Caires, S.:
A Comparative Simulation Study of the Annual Maxima and the Peaks-Over-Threshold Methods, J. Offshore Mech. Arct., 138, https://doi.org/10.1115/1.4033563, 2016.
Chiu, S. and Small, C.:
Observations of Cyclone-Induced Storm Surge in Coastal Bangladesh, J. Coastal Res., 321, 1149–1161, https://doi.org/10.2112/JCOASTRES-D-15-00030.1, 2016.
Deltares:
Wind Enhancement Scheme for cyclone modelling – User Manual, Version 3.01, Deltares, Delft, 2019.
Deltares: ORCA, Deltares [code],
https://www.deltares.nl/en/software/orca/, last access: 31 May 2022a.
Deltares: TCWiSE, Deltares [code],
https://www.deltares.nl/en/software/tcwise/, last access: 31 May 2022b.
Deltares:
Delft3D FM Suite, Deltares [code],
https://www.deltares.nl/en/software/delft3d-flexible-mesh-suite/, last access: 31 May 2022c.
Deo, A. A., Ganer, D. W., and Nair, G.:
Tropical cyclone activity in global warming scenario, Nat. Hazards, 59, 771–786, https://doi.org/10.1007/s11069-011-9794-8, 2011.
Dube, S. K., Jain, I., Rao, A. D., and Murty, T. S.:
Storm surge modelling for the Bay of Bengal and Arabian Sea, Nat. Hazards, 51, 3–27, https://doi.org/10.1007/s11069-009-9397-9, 2009.
Emanuel, K., Ravela, S., Vivant, E., and Risi, C.:
A Statistical Deterministic Approach to Hurricane Risk Assessment, B. Am. Meteorol. Soc., 87, S1–S5, https://doi.org/10.1175/BAMS-87-3-Emanuel, 2006.
Emanuel, K., Sundararajan, R., and Williams, J.: Hurricanes and Global Warming: Results from Downscaling IPCC AR4 Simulations, B. Am. Meteorol. Soc., 89, 347–368, https://doi.org/10.1175/BAMS-89-3-347, 2008.
Haigh, I. D., MacPherson, L. R., Mason, M. S., Wijeratne, E. M. S., Pattiaratchi, C. B., Crompton, R. P., and George, S.:
Estimating present day extreme water level exceedance probabilities around the coastline of Australia: tropical cyclone-induced storm surges, Clim. Dynam., 42, 139–157, https://doi.org/10.1007/s00382-012-1653-0, 2014.
Hardy, T. A., McConochie, J. D., and Mason, L. B.:
Modeling tropical cyclone wave population of the Great Barrier Reef, J. Waterw. Port. Coast. Ocean Eng., 129, 104–113, https://doi.org/10.1061/(ASCE)0733-950X(2003)129:3(104), 2003.
Hoarau, K., Bernard, J., and Chalonge, L.:
Intense tropical cyclone activities in the northern Indian Ocean, Int. J. Climatol., 32, 1935–1945, https://doi.org/10.1002/joc.2406, 2012.
Holland, G.:
A Revised Hurricane Pressure–Wind Model, Mon. Weather Rev., 136, 3432–3445, https://doi.org/10.1175/2008MWR2395.1, 2008.
Holland, G. J., Belanger, J. I., and Fritz, A.:
A revised model for radial profiles of hurricane winds, Mon. Weather Rev., 138, 4393–4401, https://doi.org/10.1175/2010MWR3317.1, 2010.
Islam, T. and Peterson, R. E.:
Climatology of landfalling tropical cyclones in Bangladesh 1877–2003, Nat. Hazards, 48, 115–135, https://doi.org/10.1007/s11069-008-9252-4, 2009.
James, M. K. and Mason, L. B.:
Synthetic tropical cyclone database, J. Waterw. Port. Coast. Ocean Eng., 131, 181–192, https://doi.org/10.1061/(ASCE)0733-950X(2005)131:4(181), 2005.
Kaplan, J. and DeMaria, M.: A Simple Empirical Model for Predicting the Decay of Tropical Cyclone Winds after Landfall, J. Appl. Meteorol., 34, 2499–2512, https://doi.org/10.1175/1520-0450(1995)034<2499:ASEMFP>2.0.CO;2, 1995.
Karim, M. and Mimura, N.:
Impacts of climate change and sea-level rise on cyclonic storm surge floods in Bangladesh, Global Environ. Chang., 18, 490–500, https://doi.org/10.1016/j.gloenvcha.2008.05.002, 2008.
Kernkamp, H. W. J., Van Dam, A., Stelling, G. S., and De Goede, E. D.:
Efficient scheme for the shallow water equations on unstructured grids with application to the Continental Shelf, Ocean Dynam., 61, 1175–1188, https://doi.org/10.1007/s10236-011-0423-6, 2011.
Kirchhofer, W.:
Classification of European 500
mb patterns, Swiss Meteorological Institute,
https://scholar.google.nl/scholar?hl=nl&as_sdt=0,5&q=Classification+of+European+500+mb+patterns+Kirchhofer&btnG=) (last access: 26 March 2020), 1974.
Kishtawal, C. M., Jaiswal, N., Singh, R., and Niyogi, D.:
Tropical cyclone intensification trends during satellite era (1986–2010), Geophys. Res. Lett., 39, L10810, https://doi.org/10.1029/2012GL051700, 2012.
Knapp, K. R., Diamond, H. J., Kossin, J. P., Kruk, M. C., and Schreck, C. J.:
International Best Track Archive for Climate Stewardship (IBTrACS) Project, Version 4, https://doi.org/10.25921/82ty-9e16, NOAA Natl. Centers Environ. Inf., 2018 (data available at:
https://www.ncdc.noaa.gov/ibtracs/, last access: 26 May 2020).
Knutson, T., Camargo, S. J., Chan, J. C. L., Emanuel, K., Ho, C.-H., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., and Wu, L.: Tropical Cyclones and Climate Change Assessment: Part II: Projected Response to Anthropogenic Warming, B. Am. Meteorol. Soc., 101, E303–E322, https://doi.org/10.1175/BAMS-D-18-0194.1, 2020.
Knutson, T. R., McBride, J. L., Chan, J., Emanuel, K., Holland, G., Landsea, C., Held, I., Kossin, J. P., Srivastava, A. K., and Sugi, M.:
Tropical cyclones and climate change, Nat. Geosci., 3, 157–163, https://doi.org/10.1038/ngeo779, 2010.
Knutson, T. R., Sirutis, J. J., Zhao, M., Tuleya, R. E., Bender, M., Vecchi, G. A., Villarini, G., and Chavas, D.:
Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios, J. Climate, 28, 7203–7224, https://doi.org/10.1175/JCLI-D-15-0129.1, 2015.
Kossin, J. P., Knapp, K. R., Olander, T. L., and Velden, C. S.:
Global increase in major tropical cyclone exceedance probability over the past four decades, P. Natl. Acad. Sci. USA, 17, 11975–11980, https://doi.org/10.1073/pnas.1920849117, 2020.
Krien, Y., Testut, L., Islam, A. K. M. S., Bertin, X., Durand, F., Mayet, C., Tazkia, A. R., Becker, M., Calmant, S., Papa, F., Ballu, V., Shum, C. K., and Khan, Z. H.:
Towards improved storm surge models in the northern Bay of Bengal, Cont. Shelf Res., 135, 58–73, https://doi.org/10.1016/j.csr.2017.01.014, 2017.
Lee, C. Y., Tippett, M. K., Sobel, A. H., and Camargo, S. J.:
An environmentally forced tropical cyclone hazard model, J. Adv. Model. Earth Sy., 10, 223–241, https://doi.org/10.1002/2017MS001186, 2018.
Leijnse, T., Giardino, A., Nederhoff, K., and Caires, S.: Generating reliable estimates of tropical cyclone induced coastal hazards along the Bay of Bengal for current and future climates using synthetic tracks, Zenodo [data set], https://doi.org/10.5281/zenodo.6420739, 2022.
Lin, N., Emanuel, K., Oppenheimer, M., and Vanmarcke, E.:
Physically based assessment of hurricane surge threat under climate change, Nat. Clim. Change, 2, 462–467, https://doi.org/10.1038/nclimate1389, 2012.
Mamnun, N., Bricheno, L. M., and Rashed-Un-Nabi, M.: Forcing ocean model with atmospheric model outputs to simulate storm surge in the Bangladesh coast, Trop. Cyclone Res. Rev., 9, 117–134, https://doi.org/10.1016/j.tcrr.2020.04.002, 2020.
Marsooli, R., Lin, N., Emanuel, K., and Feng, K.:
Climate change exacerbates hurricane flood hazards along US Atlantic and Gulf Coasts in spatially varying patterns, Nat. Commun., 10, 1–9, https://doi.org/10.1038/s41467-019-11755-z, 2019.
Meza-Padilla, R., Appendini, C. M., and Pedrozo-Acuña, A.:
Hurricane-induced waves and storm surge modeling for the Mexican coast, Ocean Dynam., 65, 1199–1211, https://doi.org/10.1007/s10236-015-0861-7, 2015.
Mori, N. and Takemi, T.:
Impact assessment of coastal hazards due to future changes of tropical cyclones in the North Pacific Ocean, Weather and Climate Extremes, 11, 53–69, https://doi.org/10.1016/j.wace.2015.09.002, 2016.
Mori, N., Kjerland, M., Nakajo, S., Shibutani, Y., and Shimura, T.:
Impact assessment of climate change on coastal hazards in Japan. Hydrological Research Letters, 10, 101–105, https://doi.org/10.3178/hrl.10.101, 2016.
Mori, N., Shimura, T., Yoshida, K., Mizuta, R., Okada, Y., Fujita, M., Khujanazarov, T., and Nakakita, E.:
Future changes in extreme storm surges based on mega-ensemble projection using 60-km resolution atmospheric global circulation model, Coast. Eng. J., 61, 295–307, https://doi.org/10.1080/21664250.2019.1586290, 2019.
Muis, S., Verlaan, M., Winsemius, H. C., Aerts, J. C. J. H., and Ward, P. J.:
A global reanalysis of storm surges and extreme sea levels, Nat. Commun., 7, 11969, https://doi.org/10.1038/ncomms11969, 2016.
Nakajo, S., Mori, N., Yasuda, T., and Mase, H.: Global stochastic tropical cyclone model based on principal component analysis and cluster analysis, J. Appl. Meteorol. Clim., 53, 1547–1577, https://doi.org/10.1175/JAMC-D-13-08.1, 2014.
Nederhoff, K., Giardino, A., van Ormondt, M., and Vatvani, D.: Estimates of tropical cyclone geometry parameters based on best-track data, Nat. Hazards Earth Syst. Sci., 19, 2359–2370, https://doi.org/10.5194/nhess-19-2359-2019, 2019.
Nederhoff, K., Hoek, J., Leijnse, T., van Ormondt, M., Caires, S., and Giardino, A.:
Simulating synthetic tropical cyclone tracks for statistically reliable wind and pressure estimations, Nat. Hazards Earth Syst. Sci., 21, 861–878, https://doi.org/10.5194/nhess-21-861-2021, 2021.
Shultz, J. M., Russell, J., and Espinel, Z.:
Epidemiology of Tropical Cyclones: The Dynamics of Disaster, Disease, and Development, Epidemiol. Rev., 27, 21–35, https://doi.org/10.1093/epirev/mxi011, 2005.
Singh, O. P.:
Long-term trends in the frequency of severe cyclones of Bay of Bengal: Observations and simulations, Mausam, 58, 59–66,
http://metnet.imd.gov.in/mausamdocs/15816_F.pdf (last access: 22 May 2022), 2007.
Singh, O. P.: Recent Trends in Tropical Cyclone Activity in the North Indian Ocean, in: Indian Ocean Tropical Cyclones and Climate Change, edited by: Charabi, Y., Springer Netherlands, Dordrecht, 51–54, https://doi.org/10.1007/978-90-481-3109-9_8, 2010.
Singh, O. P., Ali Khan, T. M., and Rahman, M. S.:
Changes in the frequency of tropical cyclones over the North Indian Ocean, Meteorol. Atmos. Phys., 75, 11–20, https://doi.org/10.1007/s007030070011, 2000.
Sugi, M., Murakami, H., and Yoshida, K.:
Projection of future changes in the frequency of intense tropical cyclones, Clim. Dynam., 49, 619–632, https://doi.org/10.1007/s00382-016-3361-7, 2017.
Vafeidis, A. T., Nicholls, R. J., McFadden, L., Tol, R. S. J., Hinkel, J., Spencer, T., Grashoff, P. S., Boot, G., and Klein, R. J. T.: A New Global Coastal Database for Impact and Vulnerability Analysis to Sea-Level Rise, J. Coast. Res., 244, 917–924, https://doi.org/10.2112/06-0725.1, 2008.
van der Westhuysen, A. J., Zijlema, M., and Battjes, J. A.:
Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water, Coast. Eng., 54, 151–170, https://doi.org/10.1016/j.coastaleng.2006.08.006, 2007.
van Ormondt, M., van Dongeren, A., and Roelvink, D.: A semi-empirical method for computing storm surges on open coasts during tropical cyclones, Coast. Eng., 165, 103839, https://doi.org/10.1016/j.coastaleng.2020.103839, 2021.
Vatvani, D., Zweers, N. C., van Ormondt, M., Smale, A. J., de Vries, H., and Makin, V. K.:
Storm surge and wave simulations in the Gulf of Mexico using a consistent drag relation for atmospheric and storm surge models, Nat. Hazards Earth Syst. Sci., 12, 2399–2410, https://doi.org/10.5194/nhess-12-2399-2012, 2012.
Vickery, P. J., Skerlj, P. F., and Twisdale, L. A.:
Simulation of Hurricane Risk in the U. S. Using Empirical Track Model, J. Struct. Eng.-ASCE, 126, 1222–1237, https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1222), 2000.
Walsh, K. J. E., McBride, J. L., Klotzbach, P. J., Balachandran, S., Camargo, S. J., Holland, G., Knutson, T. R., Kossin, J. P., Lee, T., Sobel, A., and Sugi, M.:
Tropical cyclones and climate change, WIREs Clim. Change, 7, 65–89, https://doi.org/10.1002/wcc.371, 2016.
Walsh, K. J. E., McBride, J. L., Klotzbach, P. J., Balachandran, S., Camargo, S. J., Holland, G., Knutson, T. R., Kossin, J. P., Lee, T., Sobel, A., and Sugi, M.: Tropical cyclones and climate change, WIRES. Clim. Change, 7, 65–89, 2019.
Webster, P. J.:
Changes in Tropical Cyclone Number, Duration, and Intensity in a Warming Environment, Science, 309, 1844–1846, https://doi.org/10.1126/science.1116448, 2005.
Yang, J. A., Kim, S. Y., Son, S. Y., Mori, N., and Mase, H.:
Assessment of uncertainties in projecting future changes to extreme storm surge height depending of future SST and greenhouse gas emission scenarios, Climatic Change, 162, 425–442, https://doi.org/10.1007/s10584-020-02782-7, 2020.
Zhang, J. A. and Uhlhorn, E. W.:
Hurricane sea surface inflow angle and an observation-based parametric model, Mon. Weather Rev., 140, 3587–3605, https://doi.org/10.1175/MWR-D-11-00339.1, 2012.
Zijlema, M., Van Vledder, G. P., and Holthuijsen, L. H.:
Bottom friction and wind drag for wave models, Coast. Eng., 65, 19–26, https://doi.org/10.1016/j.coastaleng.2012.03.002, 2012.