Articles | Volume 24, issue 7
https://doi.org/10.5194/nhess-24-2285-2024
https://doi.org/10.5194/nhess-24-2285-2024
Research article
 | 
04 Jul 2024
Research article |  | 04 Jul 2024

Quantifying hazard resilience by modeling infrastructure recovery as a resource-constrained project scheduling problem

Taylor Glen Johnson, Jorge Leandro, and Divine Kwaku Ahadzie

Related subject area

Hydrological Hazards
Precursors and pathways: dynamically informed extreme event forecasting demonstrated on the historic Emilia-Romagna 2023 flood
Joshua Dorrington, Marta Wenta, Federico Grazzini, Linus Magnusson, Frederic Vitart, and Christian M. Grams
Nat. Hazards Earth Syst. Sci., 24, 2995–3012, https://doi.org/10.5194/nhess-24-2995-2024,https://doi.org/10.5194/nhess-24-2995-2024, 2024
Short summary
Demonstrating the use of UNSEEN climate data for hydrological applications: case studies for extreme floods and droughts in England
Alison L. Kay, Nick Dunstone, Gillian Kay, Victoria A. Bell, and Jamie Hannaford
Nat. Hazards Earth Syst. Sci., 24, 2953–2970, https://doi.org/10.5194/nhess-24-2953-2024,https://doi.org/10.5194/nhess-24-2953-2024, 2024
Short summary
Exploring the use of seasonal forecasts to adapt flood insurance premiums
Viet Dung Nguyen, Jeroen Aerts, Max Tesselaar, Wouter Botzen, Heidi Kreibich, Lorenzo Alfieri, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 24, 2923–2937, https://doi.org/10.5194/nhess-24-2923-2024,https://doi.org/10.5194/nhess-24-2923-2024, 2024
Short summary
Are 2D shallow-water solvers fast enough for early flood warning? A comparative assessment on the 2021 Ahr valley flood event
Shahin Khosh Bin Ghomash, Heiko Apel, and Daniel Caviedes-Voullième
Nat. Hazards Earth Syst. Sci., 24, 2857–2874, https://doi.org/10.5194/nhess-24-2857-2024,https://doi.org/10.5194/nhess-24-2857-2024, 2024
Short summary
Water depth estimate and flood extent enhancement for satellite-based inundation maps
Andrea Betterle and Peter Salamon
Nat. Hazards Earth Syst. Sci., 24, 2817–2836, https://doi.org/10.5194/nhess-24-2817-2024,https://doi.org/10.5194/nhess-24-2817-2024, 2024
Short summary

Cited articles

Ahadzie, D., Mensah, H., and Simpeh, E.: Impact of floods, recovery, and repairs of residential structures in Ghana: insights from homeowners, Geo J., 87, 3133–3148, https://doi.org/10.1007/s10708-021-10425-2, 2022. a
Amoako, C. and Boamah, E. F.: The three-dimensional causes of flooding in Accra, Ghana, Int. J. Urban Sustain. Dev., 7, 109–129, https://doi.org/10.1080/19463138.2014.984720, 2015. a
Bai, J.-W., Hueste, M. B. D., and Gardoni, P.: Probabilistic Assessment of Structural Damage due to Earthquakes for Buildings in Mid-America, J. Struct. Eng., 135, 1155–1163, https://doi.org/10.1061/(ASCE)0733-9445(2009)135:10(1155), 2009. a
Batjes, N. H.: A world dataset of derived soil properties by FAO-UNESCO soil unit for global modelling, Soil Use Manage., 13, 9–16, https://doi.org/10.1111/j.1475-2743.1997.tb00550.x, 1997. a
Burton, H., Kang, H., Miles, S., Nejat, A., and Yi, Z.: A framework and case study for integrating household decision-making into post-earthquake recovery models, Int. J. Disast. Risk Reduct., 37, 101167, https://doi.org/10.1016/j.ijdrr.2019.101167, 2019. a
Download
Short summary
Reliance on infrastructure creates vulnerabilities to disruptions caused by natural hazards. To assess the impacts of natural hazards on the performance of infrastructure, we present a framework for quantifying resilience and develop a model of recovery based upon an application of project scheduling under resource constraints. The resilience framework and recovery model were applied in a case study to assess the resilience of building infrastructure to flooding hazards in Accra, Ghana.
Altmetrics
Final-revised paper
Preprint