Articles | Volume 21, issue 9
https://doi.org/10.5194/nhess-21-2829-2021
https://doi.org/10.5194/nhess-21-2829-2021
Research article
 | 
16 Sep 2021
Research article |  | 16 Sep 2021

Global flood exposure from different sized rivers

Mark V. Bernhofen, Mark A. Trigg, P. Andrew Sleigh, Christopher C. Sampson, and Andrew M. Smith

Related authors

Critical assessment of metrics and methods used to quantify temporal loading of rainfall events
Molly Asher, Mark A. Trigg, Cathryn E. Birch, Rasmus Henriksen, Steven J. Böing, and Jonas Wied Pedersen
EGUsphere, https://doi.org/10.5194/egusphere-2025-4711,https://doi.org/10.5194/egusphere-2025-4711, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
FOREWARNS: development and multifaceted verification of enhanced regional-scale surface water flood forecasts
Ben Maybee, Cathryn E. Birch, Steven J. Böing, Thomas Willis, Linda Speight, Aurore N. Porson, Charlie Pilling, Kay L. Shelton, and Mark A. Trigg
Nat. Hazards Earth Syst. Sci., 24, 1415–1436, https://doi.org/10.5194/nhess-24-1415-2024,https://doi.org/10.5194/nhess-24-1415-2024, 2024
Short summary
A climate-conditioned catastrophe risk model for UK flooding
Paul D. Bates, James Savage, Oliver Wing, Niall Quinn, Christopher Sampson, Jeffrey Neal, and Andrew Smith
Nat. Hazards Earth Syst. Sci., 23, 891–908, https://doi.org/10.5194/nhess-23-891-2023,https://doi.org/10.5194/nhess-23-891-2023, 2023
Short summary
Simulating historical flood events at the continental scale: observational validation of a large-scale hydrodynamic model
Oliver E. J. Wing, Andrew M. Smith, Michael L. Marston, Jeremy R. Porter, Mike F. Amodeo, Christopher C. Sampson, and Paul D. Bates
Nat. Hazards Earth Syst. Sci., 21, 559–575, https://doi.org/10.5194/nhess-21-559-2021,https://doi.org/10.5194/nhess-21-559-2021, 2021
Short summary

Cited articles

Aerts, J. P. M., Uhlemann-Elmer, S., Eilander, D., and Ward, P. J.: Comparison of estimates of global flood models for flood hazard and exposed gross domestic product: a China case study, Nat. Hazards Earth Syst. Sci., 20, 3245–3260, https://doi.org/10.5194/nhess-20-3245-2020, 2020. 
Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., de Roo, A., Salamon, P., Wyser, K., and Feyen, L.: Global projections of river flood risk in a warmer world, Earth Future, 5, 171–182, https://doi.org/10.1002/2016ef000485, 2017. 
Annis, A., Nardi, F., Morrison, R. R., and Castelli, F.: Investigating hydrogeomorphic floodplain mapping performance with varying DTM resolution and stream order, Hydrolog. Sci. J., 64, 525–538, https://doi.org/10.1080/02626667.2019.1591623, 2019. 
Bakrania, S.: Urbanisation and urban growth in Nepal, GSDRC University of Birmingham, Birmingham, UK, 2015. 
Bernhofen, M. V., Whyman, C., Trigg, M. A., Sleigh, P. A., Smith, A., Sampson, C., Yamazaki, D., Ward, P., Rudari, R., Pappenberger, F., Dottori, F., Salamon, P., and Winsemius, H. C.: Analysis inputs for validation of six global flood models against observed flood events in Nigeria and Mozambique, Research Data Leeds Repository [data set], https://doi.org/10.5518/340, 2018a. 
Download
Short summary
The use of different global datasets to calculate flood exposure can lead to differences in global flood exposure estimates. In this study, we use three global population datasets and a simple measure of a river’s flood susceptibility (based on the terrain alone) to explore how the choice of population data and the size of river represented in global flood models affect global and national flood exposure estimates.
Share
Altmetrics
Final-revised paper
Preprint