Articles | Volume 23, issue 4
https://doi.org/10.5194/nhess-23-1653-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-1653-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Freak wave events in 2005–2021: statistics and analysis of favourable wave and wind conditions
Ekaterina Didenkulova
Faculty of Informatics, Mathematics and Computer Science, HSE University, Nizhny Novgorod 603155, Russia
Invited contribution by Ekaterina Didenkulova, recipient of the EGU Nonlinear Processes in Geosciences Division Outstanding Early Career Scientists Award 2020.
Department of Fluid Mechanics, University of Oslo, Oslo 0316, Norway
Igor Medvedev
Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow 117997, Russia
Related authors
No articles found.
H. E. Markus Meier, Marcus Reckermann, Joakim Langner, Ben Smith, and Ira Didenkulova
Earth Syst. Dynam., 14, 519–531, https://doi.org/10.5194/esd-14-519-2023, https://doi.org/10.5194/esd-14-519-2023, 2023
Short summary
Short summary
The Baltic Earth Assessment Reports summarise the current state of knowledge on Earth system science in the Baltic Sea region. The 10 review articles focus on the regional water, biogeochemical and carbon cycles; extremes and natural hazards; sea-level dynamics and coastal erosion; marine ecosystems; coupled Earth system models; scenario simulations for the regional atmosphere and the Baltic Sea; and climate change and impacts of human use. Some highlights of the results are presented here.
Axel Kleidon, Gabriele Messori, Somnath Baidya Roy, Ira Didenkulova, and Ning Zeng
Earth Syst. Dynam., 14, 241–242, https://doi.org/10.5194/esd-14-241-2023, https://doi.org/10.5194/esd-14-241-2023, 2023
Begoña Pérez Gómez, Ivica Vilibić, Jadranka Šepić, Iva Međugorac, Matjaž Ličer, Laurent Testut, Claire Fraboul, Marta Marcos, Hassen Abdellaoui, Enrique Álvarez Fanjul, Darko Barbalić, Benjamín Casas, Antonio Castaño-Tierno, Srđan Čupić, Aldo Drago, María Angeles Fraile, Daniele A. Galliano, Adam Gauci, Branislav Gloginja, Víctor Martín Guijarro, Maja Jeromel, Marcos Larrad Revuelto, Ayah Lazar, Ibrahim Haktan Keskin, Igor Medvedev, Abdelkader Menassri, Mohamed Aïssa Meslem, Hrvoje Mihanović, Sara Morucci, Dragos Niculescu, José Manuel Quijano de Benito, Josep Pascual, Atanas Palazov, Marco Picone, Fabio Raicich, Mohamed Said, Jordi Salat, Erdinc Sezen, Mehmet Simav, Georgios Sylaios, Elena Tel, Joaquín Tintoré, Klodian Zaimi, and George Zodiatis
Ocean Sci., 18, 997–1053, https://doi.org/10.5194/os-18-997-2022, https://doi.org/10.5194/os-18-997-2022, 2022
Short summary
Short summary
This description and mapping of coastal sea level monitoring networks in the Mediterranean and Black seas reveals the existence of 240 presently operational tide gauges. Information is provided about the type of sensor, time sampling, data availability, and ancillary measurements. An assessment of the fit-for-purpose status of the network is also included, along with recommendations to mitigate existing bottlenecks and improve the network, in a context of sea level rise and increasing extremes.
Cited articles
Akhmediev, N., Soto-Crespo, J. M., and Devine, N.: Breather turbulence versus
soliton turbulence: Rogue waves, probability density functions, and spectral
features, Phys. Rev. E., 94, 022212,
https://doi.org/10.1103/PhysRevE.94.022212, 2016.
Alber, I. E.: The effects of randomness on the instability of two-dimensional
surface wavetrains, P. Roy. Soc. Lond. A., 363, 525–546,
https://doi.org/10.1098/rspa.1978.0181, 1978.
Azevedo, L., Meyers, S., Pleskachevsky, A., Pereira, H. P., and Luther, M.:
Characterizing Rogue Waves in the Entrance of Tampa Bay (Florida, USA), J.
Mar. Sci. Eng., 10, 507, https://doi.org/10.3390/jmse10040507, 2022.
Bali tourist swept away by huge wave,
https://www.ibtimes.co.in/watch-bali-tourist-swept-away-by-huge-wave, last access: 3 April 2023.
Benetazzo, A., Ardhuin, F., Bergamasco, F., Cavaleri,
L., Guimarães, P. V., Schwendeman, M., Sclavo, M., Thomson, J.,
and Torsello, A.: On the shape and likelihood of oceanic rogue waves, Sci.
Rep., 7, 8276, https://doi.org/10.1038/s41598-017-07704-9, 2017.
Benjamin, T. B. and Feir, J. E.: The disintegration of wave trains on deep
water: Part 1. Theory, J. Fluid
Mech., 27, 417–430, https://doi.org/10.1017/S002211206700045X, 1967.
Chakravarty, S. and Kodama, Y.: Construction of KP solitons from wave
patterns, J. Phys. A: Math. Theor., 47, 025201,
https://doi.org/10.1088/1751-8113/47/2/025201, 2014.
Christou, M. and Ewans, K.: Field Measurements of Rogue Water Waves,
J. Phys. Oceanogr., 44, 2317–2335,
https://doi.org/10.1175/JPO-D-13-0199.1, 2014.
Database of freak waves in 2005–2021:
[data set] https://www.ipfran.ru/institute/structure/240605316/catalogue-of-rogue-waves,
last access: 21 July 2022.
Didenkulova (Shurgalina), E. G.: Numerical modeling of soliton turbulence
within the focusing Gardner equation: rogue wave emergence, Physica D, 399,
35–41, https://doi.org/10.1016/j.physd.2019.04.002, 2019.
Didenkulova, E.: Catalogue of rogue waves occurred in the World Ocean from
2011 to 2018 reported by mass media sources, Ocean and Coastal Management,
188, 105076, https://doi.org/10.1016/j.ocecoaman.2019.105076, 2020.
Didenkulova, E.: Mixed turbulence of breathers and narrowband irregular
waves: mKdV framework, Physica D: Nonlinear Phenomena, 432, 133130,
https://doi.org/10.1016/j.physd.2021.133130, 2022.
Didenkulova, I. and Anderson, C.: Freak waves of different types in the coastal zone of the Baltic Sea, Nat. Hazards Earth Syst. Sci., 10, 2021–2029, https://doi.org/10.5194/nhess-10-2021-2010, 2010.
Didenkulova, I. and Pelinovsky, E.: Rogue waves in nonlinear hyperbolic
systems (shallow-water framework), Nonlinearity, 24, R1,
https://doi.org/10.1088/0951-7715/24/3/R01, 2011.
Didenkulova, I. I., Slunyaev, A. V., Pelinovsky, E. N., and Kharif, C.: Freak waves in 2005, Nat. Hazards Earth Syst. Sci., 6, 1007–1015, https://doi.org/10.5194/nhess-6-1007-2006, 2006.
Didenkulova, I., Nikolkina, I. F., and Pelinovsky, E. N.: Rogue waves in the
basin of intermediate depth and the possibility of their formation due to
the modulational instability, JETP Lett., 97, 194–198,
https://doi.org/10.1134/S0021364013040024, 2013.
Didenkulova, I., Didenkulova, E., and Didenkulov, O.: Freak wave accidents
in 2019–2021, in: Proceedings of OCEANS 2022, Chennai, India, 21–24 February
2022, 1–7, https://doi.org/10.1109/OCEANSChennai45887.2022.9775482, 2022.
Dyachenko, A. I. and Zakharov, V. E.: Modulation Instability of Stokes – Wave
Freak Wave, JETP Letters, 81, 255–259, https://doi.org/10.1134/1.1931010,
2005.
Fedele, F., Brennan, J., Ponce de León, S., Dudley, J., and Dias, F.:
Real world ocean rogue waves explained without the modulational instability,
Sci. Rep., 6, 27715, https://doi.org/10.1038/srep27715, 2016.
Four people sent to local hospital after rogue wave strikes Virginia
Aquarium whale-watching boat, https://www.youtube.com/watch?v=hWztpRKDmsg, last access: 3 April 2023.
García-Medina, G., Özkan-Haller, H. T., Ruggiero, P., Holman, R. A.,
and Nicolini, T.: Analysis and catalogue of sneaker waves in the US Pacific
Northwest between 2005 and 2017, Nat. Hazards, 94, 583–603,
https://doi.org/10.1007/s11069-018-3403-z, 2018.
Gelash, A. A. and Agafontsev, D. S.: Strongly interacting soliton gas and
formation of rogue waves, Phys. Rev. E., 98, 1–11,
https://doi.org/10.1103/PhysRevE.98.042210, 2018.
Gemmrich, J. and Cicon, L.: Generation mechanism and prediction of an
observed extreme rogue wave, Sci. Rep., 12, 1718,
https://doi.org/10.1038/s41598-022-05671-4, 2022.
Häfner, D., Gemmrich, J., and Jochum, M.: Real-world rogue wave
probabilities. Sci. Rep., 11, 10084,
https://doi.org/10.1038/s41598-021-89359-1, 2021.
Haver, S.: Freak Wave Event at Draupner Jacket January 1 1995, Tech. Rep.,
PTT-KU-MA, Statoil, Oslo, Norway, 2003.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, Sh., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, Ph., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Hunt, J. N.: Direct solution of wave dispersion equation, J. Waterw. Ports
Coast Oceans Div., 105, 457–459, 1979.
Kharif, Ch. and Touboul, J.: Under which conditions the Benjamin-Feir
instability may spawn an extreme wave event: A fully nonlinear
approach, Eur. Phys. J. Spec. Top., 185, 159–168,
https://doi.org/10.1140/epjst/e2010-01246-7, 2010.
Kharif, Ch. and Pelinovsky, E.: Physical mechanisms of the rogue wave
phenomenon, Eur. J. Mech. B-Fluids, 22, 603–634,
https://doi.org/10.1016/j.euromechflu.2003.09.002, 2003.
Kharif, Ch., Pelinovsky, E., and Slunyaev, A.: Rogue Waves in the ocean,
Springer, Berlin, https://doi.org/10.1007/978-3-540-88419-4, ISBN: 978-3-540-88419-4, 216 p., 2009.
Lavrenov, I.: The Wave Energy Concentration at the Agulhas Current of South
Africa, Nat. Hazards, 17, 117–127, https://doi.org/10.1023/A:1007978326982, 1998.
Liu, P. C.: A chronology of freaque wave encounters, Geofiz., 24, 57–70,
2007.
Liu, P. C.: Brief Communication: Freaque wave occurrences in 2013, Nat. Hazards Earth Syst. Sci. Discuss., 2, 7017–7025, https://doi.org/10.5194/nhessd-2-7017-2014, 2014.
Massel, S. R.: Ocean Surface Waves: Their Physics and Prediction, Advanced
Series on Ocean Engineering, 11, Hackensack, New Jersey, World Scientific, 508 pp., ISBN 9789814460101,
1996.
Monster wave smashes into Gold Coast whale watching boat,
https://www.news.com.au/travel/travel-updates/incidents/monster-wave-smashes-into-gold-coast-whale-watching-boat/news-story/e3303ab316da4f555f89d6d17bb5c149, last access: 3 April 2023.
Mori, N., Liu, P., and Yasuda, T.: Analysis of freak wave measurements in
the Sea of Japan, Ocean Eng., 29, 1399–1414,
https://doi.org/10.1016/S0029-8018(01)00073-7, 2002.
Multimaps service: https://multimaps.ru/, last access: 3 April 2023.
Nikolkina, I. and Didenkulova, I.: Rogue waves in 2006–2010, Nat. Hazards Earth Syst. Sci., 11, 2913–2924, https://doi.org/10.5194/nhess-11-2913-2011, 2011.
Nikolkina, I. and Didenkulova, I.: Catalogue of rogue waves reported in
media in 2006–2010, Nat. Hazards, 61, 989–1006,
https://doi.org/10.1007/s11069-011-9945-y, 2012.
O'Brien, L., Dudley, J. M., and Dias, F.: Extreme wave events in Ireland: 14 680 BP–2012, Nat. Hazards Earth Syst. Sci., 13, 625–648, https://doi.org/10.5194/nhess-13-625-2013, 2013.
O'Brien, L., Renzi, E., Dudley, J. M., Clancy, C., and Dias, F.: Catalogue of extreme wave events in Ireland: revised and updated for 14680 BP to 2017, Nat. Hazards Earth Syst. Sci., 18, 729–758, https://doi.org/10.5194/nhess-18-729-2018, 2018.
Onorato, M., Osborne, A. R., Serio, M. and Bertone, S.: Freak waves in random
oceanic sea states, Phys. Rev.
Lett., 86, 5831–5834, https://doi.org/10.1103/PhysRevLett.86.5831, 2001.
Onorato, M., Osborne, A. R., Serio, M., Cavaleri, L., Brandini, C., and
Stansberg, C. T.: Extreme waves, modulational instability and second order
theory: wave flume experiments on irregular waves, Eur. J.
Mech. B-Fluids, 25, 586–601,
https://doi.org/10.1016/j.euromechflu.2006.01.002, 2006.
Onorato, M., Proment, D., and Toffoli, A.: Triggering rogue waves in
opposing currents, Phys. Rev. Lett., 107, 184502,
https://doi.org/10.1103/PhysRevLett.107.184502, 2011.
Osborne, A.: Nonlinear Ocean Waves and the Inverse Scattering Transform,
Academic Press, San Diego, 944 pp.,
ISBN 9780125286299, 2010.
Pelinovsky, E. N. and Shurgalina, E. G.: Formation of freak waves in a soliton
gas described by the modified Korteweg–de Vries equation, Dokl. Phys.,
61, 423–426, https://doi.org/10.1134/S1028335816090032, 2016.
Pelinovsky, E., Shurgalina, E., and Chaikovskaya, N.: The scenario of a single freak wave appearance in deep water – dispersive focusing mechanism framework, Nat. Hazards Earth Syst. Sci., 11, 127–134, https://doi.org/10.5194/nhess-11-127-2011, 2011.
Peterson, P., Soomere, T., Engelbrecht, J., and van Groesen, E.: Soliton interaction as a possible model for extreme waves in shallow water, Nonlin. Processes Geophys., 10, 503–510, https://doi.org/10.5194/npg-10-503-2003, 2003.
Pleskachevsky, A. L., Lehner, S., and Rosenthal, W.: Storm observations by remote sensing and influences of gustiness on ocean waves and on generation of rogue waves, Ocean Dynam., 62, 1335–1351, https://doi.org/10.1007/s10236-012-0567-z, 2012.
Rogue waves “wipe out” spectators at Mavericks surfing competition,
https://www.thetimes.co.uk/article/rogue-waves-wipe-out-spectators, last access: 3 April 2023.
Ruban, V. P.: Nonlinear Stage of the Benjamin-Feir Instability:
Three-Dimensional Coherent Structures and Rogue Waves, Phys. Rev. Lett., 99,
044502, https://doi.org/10.1103/PhysRevLett.99.044502, 2007.
Shrira, V. I. and Slunyaev, A. V.: Nonlinear dynamics of trapped waves on jet
currents and rogue waves, Phys. Rev. E, 89, 041002,
https://doi.org/10.1103/PhysRevE.89.041002 2014a.
Shrira, V. I. and Slunyaev, A. V.: Trapped waves on jet currents: asymptotic
modal approach, J. Fluid Mech., 738, 65–104, https://doi.org/10.1017/jfm.2013.584, 2014b.
Slunyaev, A.: On the optimal focusing of solitons and breathers in long-wave
models, Stud. Appl. Math., 142, 385–413, https://doi.org/10.1111/sapm.12261,
2019.
Slunyaev, A., Didenkulova, I., and Pelinovsky, E.: Rogue
waters, Contemp. Phys., 52, 571–590, https://doi.org/10.1080/00107514.2011.613256, 2011.
Stansell, P.: Distributions of freak wave heights measured in the North Sea,
Appl. Ocean Res., 26, 35–48,
https://doi.org/10.1016/j.apor.2004.01.004, 2004.
Toffoli, A., Babanin, A., Onorato, M., and Waseda, T.: Maximum steepness of
oceanic waves: Field and laboratory experiments, Geophys. Res.
Lett., 37,
L05603, https://doi.org/10.1029/2009GL041771, 2010.
Toffoli, A., Waseda, T., Houtani, H., Cavaleri, L., Greaves D., and Onorato,
M.: Rogue waves in opposing currents: an experimental study on deterministic
and stochastic wave trains, J. Fluid Mech., 769, 277–297,
https://doi.org/10.1017/jfm.2015.132, 2015.
Touboul, J., Giovanangeli, P., Kharif, C., and Pelinovsky, E.: Freak waves
under the action of wind: experiments and simulations, Eur. J.
Mech. B-Fluids, 25, 662–676,
https://doi.org/10.1016/j.euromechflu.2006.02.006, 2006.
Wave Hits Louis Majesty Cruise Ship, https://www.youtube.com/watch?v=lvOceI6egg0, last access: 3 April 2023.
Yoo, J., Lee, D.-Y., Ha, T.-M., Cho, Y.-S., and Woo, S.-B.: Characteristics of abnormal large waves measured from coastal videos, Nat. Hazards Earth Syst. Sci., 10, 947–956, https://doi.org/10.5194/nhess-10-947-2010, 2010.
Short summary
The paper is dedicated to freak wave accidents which happened in the world ocean in 2005–2021 and that were described in mass media sources. The database accounts for 429 events, all of which resulted in ship or coastal and offshore structure damage and/or human losses. In agreement with each freak wave event, we put background wave and wind conditions extracted from the climate reanalysis ERA5. We analyse their statistics and discuss the favourable conditions for freak wave occurrence.
The paper is dedicated to freak wave accidents which happened in the world ocean in 2005–2021...
Altmetrics
Final-revised paper
Preprint