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Abstract. Reliance on infrastructure by individuals, busi-
nesses, and institutions creates additional vulnerabilities to
the disruptions posed by natural hazards. In order to assess
the impacts of natural hazards on the performance of infras-
tructure, a framework for quantifying resilience is presented.
This framework expands upon prior work in the literature to
improve the comparability of the resilience metric by propos-
ing a standardized assessment period. With recovery being a
central component of assessing resilience, especially in cases
of extreme hazards, we develop a recovery model based upon
an application of the resource-constrained project scheduling
problem (RCPSP). This recovery model offers the opportu-
nity to assess flood resilience across different events and also,
theoretically, between different study areas. The resilience
framework and recovery model have been applied in a case
study to assess the resilience of building infrastructure to
flooding hazards in Alajo, a neighborhood in Accra, Ghana.
For the three flood events investigated (5-, 50-, and 500-
year return periods) and the chosen standardized assessment
period (300 d), the “300 d resilience” successfully shows a
meaningful decreasing trend (0.94, 0.82, and 0.69) with in-
creasing hazard magnitude. This information is most valu-
able for identifying the vulnerabilities of building infrastruc-
ture, assessing the impacts resulting in reduced performance,
coordinating responses to flooding events, and preparing for
the subsequent recovery. This framework expands upon prior
work in the literature to improve the comparability of the re-
silience metric by proposing a standardized assessment pe-
riod, the “n-time resilience”.

1 Introduction

Since the adoption of the European Union Floods Direc-
tive (European Commission, 2007), risk-based hazard man-
agement has become the dominant strategy for reducing the
impacts of natural hazards throughout Europe and much of
the world. While this strategy has proven effective at re-
ducing the impacts, preventing the loss of life, and easing
the economic burden to communities and regions following
some hazard events, it generally employs a singular decision-
making variable: costs resulting from damage (Merz et al.,
2010; Disse et al., 2020). On its own, damage reduction cap-
tures only a single dimension of the impact from natural haz-
ards. Therefore, the management strategies developed from
a risk-based approach are similarly limited.

In recent literature, the potential for a more evolved strat-
egy has emerged, referred to as resilience management. This
management strategy not only considers the costs associated
with direct damage but also considers the performance of the
infrastructure system over time, including through both the
event and recovery phases of the hazard management cycle
(Chen and Leandro, 2019; Leandro et al., 2020). Rather than
singularly seeking to reduce the damage caused by natural
hazards, resilience management is focused on the ability to
resist, recover, and adapt to the hazard. Inbuilt in this strat-
egy is an emphasis on maintaining a high performance of the
infrastructure vital to everyday life. This paradigm shift rep-
resents the evolution of management strategies from viewing
hazards as foes which must be defeated to viewing them as
opportunities to adapt to. While this strategy shows promise
for improving upon the present management methods, it cur-
rently lacks clarity in its definition and implementation, lead-
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ing to diverging themes in the literature. This work there-
fore lays out a framework for implementing resilience to sup-
port hazard management by demonstrating a robust method
to model recovery based on an application of the resource-
constrained project scheduling problem (RCPSP).

1.1 Defining hazard resilience

Before resilience can be effectively quantified, it must first
be well defined. Conceptualizations of resilience as they re-
late to hazard management can be categorized into three pri-
mary groups of increasingly complex interpretations of sys-
tem dynamics (Disse et al., 2020): engineering resilience,
ecological resilience, and social–ecological or evolutionary
resilience.

Engineering resilience is a relatively simplified conceptu-
alization which is derived from engineered systems rather
than natural systems. According to this definition, the system
experiences some reduction in functionality due to the hazard
while at the same time resisting its effects. The system then
begins to recover once the hazard subsides, returning some
period of time later to its original level of functionality. This
definition assumes that the system exists in a stationary ideal
state prior to the hazard event and always seeks to return to
this same ideal state after the hazard subsides (Disse et al.,
2020; Liao, 2012; Rodina, 2019).

The conceptualization of ecological resilience is relatively
more complex than that of engineering resilience. While this
definition is similar to that of engineering resilience in some
regards, the primary difference is that the initial and final
states of the system are not considered ideal. Rather, the sys-
tem has the ability to change state by finding a new equi-
librium or “new normal” following the hazard event through
adaptation (Disse et al., 2020; Liao, 2012; Rodina, 2019).

A third conceptualization of resilience is the most com-
plex interpretation of the three. Social–ecological resilience
(or evolutionary resilience) considers the composition of a
system to be more dynamic than the previous definitions al-
low. In this interpretation, the system has no equilibrium state
but is rather in a perpetual state of change and adaptation,
becoming more or less resilient as it reacts to hazards (Disse
et al., 2020; Davoudi, 2012).

It can be tempting to conclude that because social–
ecological resilience considers the most complex interpreta-
tion of system resilience, it must be the most appropriate def-
inition for hazard management. Indeed, numerous articles in
the literature support this interpretation (Liao, 2012; Rodina,
2019). However, the selection of a definition should reflect
the targeted complexity of and consequently be reflected in
the uncertainty associated with the results of assessment. For
example, in cases where data scarcity exists, it can be unre-
alistic to apply a highly complex model with the assumption
of higher accuracy. Rather, a simplified model of system in-
teractions and individual decisions is perhaps a more appro-
priate model in this case with a proportionately large uncer-

tainty included to reflect the potential inaccuracies associated
with the aforementioned simplifications.

To this end, resilience is defined in this framework as the
ability of a system to maintain functionality while absorbing
the effects of a hazard and recovering to a state of equilib-
rium in a timely manner through restoration of its critical
infrastructure. This interpretation is based largely upon the
definition proposed by Field et al. (2012) and corresponds to
an ecological conceptualization.

1.2 Assessing hazard resilience

Numerous frameworks for assessing and quantifying re-
silience have been presented in the literature. Distinctions
can be made, however, by narrowing the scope to the re-
silience of the urban environment to natural hazards. In this
branch of the literature, some common themes have emerged.
One major commonality among the frameworks focused on
the urban environment is the idea of persistent change. The
panarchy model of adaptive cycle is one such illustration of
the dynamics of urban resilience (Holling, 2001; Davoudi,
2012). This temporal attribute of urban systems demonstrates
the necessity of assessing resilience as a time series (Chen
and Leandro, 2019; Leandro et al., 2020).

It is generally accepted that resilience, being an abstract
concept, cannot be directly measured but rather must be esti-
mated using indirect measurements via indicators of system
performance (Hinkel, 2011; Schipper and Langston, 2015).
A composite index of normalized indicators is generally
the most commonly utilized method for achieving this goal.
Through careful selection and weighting of the indicators,
a proxy metric of system performance can be developed,
by which an assessment of resilience can be derived (Cutter
et al., 2010, 2014).

In the context of infrastructure resilience, the value of per-
formance is assessed over some reference period, generally a
period of time encompassing the effects of a disrupting event.
Cimellaro et al. (2010) quantify the resilience of infrastruc-
ture as the normalized integral of the performance function
over the reference period (Cimellaro et al., 2016). Due to
its communicable nature and unambiguous calculation, this
method for quantifying resilience provides a clear metric for
assessing the benefits associated with various interventions
or mitigation strategies (Cimellaro et al., 2011, 2015), a nec-
essary attribute for operationalizing resilience in hazard man-
agement.

1.3 Modeling disaster recovery

The work by Kates and Pijawka (1977) is one of the earli-
est attempts to understand the post-disaster recovery process
and to create a conceptual model (Miles and Chang, 2003;
Miles et al., 2019). In their research, a four-stage model was
presented, composed of sequential but partially overlapping
stages. According to the model, disaster recovery begins with
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an emergency period, which is followed by a restoration pe-
riod and a replacement reconstruction period, and ends with
a reconstruction period of commemoration, betterment, and
development. However, this conceptualization of recovery as
an orderly progression of distinct periods has been criticized,
with most arguing that recovery is instead highly uncertain
due to the influences of decision-making and social attributes
(Chang, 2010; Nejat and Damnjanovic, 2012b; Miles et al.,
2019).

Since this early work, many attempts have been made to
better replicate the complex interactions involved in disas-
ter recovery through various modeling techniques. Cimel-
laro (2016) categorizes disaster recovery models into two
broad groups: analytical and empirical. In this context, em-
pirical recovery models are those derived from observed data
or based on expert input. According to Miles et al. (2019),
machine learning has recently been utilized in the develop-
ment of empirical models of housing recovery (Zhang and
Peacock, 2009; Nejat and Ghosh, 2016). This approach re-
quires sufficient empirical data for training or development,
which may not be available in all cases. Analytical recov-
ery models, on the other hand, are defined as those which
have been derived from numerical simulations of system re-
sponses (Cimellaro, 2016). Agent-based models have been
utilized as analytical models of housing recovery (Nejat and
Damnjanovic, 2012a; Eid and El-adaway, 2017). However,
agent-based models are criticized by some for having a lack
of transparency; being difficult to evaluate or assess; and
needing to strike a balance between being overly simple or
overly complicated, for which there is little consensus (Sun
et al., 2016; Chen, 2012). Extensive work has been conducted
in the way of developing discrete-event and stochastic sim-
ulation models of recovery (Miles and Chang, 2006, 2011;
Burton et al., 2018; Miles, 2018; Burton et al., 2019; Long-
man and Miles, 2019). The development of these models re-
quires a thorough understanding of the specific processes di-
recting the system responses. As a potential alternative to
the current approaches, we propose modeling building in-
frastructure recovery as an application of the RCPSP due
to its physically based parameters (like availability of re-
quired resources and time needed for completing tasks) and
the straightforward nature of its implementation.

The only known mention in the literature of applying the
RCPSP to modeling disaster recovery is in the work by Miles
et al. (2019). However, only the potential for applying the
method for modeling lifeline infrastructure recovery is pre-
sented, for which an example from Isumi et al. (1985) is pro-
vided. To the best of our knowledge, applying the RCPSP to
modeling infrastructure recovery in general, in particular for
modeling the recovery of building infrastructure, is a com-
pletely novel approach.

2 Methods

The following methods are divided into two distinct parts.
The first part, Sect. 2, provides a generalized description of
the methods for setting up the model to simulate the recovery
of infrastructure from a natural hazard. This is intended to
demonstrate the broad applicability of the model to a wider
context than any singular case study would otherwise allow.
The second part, Sect. 3, demonstrates the specific methods
used to develop a model for a case study of the recovery of
buildings following flooding in Accra, Ghana.

2.1 Quantifying hazard resilience

The quantification of infrastructural resilience requires a
means for assessing the performance of the system on
a component-level basis. These component-level measure-
ments serve as proxy indicators for the overall system func-
tion. IndicatorsX are normalized according to Eq. (1), where
x(t) is a measurement indicating the performance of a par-
ticular component of infrastructure at time t . The values xmin
and xmax correspond to the minimum and maximum values
of the measured variable, respectively. The minimum and
maximum values can refer to either the range which is pos-
sible for the value or the range which is considered accept-
able. Additionally, indicators which increase with improved
system performance (positively correlated) are deemed posi-
tive indicators, and indicators which decrease with improved
system performance (negatively correlated) are deemed neg-
ative indicators. The two types of indicators are normalized
differently so as to produce a positive correlation with sys-
tem performance (Cutter et al., 2010, 2014; Scherzer et al.,
2019).

X(t)=


x(t)−xmin
xmax−xmin

, positive;

xmax− x(t)

xmax− xmin
, negative

X ∈ [0,1] (1)

In order to assess the system performance as a whole, the
individual indicators are combined using a composite index,
as in Eq. (2), where wi is a weighting factor applied to indi-
cator Xi . The magnitude of the weighting factor reflects the
relative importance of the indicator (Cutter et al., 2010, 2014;
Scherzer et al., 2019).

P(t)=

n∑
i=1
Xi(t) ·wi

n∑
i=1
wi

(2)

Hazard models are used to simulate the impacts to infras-
tructure for a particular scenario or event e. The perfor-
mance P(t) is assessed over a period of time encompassing
the influences of the hazard on the system. This time interval
is referred to as the assessment period 1ta and begins at the
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onset of the hazard event tei . The resilience Re of the infras-
tructure to hazard event e is then quantified as the normal-
ized integral of the performance over the assessment period
(Cimellaro et al., 2010, 2016). Equation (3) presents a math-
ematical formulation of the described framework.

Re=
1
1ta
·

tei+1ta∫
tei

P(t) · dt (3)

While constructing a thorough measure of P(t) through care-
ful selection of indicators and their respective weights is im-
portant for accurately describing the performance of the in-
frastructure system (Cutter et al., 2010, 2014), systematic
selection of the assessment period 1ta is just as important.
Inspection of Eq. (3) demonstrates that the resulting value
of Re is strongly dependent on this parameter. The following
sections present a framework for determining 1ta.

2.1.1 Assessment period

The timeline of the direct influences of the hazard event on
the infrastructure system can be conceptually broken into two
periods: an event phase and a recovery phase (Chen and Le-
andro, 2019; Leandro et al., 2020). The event phase is char-
acterized by the physical impacts of the hazard. This phase
is enveloped by the time at which the event begins tei until
the direct effects of the hazard have subsided tef . The event
phase interval 1te is therefore formalized by Eq. (4).

1te =
[
tei , tef

]
(4)

Immediately following the event phase, recovery in various
capacities can begin. The recovery phase encompasses the
period from subsidence of the hazard tef until a steady state
is achieved ts, provided that the dynamics of the system are
conceptualized using either an engineering or an ecological
definition of resilience. Activities supporting a return to a
high quality of performance and all potential adaptations to
the system are contained in this phase. When assessing the
resilience of the system to multiple hazards, the equilibrium
time is taken as the maximum of the recovery times tsmax ,
which generally corresponds to the scenario with the largest-
magnitude hazard. The recovery phase interval 1tr is there-
fore formalized by Eq. (5).

1tr =
(
tef , tsmax

]
(5)

According to the definitions presented, the assessment pe-
riod 1ta encompasses both the event and recovery phases.
Therefore, the interval can be formalized by Eq. (6).

1ta =1te+1tr =
[
tei , tsmax

]
(6)

While these definitions of the time parameters are accepted
in the literature, the specifics of this approach present an is-
sue for comparability. Consider that as the recovery time is

reduced, the assessment interval is likewise reduced by an
equal amount of time. Reduction in recovery time is, by def-
inition, indicative of an increase in system resilience. How-
ever, the resulting value of resilience according to these equa-
tions does not react proportionally.

Consider also that two different systems might recover at
dramatically different rates from the same hazard scenario.
According to the current convention, it is possible that both
systems are evaluated as being equally resilient. As achiev-
ing a timely recovery is likewise indicative of higher system
resilience, the metric should rather produce different results
for these two systems. Therefore, an alternative approach for
selection of the time parameters is proposed.

2.1.2 Standardized assessment period

Rather than utilizing the maximum recovery time tsmax , which
is specific to each system and dependent on the set of haz-
ard scenarios applied in the investigation, we propose stan-
dardizing the assessment interval. In practice, this alternative
method requires selection of an appropriate constant inter-
val which envelopes the target responses of the system. The
updated assessment period is given by Eq. (7).

1ta = const (7)

This alternative approach allows for direct quantitative com-
parison of the resilience across systems and hazards, for as-
sessments utilizing the same 1ta. The interval applied in the
investigation is to be communicated alongside the value of
resilience for clarity. This framework expands upon prior
work in the literature to improve the comparability of the re-
silience metric by proposing a standardized assessment pe-
riod, the “n-time resilience”. For example, the system re-
silience quantified using an assessment period of 100 d is re-
ported as “100 d resilience” or Re100 d.

It can be deduced that an assessment utilizing a reference
period significantly larger than the recovery time has the ef-
fect of increasing the magnitude of the calculated value and
reducing the sensitivity of the resilience metric. Therefore,
it can be necessary to apply different assessment periods be-
tween studies, depending on the sensitivity required. How-
ever, it remains necessary to use the same assessment period
for two studies in order to compare them. It is for this reason
that we propose reporting the assessment period alongside
the metric for clarity.

2.1.3 Assessment period for extreme events

Extensive impacts to infrastructure can occur either during
extreme events or even during moderate events if the system
is highly vulnerable. Longer recovery times are generally ex-
pected in cases with extensive impacts. In the case that the
recovery phase is much longer than the event phase, measure-
ment of the reduction in performance over the event phase is
largely insignificant and therefore unnecessary if the quan-
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tification of resilience is the primary objective of the investi-
gation. Thereby, it is hypothesized that resilience to extreme
hazards can be estimated with a similar accuracy by assess-
ing system performance over the recovery phase only. There-
fore, Eq. (3) can be modified to reflect this change, resulting
in Eq. (8).

Re≈
1
1ta
·

tef+1ta∫
tef

P(t) · dt if 1te�1tr (8)

2.2 Infrastructure recovery model

Following the proposal of an assessment period for extreme
events in which it is hypothesized that the event phase is
largely insignificant for the quantification of resilience, the
emphasis is rather placed on the recovery phase. Therefore,
it is necessary to develop a model of infrastructure recovery
which can be used to measure the performance of the system
over the assessment period. The following section outlines
the general case of the model.

2.2.1 Infrastructure recovery concept and assumptions

In the framework of this model, infrastructure recovery is
conceptualized as a project having a beginning and an end,
which is composed of a collection of smaller tasks. Provided
that the damage to the infrastructure resulting from a hazard
is either known or well estimated, the individual tasks of the
larger project can be inferred.

The individual components of an infrastructure system can
be categorized into structural classes according to a predeter-
mined criteria so as to capture the range of required recovery
pathways. Applying prior knowledge of the susceptibility of
the various infrastructure components, the potential damage
states due to a hazard acting on each component can be cat-
egorized or discretized. These damage classes can then be
used to determine which actions or tasks must be carried
out in order to recover the component, as well as how the
tasks relate to one another. We will refer to the collection
of tasks corresponding to a single component and a single
damage class as a recovery scenario. Upon thorough inves-
tigation of the components, the produced recovery scenarios
are collected and stored into a database. An example of this
database is shown in Table 1.

When the system is subjected to a hazard, a damage as-
sessment is carried out on a component-level basis. Two im-
portant pieces of information about each component can then
be identified: the structural class to which the component be-
longs and the damage class which has resulted from the ef-
fects of the hazard. Using these two classifications, we can
then collect the corresponding recovery scenario from the
database. After all components have been assessed in this
way, the collected recovery scenarios are grouped together
according to the precedence relationships between tasks to

Table 1. Database of recovery scenarios R resulting from the dis-
cretization of damage Di and the classification of structures Si .

Si Si+1 · · · Sn

Di R(Si ,Di) R(Si+1,Di) · · · R(Sn,Di)

Di+1 R(Si ,Di+1) R(Si+1,Di+1) · · · R(Sn,Di+1)

...
...

...
. . .

...

Dn R(Si ,Dn) R(Si+1,Dn) · · · R(Sn,Dn)

form the larger project, referred to as a recovery plan. At this
point, all tasks which must be completed in order to recover
the infrastructure system are known. The processing time of
each task must then be determined by the recovery model.
This model is primarily based upon the following four as-
sumptions regarding the recovery process.

Assumption 1. It is assumed that recovery is prolonged
by the time required to complete each individual task of the
overall process. In this context, tasks are defined as the spe-
cific, smaller actions undertaken by the responsible persons
or authorities, in progression toward returning the infrastruc-
ture to a functional state. For example, for a given structure,
there are many tasks which must be completed in order to
recover the structure to its pre-hazard condition. Each of the
tasks will require some finite amount of time to complete.
While it may be possible that the duration is either longer
or shorter due to a variety of factors, the duration of each
individual task remains an important factor in the overall ex-
pedience of recovery.

Assumption 2. Just as the duration of each task affects the
rate of recovery, so too is the effect compounded when con-
sidering the possibility that one or more tasks may not be-
gin until one or more preceding tasks have ended. Although
some tasks can be conducted in parallel with other tasks, it
is also possible that one or more tasks must first be com-
pleted in order to begin the next step in the recovery process.
Therefore the precedence relationships between tasks affect
the expedience of recovery.

Assumption 3. Critical resources can be defined as the
items or services required to carry out the tasks of the recov-
ery. It can be assumed that there exists only a finite amount
of each critical resource which is available to the tasks at any
given time. This limited quantity is the resource’s capacity.
If there is not enough of a resource or if the resource capac-
ity is less than the demand, then tasks must be delayed until
the necessary resources become available. Therefore, each
resource capacity is also a potential limiting factor for recov-
ery.

Assumption 4. The final assumption is that recovery is, to
some degree, naturally optimized. This optimization is due to
the cumulative result of each affected entity seeking a speedy
recovery for itself. For example, if a component of infrastruc-
ture is damaged by a hazard and the repairs are considered
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feasible, then there will be a desire for the recovery of the
component to be carried out in a timely manner.

2.2.2 Resource-constrained project scheduling problem

The four model assumptions simplify the problem of in-
frastructural recovery, creating the opportunity to formu-
late the problem as an application of the RCPSP. The base
case of the RCPSP consists of tasks (the individual, discrete
components of a larger project) which should be optimally
scheduled according to the objective of makespan minimiza-
tion. This problem is generally illustrated using activity-on-
node (AON) directed graphs, where each node represents a
task and each arc represents a precedence relationship be-
tween two tasks. Two additional nodes having no duration
are appended to the start and end to demarcate the begin-
ning and completion of a project. Resources are treated as
renewable in the base case. That is, each resource has a fixed
capacity which is renewed at each time interval. Unused re-
sources from a previous time interval do not carry over to the
next. An example of a simple RCPSP is shown in Fig. 1.

This base case of the RCPSP is of the NP-hard (nonde-
terministic polynomial time) variety (Kolisch and Hartmann,
1999). Therefore, an optimal solution can generally be found
in a reasonable time period when the search space is lim-
ited to relatively few tasks and constraining resources. How-
ever, when scheduling many tasks or including many re-
source constraints, the problem grows larger and requires
much more computational time to solve. In this case, find-
ing an optimal solution can become infeasible within a rea-
sonable solve time and a heuristic algorithm must be imple-
mented to approximate the solution.

3 Case study: recovery of buildings from flooding in
Accra, Ghana

In order to demonstrate an application of the described
framework, the recovery model was tested in the case study
of Alajo, a district within the greater Accra metropolitan
area, Ghana (Fig. 2). Alajo is of particular interest because it
is composed of a dense mix of building types and is situated
at the confluence of two major storm-water drainage canals.
This district is thereby prone to flooding hazards. Further
compounding the issue of flooding, much of the floodplain
is occupied by informal residential development, making the
consequences of flooding particularly severe.

3.1 Quantifying flood resilience of building
infrastructure

This case study is focused solely on the recovery of buildings
following flooding events. Therefore, only an indicator of the
state of buildings is necessary for quantifying resilience in
this scope. The state of each building b is considered from
the point of view of the occupant of the building. Thereby,

a building is considered to exist in a binomial state at any
time t : either occupied (1) or unoccupied (0). In the occu-
pied state, the building can currently be used by its occupant
for its intended purpose, whether for shelter in a residential
building or for economic activity in a commercial building.
In the unoccupied state, a building is damaged to the extent
that it cannot be used for its intended function and must be
repaired before a return to occupancy is possible. The indi-
cator is provided in Eq. (9).

Xb(t)=

{
0, if b is unoccupied at t;
1, if b is occupied at t (9)

The relative importance of each building b is determined by
its footprint area Ab. It is assumed that recovering a build-
ing with a larger footprint area indicates a greater increase in
performance than recovering a building with a smaller area.
The final performance metric is then calculated as the total
area of buildings which are occupied at time t versus the total
area of all buildings in set B. Equation (2) therefore becomes
Eq. (10).

P(t)=

∑
b∈B

Xb(t) ·Ab∑
b∈B

Ab
(10)

The event phase for the flooding hazard is conceptualized as
the onset of inundation at tei until the flood waters recede and
inundation ends at tef . Due to the severity of prior flood dam-
age in Alajo, the extreme event assessment period is applied
for quantifying resilience in this case study. Therefore, the
event phase is neglected. We will also utilize a relatively large
assessment period of 300 d by setting1ta to 300 in Eq. (8) to
capture the lengthy duration of the recovery.

3.2 Building infrastructure recovery model

In the recovery model, recovery plans take the place of
projects in the RCPSP. A recovery plan includes all of the
tasks which must be completed by individuals in order to
bring their building to a safe and functional state following
damage from a flood.

First we assess each building to determine into which
structural classification and which damage class it falls. The
set of tasks corresponding to a single structural class and
damage class is a recovery scenario, an example of which
is provided in Table 7. The set of tasks corresponding to a
single structural class and damage class is a recovery sce-
nario. We collect all of the identified recovery scenarios in a
database, provided in Table 2.

Upon assessment of the structural type and damage state of
all buildings following a hazard event, the corresponding re-
covery scenarios are collected and grouped together to form
the recovery plan. In the case of the buildings in Alajo, it
is assumed that there is no precedence relationship between
buildings. That is, the processing of any task is not directly
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Figure 1. (a) A basic example of an RCPSP represented by an AON directed graph and having only a single constraining resource r .
Each node of the graph is a task or job j with a corresponding duration dj and resource requirement ur,j . Arcs represent the precedence
relationship between jobs. (b) A solution to the presented problem when the capacity of resource r is 4 and makespan minimization is the
objective. Adapted from Kolisch and Hartmann (1999).

Figure 2. The left panel is a map showing the location of the neighborhood of Alajo within the greater Accra metropolitan area (Engstrom
et al., 2013). The right panel is an enlarged map of the study area including the buildings considered in the model. Adapted from Open-
StreetMap data acquired from Geofabrik GmbH, © OpenStreetMap contributors 2020. Distributed under the Open Data Commons Open
Database License (ODbL) v1.0.

Table 2. Recovery scenarios resulting from the discretization of
damage and the categorization of buildings.

IR: informal FR: formal CI: commercial
residential residential and industrial

D0: insignificant IR-D0 FR-D0 CI-D0
D1: moderate IR-D1 FR-D1 CI-D1
D2: heavy IR-D2 FR-D2 CI-D2
D3: complete IR-D3 FR-D3 CI-D3

dependent on the processing status of the tasks of other build-
ings but is rather dependent only on the precedence relation-
ships between other tasks of the same recovery scenario and
the availability of critical resources. Therefore, all recovery
scenarios are placed in parallel with one another in the re-
covery plan, as shown in Fig. 3. The resulting recovery plan
is then solved using optimization.

While many algorithms already exist which provide an ex-
act solution to the mathematical formulation of the RCPSP
at a small scale, expanding the search space makes finding
an exact solution potentially infeasible (Kolisch and Hart-
mann, 1999). Therefore, approximating this problem on a
larger scale required an alternative optimization method. A
review of the literature pointed to a few capable heuristic
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Figure 3. On the left is an example of a single recovery scenario R corresponding to structure class S and damage state D. On the right is a
recovery plan for a single hazard event with all buildings in parallel.

strategies. Among the best performers are simulated anneal-
ing, tabu searches, and genetic algorithms (Kolisch and Hart-
mann, 1999). Ultimately, the genetic algorithm described by
Hartmann (2002) was chosen due to its benchmark perfor-
mance compared with other heuristics, in terms of its ability
to find optimal or the best known solutions and the associated
computation times when solving standard test sets.

3.3 Building classes

Three classes of buildings were established in order to cap-
ture both the vulnerability of the structure itself and the likely
economic capability of the building’s occupants. These are
informal residential, formal residential, and commercial and
industrial. Each of the building types were classified accord-
ing to four indicators, adapted from the methods used by the
World Bank (2017) to classify buildings in Accra. The first
indicator is a quantitative assessment of the footprint area of
each building. The next indicator is the quantitative measure-
ment of the density of neighboring buildings. Both of these
quantitative measurements were calculated using a shapefile
of the building footprints adapted from OpenStreetMap data
acquired from Geofabrik GmbH. The third and fourth indi-
cators are the apparent quality of the roofing material and
the apparent use of the surrounding property near each build-
ing. These qualitative indicators were assessed using visual
inspection of Google Earth imagery, an example of which is
provided in Fig. 5.

Informal residential buildings are likely built without the
approval of the responsible authorities. Therefore they may
not follow established construction practices and are gen-
erally constructed of low-quality materials. These buildings
are also likely to be located in areas where official approval
would not normally be granted (flood plains, for example).
It is assumed that residents of these buildings have limited
financial means to secure quality building materials when re-
pairing damage from a flood. They are also less able to af-
ford the costs of skilled workers to aid in the repairs, instead
relying on either unskilled workers or their own abilities. In-
formal residential buildings are generally among the small-

est and most dense of the three building types considered in
this study. Footprint areas of less than 100 m2 and building
densities of greater than 20 buildings in a 50 m radius were
considered indicative of this class. Viewed from satellite im-
agery, these buildings have characteristic patchwork roofs
composed of heterogeneous, low-quality materials with little
or no green space in the immediate vicinity. While a foot-
print area of 100 m2 might be considered by some readers as
a high threshold for informal buildings, we did not seek to
adjust the thresholds utilized by the World Bank (2017) in
the scope of this work.

Formal residential buildings are considered more likely
to be built with government approval following established
construction methods and composed of high-quality build-
ing materials. Because there are higher costs associated with
the approval and construction of formal residential buildings,
it is assumed that residents of these buildings likewise have
greater financial means available for repairs or reconstruc-
tion following flood damage, lending to a relatively expedi-
ent recovery. Formal residential buildings fall into a middle
range of footprint areas (100 to 300 m2) and building den-
sities (10 to 20 buildings in a 50 m radius). Quality homo-
geneous roofing materials, driveways, and green yards sur-
rounded by walls or fences are typically visible in satellite
images of these buildings.

Commercial and industrial buildings serve the purpose of
providing space for economic activity. Such buildings are
typically built of robust construction and high-quality ma-
terials. Because of the economic nature of these buildings, it
is generally assumed that owners of commercial and indus-
trial buildings have greater financial means for buying mate-
rials and hiring skilled labors to repair damage due to floods.
These buildings are generally larger in size than the other two
building types and utilize large spaces for business activities.
A footprint area or greater than 300 m2 and a building den-
sity of less than 10 buildings in a 50 m radius are indicative of
commercial and industrial buildings. Satellite imagery often
reveals machinery and material storage in the area surround-
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ing the building. The indicators and a description of their nu-
merical value for each building class are outlined in Table 3.

3.4 Damage classes

Damage to the buildings was determined using a simple cor-
relation between the inundation water depth hw and a vulner-
ability function specific to the building class. The generalized
version of the vulnerability function is given by Eq. (11).

d (hw)=−c · exp
[
−k ·

hw

hb

]
+ c d ∈ [0,dmax] (11)

The height of the flood water above the base of the build-
ing hw is determined by taking the mean water depth within
the area of the building’s footprint. The height of the build-
ing hb is assumed to be 2.5 m for all buildings simply due
to insufficient data indicating otherwise. Each building is as-
sumed to have a maximum possible damage dmax based on
the potential to reuse aspects of the structure even after com-
plete inundation. Finally, c and k are constants relating the
materials used to construct each building with vulnerabil-
ity to flood damage. The constants corresponding to each
building class were derived from a regression of the work
presented and an analysis of materials-based vulnerability to
flooding for buildings in Ethiopia in Englhardt et al. (2019)
and are presented in Table 4.

The damage function was then discretized into four finite
categories based generally on the tasks which are required
to recover the building at each level of damage. The dam-
age classes are summarized in Table 5. Insignificant damage
corresponds to the very lowest damage level. At this damage
level, it is assumed that either nothing needs to be done to re-
pair the building or the damage is only cosmetic. Therefore,
any cosmetic repairs are neglected from the recovery plan
and the building remains occupied from the start of the recov-
ery. The damage factor associated with insignificant damage
is in the range of 0.00 to less than 0.01.

The next damage level is moderate damage. Buildings ex-
periencing moderate damage require structural repairs. How-
ever, the repairs are simple enough that they can be carried
out in a relatively short time and without a significant amount
of human and material resources. The range of damage fac-
tors categorized as moderate is from 0.01 to less than 0.30.

Heavy damage is characterized by major structural dam-
age. Repairs in this category require extensive work, some of
which requires skilled labor. There is a greater requirement
for critical human and material resources in order to bring
buildings with heavy damage back to a state of occupancy.
The damage factor range for this category is from 0.30 to
less than 0.80.

The final damage level is complete damage. In this class,
buildings will have experienced extensive damage to the
point that repair of most of the building elements is no longer
feasible. Therefore, the building must be demolished and a
new structure must be built in its place. Because of the heavy

financial burden and the long delay associated with recon-
struction, repair of these buildings is considered less likely
to be attempted than the other classes. The damage factor
range for this category is from 0.80 to 1.00.

3.5 Parameter uncertainty

A beta-PERT (program evaluation and review technique) dis-
tribution was utilized to model the uncertainty associated
with the model parameters. This distribution was chosen for
this purpose because it offers a method for translating expert
input into a probability density function based on three pa-
rameters: a minimum possible value α, a maximum possible
value β, and a most-likely value m. The beta-PERT distri-
bution was applied to the capacities of each of the resources
and to the duration of each of the tasks.

3.6 Task durations and resource requirements

The resources deemed critical to recovery in Alajo (Table 6)
can be broken into two general categories: basic materials
and human capital. Among the basic materials are cement,
waterproof cement, sandcrete blocks, steel reinforcement
bars, lumber, bitumen, and epoxy paint. The human capital
critical to recovery includes common or unskilled workers,
construction workers, and utility workers. All resources are
treated as renewable resources in the model. Therefore, there
is a renewed daily capacity for each.

Durations of tasks were estimated in units of “time per
area” to represent the increase in duration with increasing
building size. This time scaling was assumed to be linear. Be-
cause a large portion of the buildings falls under the 100 m2

size, this was chosen to be the reference value by which es-
timates would be made. As duration changes, the amount of
resources required during each day of the task remains the
same. Therefore, as the building size increases, the duration
increases and so does the resource requirement. This is the
desired effect because the assumption is that a larger build-
ing will require more time and resources to be repaired.

3.7 Building abandonment

In order to incorporate individual decision analysis into the
proposed recovery model, an additional parameter termed the
probability of building abandonment was included, allowing
for each of the building owners to decide not to seek to re-
cover the structure. A probability was assigned to each of the
nine recovery scenarios. Generally, the probability of build-
ing abandonment was assumed to increase with higher dam-
age extents. Alternatively, the probability was assumed to de-
crease along with the assumption of available monetary re-
sources. For example, owners of formal residential buildings
are assumed to have greater financial capacity than those of
informal residential buildings. Therefore, the probability of
abandonment is lower for formal residential buildings than
informal residential buildings for the same damage level. Ta-
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Table 3. Description of indicators used for classifying buildings. Adapted from the World Bank (2017).

Indicator Building class

IR: informal residential FR: formal residential CI: commercial and industrial

Building size < 100 m2 100–300 m2 > 300 m2

Building density > 20 buildings in 50 m radius 10–20 buildings in 50 m radius < 10 buildings in 50 m radius

Roof material Heterogeneous, low quality Homogeneous, high quality Homogeneous, high quality

Property use Typically very little surrounding Open yards and driveways, Vast open space, often used for
property, little to no green often surrounded by walls or storage of commercial goods,
space fences can be paved for driving and

parking vehicles or machinery

Table 4. Damage curve parameters corresponding to each building
class. Derived from regression of the work presented in Englhardt
et al. (2019).

Building class c k dmax

IR: informal residential 1.074 2.516 1.00
FR: formal residential 0.856 2.918 0.81
CI: commercial and industrial 0.694 2.793 0.65

ble 8 provides the probability of abandonment for each of the
recovery scenarios.

3.8 Stratified random sampling and Monte Carlo
simulation

If each of the recovery scenarios were to involve 5 to
10 individual tasks, as the initial investigation suggested,
then recovery plans would be made up of approximately
50 000–100 000 tasks given that there are approximately
10 000 buildings in Alajo. Such a large sample space would
not be feasible for the optimization algorithm to approximate
in a reasonable amount of computational time. Therefore, it
was necessary to take smaller, random samples of buildings
and apply these to the model. To this end, a stratified random
sampling scheme was devised. For each flooding event as-
sessed, buildings were divided into groups according to their
classification into the nine recovery scenarios. A target sam-
ple size was randomly selected from among the groups ac-
cording to the relative size of each group to the whole pop-
ulation of buildings. A Monte Carlo simulation (MCS) was
then conducted with a new stratified random sample drawn
at each iteration and replacement of drawn samples back to
the population.

3.9 Flood inundation

The parallel diffusive wave model (P-DWave) was applied
to model flood inundation (Leandro et al., 2014). This
model applies a first-order finite-volume explicit discretiza-

tion scheme on a regular grid to solve the diffusive form of
the 2-D shallow water equations, as shown in Eq. (12), where
g is the acceleration due to gravity, h is the water depth, z is
the bed elevation, u is the depth-averaged flow velocity vec-
tor, vt is the turbulent eddy viscosity, R is the source–sink
term relating to rainfall or inflow, and Sf is the bed friction
factor. This is accomplished by neglecting all forces in the
momentum equations except the gravity term and bed fric-
tion, resulting in the simplified momentum equation given
by Eq. (13).

dh
dt
+∇(uh)= R, (12)

g∇(h+ z)= gSf (13)

The water-level surface gradient vector term is given by
Eq. (14), where Swx and Swy are the water-level surface com-
ponents in the x and y directions, respectively.

∇(h+ z)=

[
Swx
Swy

]
=

[
d(h+z)

dx
d(h+z)

dy

]
(14)

Manning’s formula, shown in Eq. (15), is used to approxi-
mate the bed friction Sf, where n is the Manning’s rough-
ness coefficient; ux and uy are the velocity components in
the x and y directions, respectively; and |u| is the modulus
of the depth-averaged flow velocity vector, given by Eq. (16).

Sf =

[
Sfx
Sfy

]
=

n2
|u|ux

h
4
3

n2
|u|uy

h
4
3

 , (15)

|u| =
h

2
3

(
S2

wx + S
2
wy

) 1
4

n
(16)

As input, P-DWave minimally requires an elevation raster,
a surface roughness raster, a rainfall hyetograph, and ini-
tial and boundary condition rasters. For the case study, a
digital elevation model (DEM) was sourced from the Ad-
vanced Land Observing Satellite (ALOS) mission of the
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Table 5. The discretization of damage into finite classes as applied in the model. Adapted from Bai et al. (2009) and Kreibich et al. (2009).

Damage class Damage factor Description

D0: insignificant 0.00≤ d < 0.01 Unaffected or requiring only cosmetic repair
D1: moderate 0.01≤ d < 0.30 Repairable structural damage has occurred
D2: heavy 0.30≤ d < 0.80 Structural damage requires major repairs
D3: complete 0.80≤ d ≤ 1.00 Extensive damage, repair of most elements not feasible

Table 6. Description of the resources applied in the model and their
capacities. Units for capacity are units per day per 100 buildings,
and the provided parameters (α, m, β) correspond to a beta-PERT
distribution.

Capacity

No. Description Unit α m β

R1 Cement 50 kg 50 70 100
R2 Sandcrete block Piece 50 70 100
R3 Steel reinforcement bar Piece 50 70 100
R4 Construction worker Daily wage per person 10 15 30
R5 Utility worker Daily wage per person 10 15 30
R6 Common worker Daily wage per person 20 30 50
R7 Waterproof cement 1 kg 20 30 50
R8 Epoxy paint 5 L 20 30 50
R9 Bitumen Drum (220 L) 10 15 30
R10 Lumber Piece 50 70 100

Japan Aerospace Exploration Agency (JAXA). The DEM
was altered for use in the simulation by removing sinks and
other anomalies and burning in waterway and street net-
works. The surface roughness raster was produced by clas-
sifying land use into six categories based on a combina-
tion of data from the World Bank (2017), OpenStreetMap,
and additional manual mapping of relevant features. The
land use classes and their corresponding Manning’s n rough-
ness coefficients were informal residential (0.30 s m−1/3),
formal residential (0.20 s m−1/3), industrial (0.15 s m−1/3),
natural (0.05 s m−1/3), roads (0.03 s m−1/3), and waterways
(0.02 s m−1/3). No inflow boundary conditions were neces-
sary because the entire watershed was applied in the sim-
ulation. Likewise, no initial water depths were applied, but
rather the rainfall duration was extended in order to allow
for the filling of drainage canals. A triangular design rainfall
was applied in the model with a storm advancement coef-
ficient of 0.4 (unitless). The rainfall durations and intensi-
ties were sampled from intensity–duration–frequency (IDF)
curves derived from historical rainfall data sourced from
the Ghana Meteorological Agency (GMet). Infiltration was
modeled using the Soil Conservation Service (SCS) curve
number method as described in Technical Release 55 (TR-
55) from USDA-NRCS (1986). Curve numbers are deter-
mined by land use and hydrologic soil groups (HSGs). HSGs
are primarily associated with infiltration rates and textures
of soils. According to the UN FAO Digital Soil Map of
the World, the watershed is composed primarily of two soil

types, Ferric Acrisols and Chromic Vertisols, both of which
correspond to HSG B due to their drainage properties (Bat-
jes, 1997). For each of the land use classes used to build the
roughness raster, corresponding low, high, and mean curve
numbers were assigned from the tables in the TR-55 man-
ual according to HSG B. An area-weighted composite of
the curve numbers was calculated for each case to produce
low, high, and mean composites of 69, 72, and 75 (unitless),
respectively. The mean composite curve number of 72 was
used to calculate the excess rainfall hyetographs applied in
P-DWave.

4 Results and discussion

4.1 Recovery model and resilience quantification

For each of the hazard scenarios investigated (5-, 50-, and
500-year floods), the recovery model was applied using an
MCS with 500 iterations, drawing a stratified random sam-
ple of 100 buildings at each iteration. For the optimization,
the genetic algorithm utilized a population size of 50 and a
probability of gene mutation of 5 % (p = 0.05) and was lim-
ited to a maximum of 10 generations. The model produced a
database for each scenario containing the scheduled start and
end times for each task in the recovery plan for every MCS
iteration. It is from these databases that the following results
are derived.

The scheduled tasks produced by the recovery model can
be used to determine the building states (either occupied or
unoccupied) at time t over the assessment period. Combin-
ing this information with the known footprint areas of each
building, Eq. (10) can be applied to produce a timeline of the
performance of the building infrastructure. From the MCS,
the mean and 95 % confidence intervals of the performance
curves were derived. The resulting performance curves for
the three investigated scenarios are shown in Fig. 4. It is ap-
parent from the figure that the performance is generally re-
duced as the return period of the scenario increases. One can
also see that the shape of the curve becomes more flat with
the increasing return period.

From the generated performance curves, the resilience of
the building infrastructure to the simulated flooding hazards
was quantified according to Eq. (8). This resulted in a 300 d
resilience assessment of 0.94 for the 5-year event, 0.82 for
the 50-year event, and 0.69 for the 500-year event. In prac-
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Table 7. An example of the task parameters for the formal-residential, complete-damage (FR-D3) scenario. Units of duration are days per
100 m2, and the provided parameters (α, m, β) correspond to a beta-PERT distribution. Units of resource requirements are units per day
according to the unit associated with the particular resource.

Duration Resource requirements

No. Description α m β R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

T1 Seek financial assistance 5 10 20 0 0 0 0 0 0 0 0 0 0
T2 Professionally demolish existing structure 2 5 10 0 0 0 0 0 3 0 0 0 0
T3 Professionally prepare and lay new foundation 5 8 15 20 0 10 1 0 3 5 0 0 0
T4 Professionally build walls 8 10 20 10 20 10 2 0 2 5 0 0 0
T5 Professionally build roof 8 10 20 0 0 0 2 0 2 0 0 2 10
T6 Professionally install plumbing 5 8 15 0 0 0 0 2 0 0 0 0 0
T7 Professionally install electrical equipment 5 8 15 0 0 0 0 2 0 0 0 0 0
T8 Professionally finish interior 8 10 20 0 0 0 1 0 2 0 2 0 4
T9 Reoccupy structure 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8. Probability of building abandonment for each of the recov-
ery scenarios presented in Table 2 resulting from the discretization
of damage and the categorization of buildings.

IR: informal FR: formal CI: commercial
residential residential and industrial

D0: insignificant 0.00 0.00 0.00
D1: moderate 0.05 0.02 0.01
D2: heavy 0.20 0.10 0.05
D3: complete 0.50 0.20 0.10

Table 9. Assessed mean recovery times and mean 300 d resilience
values for each of the investigated flooding events. The 95 % confi-
dence intervals are provided for each value.

Recovery [d] Resilience, 300 d [–]

Event Mean 95 % conf. Mean 95 % conf.

5-year flood 77 [37, 253] 0.94 [0.85, 0.98]
50-year flood 165 [103, 444] 0.82 [0.70, 0.91]
500-year flood 225 [155, 537] 0.69 [0.55, 0.81]

tical terms, each value reflects the ability or inability of the
system to maintain its function during the reference period
for the given flood event, with 0 corresponding to a complete
loss of function and 1 when unaffected. These values and
their respective confidence intervals are provided in Table 9.

A 300 d resilience value of 0.69 is to be interpreted as the
infrastructure system providing 69 % of its intended perfor-
mance for the 300 d following the hazard event. In regions
were infrastructure is generally more resilient and recovery
more expedient, the 300 d resilience may be very high for
all events, and therefore the targets can be made more ambi-
tious. For example, managers may set a goal of maintaining
80 % functionality for the 10 d following a particular hazard
event or a 10 d resilience of 0.80. By applying this assess-
ment framework, remediation options can be compared in

order to select for decisions supporting a particular resilience
outcome.

Compared with existing models, like those derived from
agent-based models (Nejat and Damnjanovic, 2012a; Eid and
El-adaway, 2017), the presented model offers relatively more
clarity for communicating uncertainty to support decision-
making because it is more linear and therefore more transpar-
ent. Even if it shares some similarities with agent-based mod-
els (e.g., the rules and values are still based on assumptions
about individual decisions), the model simplifies the under-
standing of specific actions that policymakers, individuals,
and business owners can undertake to return their damaged
buildings to a safe and usable condition following damaging
events.

Planners and decision-makers could, in future applica-
tions, take advantage of the task schedules produced as out-
put by the recovery model by adding markers for other time-
dependent actions not considered in this study. For example,
it could be possible to monitor the demand on emergency ser-
vices like shelters by adding tasks which mark the return to
occupancy of residential buildings.

Because there is an amount of each resource associated
with every task, it is therefore possible to produce a timeline
of resource utilization for each MCS iteration from the task
schedules. Similarly, the MCS iterations were combined to
derive the mean and 95 % confidence intervals for resource
usage. Figure 4 shows the results of this calculation for ce-
ment (R1) usage. The figure shows the probability density
function (PDF) of the beta-PERT distribution used to apply
the uncertainty associated with the resource capacity. There-
fore, we can notice that cement usage remains below the
available capacity for the 5-year scenario but increasingly
enters the range of the capacity limitation for the 50- and
500-year events, respectively.

We will define the recovery completion time trec as the
amount of time required for the system to reach an equi-
librium state or new normal. Estimation of trec was carried
out by creating an empirical cumulative distribution function
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Figure 4. Results of the modeled impacts, recovery, and resource utilization. Each column corresponds to the three hazard scenarios modeled:
5-, 50-, and 500-year flooding events, respectively. For each scenario, the first row presents the damage states of the buildings immediately
following the event phase. The second row visualizes the recovery as the performance of the building infrastructure over the assessment
period. The third row shows the daily usage of cement (1 of the 10 resources included in the model) during the recovery process as well as
the distribution of the resource capacity.

(CDF) of the scheduled times of the end nodes for each itera-
tion of the MCS as the percentage of recovery completions at
time t . Through regression, it was determined that the empir-
ical CDF was exponentially distributed. Fitting distributions
to the empirical CDFs allowed for estimation of the mean
and 95 % confidence interval. The results of this regression
are presented in Table 9. For the flood with a return period of
5 years, the mean recovery time over the 500 MCS iterations
was 77 d. The mean recovery time increases with the return
period to 165 and 225 d for the 50- and 500-year flooding
hazards, respectively.

4.2 Inundation and building damage

Buildings in the study area were manually classified into
the three categories according to the outlined methodology.
While this classification involves making a certain number
of assumptions, all efforts were taken to follow the guide-
lines laid out by the four indicators. A final classification is
displayed in Fig. 5. Generally, it can be observed from the
figure that informal buildings are tightly grouped and often
located close to the drainage canals. Other building types ap-
pear more mixed.

Through the testing of rainfall durations, a 60 h rainfall
was found to maximize the peak of the generated hydro-
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Figure 5. (a–c) Typical areal views of the three building classes, (a) informal residential (IR; © Google Earth 2023), (b) formal residential
(FR; © Google Earth 2023), and (c) commercial and industrial (CI; © Google Earth 2023), and (d) the final building classifications according
to the indicators described in the Methods section.

graph. However, in order to reduce computation time, a 48 h
duration was instead chosen because the hydrograph peak of
this duration was within 2 % of the 60 h value. Sampling the
mean flood depth in cells occupied by each building foot-
print provided the information needed to calculate building
damage factors according to Eq. (11) and the corresponding
building class. Figure 4 shows the damage states for each
building in the study area due to flooding for the three hazard
scenarios. There is significant damage resulting from even
the high-probability event, especially for buildings close to
the drainage canals. Damage increases with an increasing re-
turn period, with a high number of buildings falling into the
D3 classification in the 500-year return period flood.

No actual events were simulated in the course of this
study. Instead, design storms were applied in the flood model.
Therefore, there were no actual flooding impacts to compare
to the simulated events, which prevented the direct valida-
tion of the damage and recovery model results. The near-
annual frequency by which flood disasters occurred in re-
cent years (Amoako and Boamah, 2015) provides evidence
that the severity of flooding extents and building damage
presented in this work is not unprecedented, even in the
case of high-probability events. Further, recovery activities
like the drying of the building components can take months
to achieve when specific drying equipment is not available
(Ahadzie et al., 2022). This gives us confidence that the in-
tense damage and corresponding lengthy recoveries shown
in the results are similar in magnitude to those experienced

in reality. Future applications of the model may simulate his-
torical events in order to perform a validation. This, however,
was beyond the scope of this study.

4.3 Standardized assessment period

The standardized assessment period presented in this work
and applied in the case study makes it possible for resilience
values to be compared across different events (and theoreti-
cally between different study areas as well). The sole condi-
tion is that the reference period of the assessments remains
the same. The resilience metric applied in this study quanti-
fies the system performance during the reference period. This
provides a more insightful metric compared with other re-
silience indicators (e.g., time to recovery). Figure 6 demon-
strates the usefulness of the metric by comparing two po-
tential recovery outcomes. Consider that the two scenarios
shown in the figure both have the same recovery time trec.
However, the scenario in panel (a) depicts a more desirable
recovery path than the scenario in panel (b) because it main-
tains a higher system performance during the reference pe-
riod 1ta. The resilience metric presented in this study quan-
tifies this difference, whereas assessing recovery time alone
does not.

In the case study, 300 d was chosen as the assessment pe-
riod, which is a constant chosen to envelope the target re-
sponses of the system and is related to the magnitude of the
event only to the extent that utilizing an assessment period
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Figure 6. Depictions of recovery curves serving as a comparison of two potential recovery outcomes. Although both the curves in (a) and
(b) have the same recovery time trec, the curve in (a) depicts a more desirable recovery path than the curve in (b) because that of (a) maintains
a higher system performance over the reference period 1ta than that of (b). The proposed resilience metric reflects this discrepancy and
quantifies it (Re1 > Re2); assessing recovery time alone does not.

significantly larger than the recovery time has the effect of
increasing the magnitude of the calculated value and reduc-
ing the sensitivity of the resilience metric. However, the as-
sessment period should remain constant for the purpose of
comparison. The intent is that managers and decision-makers
should determine an appropriate value for their particular ap-
plication, but reporting the assessment period along with the
metric (e.g., “300 d resilience”) is both novel and necessary
for understanding the metric.

The adaptation of the standardized assessment period for
extreme events relies on the correctness of the assumption
that neglecting the event phase does not significantly affect
the resilience metric as long as the recovery phase is signif-
icantly longer. In order to test and validate this assumption
in the current case study, let us consider the 50-year flood-
ing event, with recovery phase performance shown in Fig. 4.
Excluding the event phase, the mean 300 d resilience was
quantified as 0.82 (Table 9). According to investigation of the
hydrographs produced by the flood model for the 48 h rain-
fall, inundation lasted approximately 100 h. A maximum and
minimum effect of the event phase can be calculated by as-
suming that the functionality was either 1.0 or 0.0 throughout
the duration of the inundation, respectively. Recalculating the
resilience with the addition of the event phase returns a max-
imum 0.52 % difference between including it and excluding
it in this case. This is a relatively insignificant amount given
the uncertainty already present in the results. This example
adds evidence for the assumption that the inclusion of the
event phase may not be necessary in cases when the recov-
ery phase is significantly longer than the event phase and the
quantification of resilience is the primary goal.

5 Conclusions

Resilience management has emerged as a potentially more
evolved management strategy than that of risk management,
the currently employed standard. In this work, we success-
fully implement a resilience framework, demonstrating the
capabilities of the strategy to produce quantitative estimates
of the performance of building infrastructure. The methods
presented in this work outline a framework for assessing the
hazard resilience of infrastructure by modeling recovery as
a resource-constrained project scheduling problem in a man-
ner that allows for direct comparison between scenarios and
potentially across regions and scales.

The results of the case study demonstrate the capabilities
of the approach for quantifying the flood resilience of build-
ing infrastructure. For three flood events with 5-, 50-, and
500-year return periods, the 300 d resilience of the building
infrastructure in Alajo was quantified as 0.94, 0.82, and 0.69,
respectively. The recovery model also provides insight into
the expected duration of the recovery process. For the 5-year
return period event, there was a mean recovery time of the
buildings of 77 d, which increased to 165 and 225 d for the
50- and 500-year events, respectively. This information is
valuable for identifying the susceptibility of building infras-
tructure to impacts resulting in reduced performance. This
is also important information for coordinating responses to
flooding events and preparing for the subsequent recovery.

The presented building recovery model relies on the opti-
mization of the RCPSP. Therefore, the largest portion of the
computational load is carried by the optimization algorithm.
According to the literature, genetic algorithms are an espe-
cially capable heuristic approach for estimating the RCPSP
(Hartmann and Kolisch, 2000). For this work, we have cho-
sen to apply the self-adapting genetic algorithm described
in Hartmann (2002) because of its performance in compar-
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ison with other similar algorithms. Due to the relatively large
scale of the damage and the resolution of the tasks compos-
ing the recovery scenarios, the use of stratified random sam-
pling as described in Methods was necessary in order to keep
the computation time reasonably low with the available hard-
ware. Instead of testing a wide range of optimization algo-
rithms and seeking out additional hardware, this work rather
serves to present a framework for modeling recovery based
on a novel application of the method.

Many extensions beyond the base RCPSP exist (Hartmann
and Briskorn, 2010, 2022) which merit investigation regard-
ing their applicability for recovery modeling. For instance,
all resources are treated as renewable in the case study pre-
sented in this work. While that might be an appropriate as-
sumption for some resources (human capital, for example),
other resource treatments may be required to better repre-
sent the situations being modeled. Future work in the area of
recovery modeling using project scheduling methods should
explore these additional aspects.

As a strategy for managing the effects of natural hazards
on infrastructure, resilience management poses many bene-
fits in comparison with the established practices. While sig-
nificant work remains before resilience management can be
fully operationalized, this approach offers greater insight into
the effects of natural hazards on communities beyond the
immediate, direct impacts. By focusing on the broader ef-
fects which a resilience-based management strategy consid-
ers, managers may discover previously unknown benefits to
applying established interventions and hopefully open the
door to new interventions entirely.
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