Coastal hazards and hydro-meteorological extremes
Coastal hazards and hydro-meteorological extremes
Editor(s): Joanna Staneva, Agustín Sánchez-Arcilla, Francisco Campuzano, and Piero Lionello
Extreme hydro-meteorological events (e.g., storms, storm surges, floods, extreme waves, marine heatwaves) have caused serious damage to society and infrastructures at coastal areas during the past decades. The continued growth in commerce, infrastructure, and population and the impacts of climate change on coastal hazards are all contributing to an increase in the risk associated with living and working at the coast. These extreme events are caused by interactions of large- and small-scale forcing mechanisms, sequences of weather anomalies, and non-linear combined atmosphere-wave-circulation-hydrologic-morphologic responses. They can cause tremendous economic losses at coastal areas, leading to substantial damage to infrastructure and ecosystems. It is, thus, important to gain improved scientific understanding on the physical drivers controlling such extreme events, their occurrence and frequency, and the resulting impact on coastal hazards. This gain in knowledge will allow the improvement of predictive skills at daily to decadal timescales. However, state-of-the-art numerical predictions and projections are not skilful enough yet for stakeholders, water managers, and policy makers. The full capabilities of hindcasting and predicting weather-driven extremes have not been realized yet due to systematic errors in the simulation of feedbacks between atmosphere, terrestrial, and oceanic systems, particularly for coastal areas, with enhanced difficulties in representing multiscale processes and discrepancies in the modelled physics.

This special issue deals with coastal hazards and hydro-meteorological extremes, tackling coastal impacts on a broad range of environmental and economic systems. The focus will be on physical hazard drivers and hydro-meteorological extreme events, identifying the key physical processes and/or model resolutions for resolving their interactions, as well as examining their predictability at multiple timescales. Considered topics include, but are not limited to, estuarine/deltaic dynamics, hydrologic controls on sediment supply and salinity intrusion, ecosystem responses and morphologic evolution under natural and anthropogenic changes, cascading/compounding effects of extremes, and resulting coastal impacts. Papers on modelling improvements for simulating and predicting extreme events and coastal hazards and assessing their socioeconomic impact are also encouraged.

Download citations of all papers

13 Jul 2023
Climate-induced storminess forces major increases in future storm surge hazard in the South China Sea region
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, Joël J.-M. Hirschi, Robert J. Nicholls, and Nadia Bloemendaal
Nat. Hazards Earth Syst. Sci., 23, 2475–2504, https://doi.org/10.5194/nhess-23-2475-2023,https://doi.org/10.5194/nhess-23-2475-2023, 2023
Short summary
05 Jul 2023
Bayesian hierarchical modelling of sea-level extremes in the Finnish coastal region
Olle Räty, Marko Laine, Ulpu Leijala, Jani Särkkä, and Milla M. Johansson
Nat. Hazards Earth Syst. Sci., 23, 2403–2418, https://doi.org/10.5194/nhess-23-2403-2023,https://doi.org/10.5194/nhess-23-2403-2023, 2023
Short summary
26 May 2023
Improvements to the detection and analysis of external surges in the North Sea
Alexander Böhme, Birgit Gerkensmeier, Benedikt Bratz, Clemens Krautwald, Olaf Müller, Nils Goseberg, and Gabriele Gönnert
Nat. Hazards Earth Syst. Sci., 23, 1947–1966, https://doi.org/10.5194/nhess-23-1947-2023,https://doi.org/10.5194/nhess-23-1947-2023, 2023
Short summary
15 May 2023
The role of preconditioning for extreme storm surges in the western Baltic Sea
Elin Andrée, Jian Su, Morten Andreas Dahl Larsen, Martin Drews, Martin Stendel, and Kristine Skovgaard Madsen
Nat. Hazards Earth Syst. Sci., 23, 1817–1834, https://doi.org/10.5194/nhess-23-1817-2023,https://doi.org/10.5194/nhess-23-1817-2023, 2023
Short summary
27 Feb 2023
Improving the predictability of the Qendresa Medicane by the assimilation of conventional and atmospheric motion vector observations. Storm-scale analysis and short-range forecast
Diego S. Carrió
Nat. Hazards Earth Syst. Sci., 23, 847–869, https://doi.org/10.5194/nhess-23-847-2023,https://doi.org/10.5194/nhess-23-847-2023, 2023
Short summary
27 Feb 2023
A globally applicable framework for compound flood hazard modeling
Dirk Eilander, Anaïs Couasnon, Tim Leijnse, Hiroaki Ikeuchi, Dai Yamazaki, Sanne Muis, Job Dullaart, Arjen Haag, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 23, 823–846, https://doi.org/10.5194/nhess-23-823-2023,https://doi.org/10.5194/nhess-23-823-2023, 2023
Short summary
09 Feb 2023
Coastal extreme sea levels in the Caribbean Sea induced by tropical cyclones
Ariadna Martín, Angel Amores, Alejandro Orfila, Tim Toomey, and Marta Marcos
Nat. Hazards Earth Syst. Sci., 23, 587–600, https://doi.org/10.5194/nhess-23-587-2023,https://doi.org/10.5194/nhess-23-587-2023, 2023
Short summary
02 Feb 2023
Detecting anomalous sea-level states in North Sea tide gauge data using an autoassociative neural network
Kathrin Wahle, Emil V. Stanev, and Joanna Staneva
Nat. Hazards Earth Syst. Sci., 23, 415–428, https://doi.org/10.5194/nhess-23-415-2023,https://doi.org/10.5194/nhess-23-415-2023, 2023
Short summary
31 Jan 2023
Observations of extreme wave runup events on the US Pacific Northwest coast
Chuan Li, H. Tuba Özkan-Haller, Gabriel García Medina, Robert A. Holman, Peter Ruggiero, Treena M. Jensen, David B. Elson, and William R. Schneider
Nat. Hazards Earth Syst. Sci., 23, 107–126, https://doi.org/10.5194/nhess-23-107-2023,https://doi.org/10.5194/nhess-23-107-2023, 2023
Short summary
07 Dec 2022
Estimating dune erosion at the regional scale using a meta-model based on neural networks
Panagiotis Athanasiou, Ap van Dongeren, Alessio Giardino, Michalis Vousdoukas, Jose A. A. Antolinez, and Roshanka Ranasinghe
Nat. Hazards Earth Syst. Sci., 22, 3897–3915, https://doi.org/10.5194/nhess-22-3897-2022,https://doi.org/10.5194/nhess-22-3897-2022, 2022
Short summary
21 Nov 2022
Multi-hazard analysis of flood and tsunamis on the western Mediterranean coast of Turkey
Cuneyt Yavuz, Kutay Yilmaz, and Gorkem Onder
Nat. Hazards Earth Syst. Sci., 22, 3725–3736, https://doi.org/10.5194/nhess-22-3725-2022,https://doi.org/10.5194/nhess-22-3725-2022, 2022
Short summary
19 Oct 2022
Wind-wave characteristics and extremes along the Emilia-Romagna coast
Umesh Pranavam Ayyappan Pillai, Nadia Pinardi, Ivan Federico, Salvatore Causio, Francesco Trotta, Silvia Unguendoli, and Andrea Valentini
Nat. Hazards Earth Syst. Sci., 22, 3413–3433, https://doi.org/10.5194/nhess-22-3413-2022,https://doi.org/10.5194/nhess-22-3413-2022, 2022
Short summary
22 Jul 2022
Reconstruction of wind and surge of the 1906 storm tide at the German North Sea coast
Elke Magda Inge Meyer, Ralf Weisse, Iris Grabemann, Birger Tinz, and Robert Scholz
Nat. Hazards Earth Syst. Sci., 22, 2419–2432, https://doi.org/10.5194/nhess-22-2419-2022,https://doi.org/10.5194/nhess-22-2419-2022, 2022
Short summary
07 Jun 2022
Generating reliable estimates of tropical-cyclone-induced coastal hazards along the Bay of Bengal for current and future climates using synthetic tracks
Tim Willem Bart Leijnse, Alessio Giardino, Kees Nederhoff, and Sofia Caires
Nat. Hazards Earth Syst. Sci., 22, 1863–1891, https://doi.org/10.5194/nhess-22-1863-2022,https://doi.org/10.5194/nhess-22-1863-2022, 2022
Short summary
19 May 2022
The role of heat wave events in the occurrence and persistence of thermal stratification in the southern North Sea
Wei Chen, Joanna Staneva, Sebastian Grayek, Johannes Schulz-Stellenfleth, and Jens Greinert
Nat. Hazards Earth Syst. Sci., 22, 1683–1698, https://doi.org/10.5194/nhess-22-1683-2022,https://doi.org/10.5194/nhess-22-1683-2022, 2022
Short summary
07 Mar 2022
The role of morphodynamics in predicting coastal flooding from storms on a dissipative beach with sea level rise conditions
Jairo E. Cueto, Luis J. Otero Díaz, Silvio R. Ospino-Ortiz, and Alec Torres-Freyermuth
Nat. Hazards Earth Syst. Sci., 22, 713–728, https://doi.org/10.5194/nhess-22-713-2022,https://doi.org/10.5194/nhess-22-713-2022, 2022
Short summary
14 Feb 2022
Statistical estimation of spatial wave extremes for tropical cyclones from small data samples: validation of the STM-E approach using long-term synthetic cyclone data for the Caribbean Sea
Ryota Wada, Jeremy Rohmer, Yann Krien, and Philip Jonathan
Nat. Hazards Earth Syst. Sci., 22, 431–444, https://doi.org/10.5194/nhess-22-431-2022,https://doi.org/10.5194/nhess-22-431-2022, 2022
Short summary
01 Feb 2022
Cost–benefit analysis of coastal flood defence measures in the North Adriatic Sea
Mattia Amadio, Arthur H. Essenfelder, Stefano Bagli, Sepehr Marzi, Paolo Mazzoli, Jaroslav Mysiak, and Stephen Roberts
Nat. Hazards Earth Syst. Sci., 22, 265–286, https://doi.org/10.5194/nhess-22-265-2022,https://doi.org/10.5194/nhess-22-265-2022, 2022
Short summary
04 Jan 2022
The influence of infragravity waves on the safety of coastal defences: a case study of the Dutch Wadden Sea
Christopher H. Lashley, Sebastiaan N. Jonkman, Jentsje van der Meer, Jeremy D. Bricker, and Vincent Vuik
Nat. Hazards Earth Syst. Sci., 22, 1–22, https://doi.org/10.5194/nhess-22-1-2022,https://doi.org/10.5194/nhess-22-1-2022, 2022
Short summary
02 Dec 2021
Review article: Extreme marine events revealed by lagoonal sedimentary records in Ghar El Melh during the last 2500 years in the northeast of Tunisia
Balkis Samah Kohila, Laurent Dezileau, Soumaya Boussetta, Tarek Melki, and Nejib Kallel
Nat. Hazards Earth Syst. Sci., 21, 3645–3661, https://doi.org/10.5194/nhess-21-3645-2021,https://doi.org/10.5194/nhess-21-3645-2021, 2021
Short summary
26 Aug 2021
Estimation of the non-exceedance probability of extreme storm surges in South Korea using tidal-gauge data
Sang-Guk Yum, Hsi-Hsien Wei, and Sung-Hwan Jang
Nat. Hazards Earth Syst. Sci., 21, 2611–2631, https://doi.org/10.5194/nhess-21-2611-2021,https://doi.org/10.5194/nhess-21-2611-2021, 2021
Short summary
CC BY 4.0