Articles | Volume 21, issue 11
https://doi.org/10.5194/nhess-21-3323-2021
https://doi.org/10.5194/nhess-21-3323-2021
Research article
 | 
05 Nov 2021
Research article |  | 05 Nov 2021

Occurrence of pressure-forced meteotsunami events in the eastern Yellow Sea during 2010–2019

Myung-Seok Kim, Seung-Buhm Woo, Hyunmin Eom, and Sung Hyup You

Related subject area

Sea, Ocean and Coastal Hazards
Modelling tsunami initial conditions due to rapid coseismic seafloor displacement: efficient numerical integration and a tool to build unit source databases
Alice Abbate, José M. González Vida, Manuel J. Castro Díaz, Fabrizio Romano, Hafize Başak Bayraktar, Andrey Babeyko, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 24, 2773–2791, https://doi.org/10.5194/nhess-24-2773-2024,https://doi.org/10.5194/nhess-24-2773-2024, 2024
Short summary
Estuarine hurricane wind can intensify surge-dominated extreme water level in shallow and converging coastal systems
Mithun Deb, James J. Benedict, Ning Sun, Zhaoqing Yang, Robert D. Hetland, David Judi, and Taiping Wang
Nat. Hazards Earth Syst. Sci., 24, 2461–2479, https://doi.org/10.5194/nhess-24-2461-2024,https://doi.org/10.5194/nhess-24-2461-2024, 2024
Short summary
Revisiting regression methods for estimating long-term trends in sea surface temperature
Ming-Huei Chang, Yen-Chen Huang, Yu-Hsin Cheng, Chuen-Teyr Terng, Jinyi Chen, and Jyh Cherng Jan
Nat. Hazards Earth Syst. Sci., 24, 2481–2494, https://doi.org/10.5194/nhess-24-2481-2024,https://doi.org/10.5194/nhess-24-2481-2024, 2024
Short summary
Global application of a regional frequency analysis to extreme sea levels
Thomas P. Collings, Niall D. Quinn, Ivan D. Haigh, Joshua Green, Izzy Probyn, Hamish Wilkinson, Sanne Muis, William V. Sweet, and Paul D. Bates
Nat. Hazards Earth Syst. Sci., 24, 2403–2423, https://doi.org/10.5194/nhess-24-2403-2024,https://doi.org/10.5194/nhess-24-2403-2024, 2024
Short summary
Tsunami hazard assessment in the South China Sea based on geodetic locking of the Manila subduction zone
Guangsheng Zhao and Xiaojing Niu
Nat. Hazards Earth Syst. Sci., 24, 2303–2313, https://doi.org/10.5194/nhess-24-2303-2024,https://doi.org/10.5194/nhess-24-2303-2024, 2024
Short summary

Cited articles

Anarde, K., Cheng, W., Tissier, M., Figlus, J., and Horrillo, J.: Meteotsunamis accompanying tropical cyclone rainbands during Hurricane Harvey, J. Geophys. Res.-Oceans., 126, e2020JC016347, https://doi.org/10.1029/2020JC016347, 2021. 
Bechle, A. J., Kristovich, D. A. R., and Wu, C. H.: Meteotsunami occurrences and causes in Lake Michigan, J. Geophys. Res.-Oceans., 120, 8422–8438, https://doi.org/10.1002/2015JC011317, 2015. 
Belušić, D., Grisogono, B., and Klaić, Z. B.: Atmospheric origin of the devastating coupled air-sea event in the east Adriatic, J. Geophys. Res.-Atmos., 112, 17111–17124, https://doi.org/10.1029/2006JD008204, 2007. 
Chen, Y. and Niu, X.: Forced wave induced by an atmospheric pressure disturbance moving towards shore, Cont. Shelf Res., 160, 1–9, https://doi.org/10.1016/j.csr.2018.03.007, 2018. 
Choi, J.-Y. and Lee, D.-Y.: Analysis of small-scale atmospheric pressure jumps related to the generation of abnormal extreme waves at Boryeong, Ocean Polar Res., 31, 379–388, 2009. 
Download
Short summary
We present spatial and temporal trends of meteotsunami occurrence in the eastern Yellow Sea over the past decade (2010–2019). Also, the improved meteotsunami monitoring/warning system was proposed based on occurrence characteristics of an air pressure disturbance and meteotsunami on the classified meteotsunami events. The guidance regarding the operation period, potential hot spot, and risk level of the meteotsunamis will be helpful to monitoring/warning system operators.
Altmetrics
Final-revised paper
Preprint