, d
Mizrahi, L., Dallo, I., van der Elst, N. J., Christophersen, A., Spassiani, I., Werner, M., Iturrieta, P., Bayona, J. A., Iervolino, I., Schneider, M., Page, M. T., Zhuang, J., Herrmann, M., Michael, A. J., Falcone, G., Marzocchi, W., Rhoades, D. A., Gerstenberger, M., Gulia, L., Schorlemmer, D., Becker, J., Han, M., Kuralte, L. D., Marti, M., and Wiemer, S.: Developing, Testing, and Communicating Earthquake Forecasts: Current Practices and Future Directions, Rev. Geophys., 62, e2023RG000823, https://doi.org/10.1029/2023RG000823, 2024b. a, b, c, d
Nandan, S., Ouillon, G., Sornette, D., and Wiemer, S.: Forecasting the full distribution of earthquake numbers is fair, robust and better, arXiv [preprint], https://doi.org/10.48550/arXiv.1903.07079, 17 March 2019. a
Nandan, S., Kamer, Y., Ouillon, G., Hiemer, S., and Sornette, D.: Global models for short-term earthquake forecasting and predictive skill assessment, Eur. Phys. J.-Spec. Top., 230, 425–449, https://doi.org/10.1140/epjst/e2020-000259-3, 2021. a, b, c
Nandan, S., Ouillon, G., and Sornette, D.: Are Large Earthquakes Preferentially Triggered by Other Large Events?, J. Geophys. Res.-Sol. Ea., 127, e2022JB024380, https://doi.org/10.1029/2022JB024380, 2022. a
Ogata, Y.: Statistical Models for Earthquake Occurrences and Residual Analysis for Point Processes, J. Am. Stat. Assoc., 83, 9–27, https://doi.org/10.1080/01621459.1988.10478560, 1988. a
Ogata, Y.: Detection of precursory relative quiescence before great earthquakes through a statistical model, J. Geophys. Res.-Sol. Ea., 97, 19845–19871, https://doi.org/10.1029/92JB00708, 1992. a
Omi, T., Ogata, Y., Hirata, Y., and Aihara, K.: Estimating the ETAS model from an early aftershock sequence, Geophys. Res. Lett., 41, 850–857, https://doi.org/10.1002/2013GL058958, 2014. a
Omi, T., Ogata, Y., Hirata, Y., and Aihara, K.: Intermediate-term forecasting of aftershocks from an early aftershock sequence: Bayesian and ensemble forecasting approaches, J. Geophys. Res.-Sol. Ea., 120, 2561–2578, https://doi.org/10.1002/2014JB011456, 2015. a
Omi, T., Ogata, Y., Shiomi, K., Enescu, B., Sawazaki, K., and Aihara, K.: Implementation of a Real-Time System for Automatic Aftershock Forecasting in Japan, Seismol. Res. Lett., 90, 242–250, https://doi.org/10.1785/0220180213, 2018. a
Page, M. T., van der Elst, N., Hardebeck, J., Felzer, K., and Michael, A. J.: Three Ingredients for Improved Global Aftershock Forecasts: Tectonic Region, Time-Dependent Catalog Incompleteness, and Intersequence Variability, B. Seismol. Soc. Am., 106, 2290–2301, https://doi.org/10.1785/0120160073, 2016. a
Reverso, T., Steacy, S., and Marsan, D.: A Hybrid ETAS-Coulomb Approach to Forecast Spatiotemporal Aftershock Rates, J. Geophys. Res.-Sol. Ea., 123, 9750–9763, https://doi.org/10.1029/2017JB015108, 2018. a
Savadori, L., Ronzani, P., Sillari, G., Di Bucci, D., and Dolce, M.: Communicating Seismic Risk Information: The Effect of Risk Comparisons on Risk Perception Sensitivity, Frontiers in Communication, 7, 743172, https://doi.org/10.3389/fcomm.2022.743172, 2022. a
Savran, W., Bayona, J. A., Iturrieta, P., Asim, K., Bao, H., Bayliss, K., Herrmann, M., Schorlemmer, D., Maechling, P., and Werner, M.: pyCSEP: A Python Toolkit for Earthquake Forecast Developers, Seismol. Res. Lett., 93, 2858–2870, https://doi.org/10.1785/0220220033, 2022a. a, b
Savran, W. H., Werner, M. J., Marzocchi, W., Rhoades, D. A., Jackson, D. D., Milner, K., Field, E., and Michael, A.: Pseudoprospective Evaluation of UCERF3-ETAS Forecasts during the 2019 Ridgecrest Sequence, B. Seismol. Soc. Am., 110, 1799–1817, https://doi.org/10.1785/0120200026, 2020. a
Savran, W. H., Werner, M. J., Schorlemmer, D., and Maechling, P. J.: pyCSEP: A Python Toolkit For Earthquake Forecast Developers, Journal of Open Source Software, 7, 3658, https://doi.org/10.21105/joss.03658, 2022b. a, b
Schneider, M., Wein, A., Elst, N. v. d., McBride, S. K., Becker, J., Castro, R. R., Diaz, M., Gonzalez-Huizar, H., Hardebeck, J., Michael, A., Mixco, L., Page, M., and Palomo, J.: Visual Communication of Aftershock Forecasts Based on User Needs: A Case Study of the United States, Mexico and El Salvador, OSFPreprints [preprint], https://doi.org/10.31219/osf.io/5qam4, 2023. a
Schorlemmer, D., Gerstenberger, M. C., Wiemer, S., Jackson, D. D., and Rhoades, D. A.: Earthquake likelihood model testing, Seismol. Res. Lett., 78, 17–29, https://doi.org/10.1785/gssrl.78.1.17, 2007. a
Seif, S., Mignan, A., Zechar, J. D., Werner, M. J., and Wiemer, S.: Estimating ETAS: The effects of truncation, missing data, and model assumptions, J. Geophys. Res.-Sol. Ea., 122, 449–469, https://doi.org/10.1002/2016JB012809, 2017. a, b, c
Serafini, F., Naylor, M., Bayliss, K., Werner, M., Iturrieta, P., Bayona, J. A., Mizrahi, L., and Han, M.: Comparing consistency tests for magnitude distributions, in preparation, 2024. a
Shi, Y. and Bolt, B. A.: The standard error of the magnitude-frequency b value, B. Seismol. Soc. Am., 72, 1677–1687, https://doi.org/10.1785/BSSA0720051677, 1982. a
Sornette, D. and Werner, M. J.: Constraints on the size of the smallest triggering earthquake from the epidemic‐type aftershock sequence model, Båth's law, and observed aftershock sequences, J. Geophys. Res.-Sol. Ea., 110, 2004JB003535, https://doi.org/10.1029/2004JB003535, 2005. a
Tinti, S. and Mulargia, F.: Confidence intervals of b values for grouped magnitudes, B. Seismol. Soc. Am., 77, 2125–2134, https://doi.org/10.1785/BSSA0770062125, 1987. a, b
van der Elst, N. J., Hardebeck, J. L., Michael, A. J., McBride, S., and Vanacore, E.: Prospective and retrospective evaluation of the U.S. Geological Survey public aftershock forecast for the 2019–2021 Southwest Puerto Rico Earthquake and aftershocks, Seismol. Res. Lett., 93, 620–640, https://doi.org/10.1785/0220210222, 2022. a, b, c, d, e, f, g, h, i, j, k, l
Veen, A. and Schoenberg, F. P.: Estimation of Space-Time Branching Process Models in Seismology Using an EM-Type Algorithm, J. Am. Stat. Assoc., 103, 614–624, https://doi.org/10.1198/016214508000000148, 2008. a, b, c
Wiemer, S., Danciu, L., Edwards, B., Marti, M., Fäh, D., Hiemer, S., Wössner, J., Cauzzi, C., Kästli, P., and Kremer, K.: Seismic hazard model 2015 for Switzerland, Swiss Seismological Service (SED) at ETH Zurich, Zurich, 164 pp., https://doi.org/10.12686/a2, 2016. a
Zechar, J. D., Gerstenberger, M. C., and Rhoades, D. A.: Likelihood-Based Tests for Evaluating Space-Rate-Magnitude Earthquake Forecasts, B. Seismol. Soc. Am., 100, 1184–1195, https://doi.org/10.1785/0120090192, 2010. a
Zechar, J. D., Marzocchi, W., and Wiemer, S.: Operational earthquake forecasting in Europe: progress, despite challenges, B. Earthq. Eng., 14, 2459–2469, https://doi.org/10.1007/s10518-016-9930-7, 2016. a
Zhang, L., Werner, M. J., and Goda, K.: Variability of ETAS Parameters in Global Subduction Zones and Applications to Mainshock-Aftershock Hazard Assessment, B. Seismol. Soc. Am., 110, 191–212, https://doi.org/10.1785/0120190121, 2020. a
Short summary
Relying on recent accomplishments of collecting and harmonizing data by the 2020 European Seismic Hazard Model (ESHM20) and leveraging advancements in state-of-the-art earthquake forecasting methods, we develop a harmonized earthquake forecasting model for Europe. We propose several model variants and test them on training data for consistency and on a 7-year testing period against each other, as well as against both a time-independent benchmark and a global time-dependent benchmark.
Relying on recent accomplishments of collecting and harmonizing data by the 2020 European...
Special issue
Altmetrics
Final-revised paper
Preprint