Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S.,
Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D.,
Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Sea level
change, in: Climate Change 2013: The Physical Science Basis, Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, chap. 13, edited by: Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and
Midgley, P. M., Cambridge University Press, ISBN 978-1-107-05799-1, 1137–1216, 2013.
a,
b
Clark, P. U., Shakun, J. D., Marcott, S. A., Mix, A. C., Eby, M., Kulp, S.,
Levermann, A., Milne, G. A., Pfister, P. L., Santer, B. D., Schrag, D. P.,
Solomon, S., Stocker, T. F., Strauss, B. H., Weaver, A. J., Winkelmann, R.,
Archer, D., Bard, E., Goldner, A., Lambeck, K., Pierrehumbert, R. T., and
Plattner, G. K.: Consequences of twenty-first-century policy for
multi-millennial climate and sea-level change, Nat. Clim. Change, 6, 360–369,
https://doi.org/10.1038/NCLIMATE2923, 2016.
a
Cooper, H. M. and Chen, Q.: Incorporating uncertainty of future sea-level rise estimates into vulnerability assessment: a case study in Kahului, Maui, Climatic Change, 121, 635–647,
https://doi.org/10.1007/s10584-013-0987-x, 2013.
a
Cooper, H. M., Fletcher, C. H., Chen, Q., and Barbee, M. M.: Sea-level rise
vulnerability mapping for adaptation decisions using LiDAR DEMs, Prog. Phys.
Geogr., 37, 745–766,
https://doi.org/10.1177/0309133313496835, 2013.
a
Edwards, T. L., Brandon, M. A., Durand, G., Edwards, N. R., Golledge, N. R.,
Holden, P. B., Nias, I. J., Payne, A. J., Ritz, C., and Wernecke, A.:
Revisiting Antarctic ice loss due to marine ice-cliff instability, Nature,
566, 58–64,
https://doi.org/10.1038/s41586-019-0901-4, 2019.
a
Geonorge: Shared map catalogue of Norway, Web portal, available at:
https://www.geonorge.no/en (last access: 24 February 2020), 2019.
a,
b
Gesch, D. B.: Analysis of Lidar Elevation Data for Improved Identification and Delineation of Lands Vulnerable to Sea-Level Rise, J. Coast. Res., 53,
49–58,
https://doi.org/10.2112/SI53-006.1, 2009.
a,
b,
c,
d
Gesch, D. B.: Consideration of Vertical Uncertainty in Elevation-Based Sea-Level Rise Assessments: Mobile Bay, Alabama Case Study, J. Coast. Res.,
63, 197–210,
https://doi.org/10.2112/SI63-016.1, 2013.
a
IPCC: Summary for Policymakers, in: Climate Change 2013: The Physical Science
Basis, Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, ISBN 978-1-107-05799-1, 2013. a
Kartverket: Forprosjekt “Nasjonal, detaljert høydemodell”, Tech. rep., Norwegian Mapping Authority, available at:
https://hoydedata.no/LaserInnsyn/ (last access: 24 February 2020), 2014.
a,
b,
c,
d
Kartverket: The Norwegian coastline, Web portal, available at:
https://www.kartverket.no/kunnskap/Fakta-om-Norge/norges-kystlinje/kystlinjen-i-kilometer
(last access: 24 February 2020), 2019a. a
Kartverket: The SOSI-standard, Web portal, available at:
https://www.kartverket.no/geodataarbeid/Standarder/SOSI/SOSI-standarden-del-2
(last access: 24 February 2020), 2019b. a
Kartverket: Se havnivå i kart (View sea-level rise in maps), Web portal,
available at:
https://www.kartverket.no/en/sehavniva (last access: 24 February 2020), 2019c.
a,
b
Kierulf, H. P., Steffen, H., Simpson, M. J. R., Lidberg, M., Wu, P., and Wang, H.: A GPS velocity field for Fennoscandia and a consistent comparison to glacial isostatic adjustment models, J. Geophys. Res.-Solid, 119, 6613–6629,
https://doi.org/10.1002/2013JB010889, 2014.
a
Le Cozannet, G., Nicholls, R. J., Hinkel, J., Sweet, W. V., McInnes, K. L.,
Van de Wal, R. S. W., Slangen, A. B. A., Lowe, J. A., and White, K. D.: Sea
Level Change and Coastal Climate Services: The Way Forward, J. Mar. Sci. Eng., 5, 49,
https://doi.org/10.3390/jmse5040049, 2017.
a
Li, Z.: Variation of the accuracy of digital terrain models with sampling
interval, Photogramm. Rec., 14, 113–128, 1992. a
Nicholls, R. J.: Impacts of and Responses to Sea-Level Rise, in: Understanding Sea-Level Rise and Variability, edited by: Church, J. A., Woodworth, P. L., Aarup, T., and Wilson, W. S., Wiley-Blackwell, ISBN 978-1-4443-3452-4, 17–51, 2010. a
Olesen, O., Kierulf, H. P., Brönner, M., Dalsegg, E., Fredin, O., and
Solbakk, T.: Deep weathering, neotectonics and strandflat formation in
Nordland, northern Norway, Nor. J. Geol., 93, 189–213, 2013. a
Ouassou, M., Jensen, A. B. O., Gjevestad, J. G. O., and Kristiansen, O.: Next
Generation Network Real-Time Kinematic Interpolation Segment to Improve the
User Accuracy, Int. J. Navigat. Obs., 2015, 346498,
https://doi.org/10.1155/2015/346498, 2015.
a
Passeri, D. L., Hagen, S. C., Medeiros, S. C., Bilskie, M. V., Alizad, K., and Wang, D.: The dynamic effects of sea level rise on low-gradient coastal
landscapes: A review, Earth's Future, 3, 159–181,
https://doi.org/10.1002/2015EF000298, 2015.
a
Reutebuch, S. E., McGaughey, R. J., Andersen, H. E., and Carson, W. W.:
Accuracy of a high-resolution lidar terrain model under a conifer forest
canopy, Can. J. Remote. Sens., 29, 527–535,
https://doi.org/10.5589/m03-022, 2003.
a
Roelvink, D., Reniers, A., Van Dongeren, A., van Thiel de Vries, J., McCall,
R., and Lescinski, J.: Modelling storm impacts on beaches, dunes and barrier
islands, Coast. Eng., 56, 1133–1152,
https://doi.org/10.1016/j.coastaleng.2009.08.006,
2009.
a
Rowley, R. J., Kostelnick, J. C., Braaten, D., Li, X., and Meisel, J.: Risk of rising sea level to population and land area, Eos Trans. Am. Geophys. Union, 88, 105–107, 2007. a
Sibson, R.: A brief description of natural neighbor interpolation, in:
Interpreting Multivariate Data, chap. 2, edited by: Barnett, V.,
John Wiley, New York, ISBN 978-047128039, 21–36, 1981. a
Simpson, M. J. R., Nilsen, J. E. Ø., Randal, O. R., Breili, K., Sande, H.,
Kierulf, H. P., Steffen, H., Jansen, E., Carson, M., and Vestøl, O.: Sea
Level Change for Norway: Past and Present Observations and Projections to 2100, report 1/2015. Norwegian Centre for Climate Services, Oslo, Norway, ISSN 2387-3027, Tech. rep., 2015.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j
Simpson, M. J. R., Ravndal, O. R., Sande, H., Nilsen, J. E. Ø., Kierulf, H. P., Vestøl, O., and Steffen, H.: Projected 21st century sea-level
changes, extreme sea levels, and sea level allowances for Norway, J. Mar. Sci. Eng., 5, 36,
https://doi.org/10.3390/jmse5030036, 2017.
a,
b,
c,
d
Skjong, M., Naess, A., and Brandrud Næss, O. E.: Statistics of Extreme Sea Levels for Locations along the Norwegian Coast, J. Coast. Res., 29,
1029–1048,
https://doi.org/10.2112/JCOASTRES-D-12-00208.1, 2013.
a
Solheim, D.: New height reference surfaces for Norway, in: Report on the
Symposium of the IAG Subcommission for Europe (EUREF) in Tromsø, edited by: Torres, J. A. and Hornik, H., Verlag der Bayer. Akad. der Wiss., Munich, Germany, 154–158, 2000. a
SSB: Statistics Norway: Land use and land cover, Web portal, available at:
https://www.ssb.no/en/natur-og-miljo/statistikker/arealstat (last access: 24 February 2020), 2019. a
Strauss, B. H., Ziemlinski, R., Weiss, J. L., and Overpeck, J. T.: Tidally
adjusted estimates of topographic vulnerability to sea level rise and flooding for the contiguous United States, Environ. Res. Lett., 7, 014033,
https://doi.org/10.1088/1748-9326/7/1/014033, 2012.
a,
b
Strauss, B. H., Kulp, S., and Levermann, A.: Carbon choices determine US cities committed to futures below sea level, P. Natl. Acad. Sci. USA, 112,
13508–13513,
https://doi.org/10.1073/pnas.1511186112, 2015.
a,
b
Taylor, K., Stouer, R. J., and Meehl, G. A.: An overview of CMIP5 and the
experiment design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
a
TEK: Buildings acts for Norway (TEK17) [technical manual], Web portal, available at:
https://dibk.no/byggereglene/byggteknisk-forskrift-tek17 (last access: 24 February 2020), 2019.
a,
b
Titus, J. G. and Narayanan, V. K.: The Probability of Sea Level Rise, Tech. rep., US Environmental Protection Agency, Washington, D.C., USA; Office of Policy, Planning, and Evaluation, Bethesda, MD, USA; Climate Change Division, Adaptation Branch, Washington, D.C., USA, 1995. a
UNESCO: UNESCO World Heritage Center, World Heritage List, available at:
http://whc.unesco.org/en/list (last access: 24 February 2020), 2019. a
Vestøl, O.: Determination of postglacial land uplift in Fennoscandia from
leveling, tide-gauges and continuous GPS stations using least squares
collocation, J. Geod., 80, 248–258,
https://doi.org/10.1007/s00190-006-0063-7, 2006.
a
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Bianchi, A., Dottori, F.,
and Feyen, L.: Climatic and socioeconomic controls of future coastal flood
risk in Europe, Nat. Clim. Change, 8, 776–780,
https://doi.org/10.1038/s41558-018-0260-4, 2018a.
a,
b,
c
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., Jevrejeva, S., Jackson, L. P., and Feyen, L.: Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard, Nat. Commun., 9, 2360,
https://doi.org/10.1038/s41467-018-04692-w, 2018b.
a