Articles | Volume 20, issue 7
https://doi.org/10.5194/nhess-20-1889-2020
https://doi.org/10.5194/nhess-20-1889-2020
Research article
 | 
02 Jul 2020
Research article |  | 02 Jul 2020

Spatiotemporal changes of heat waves and extreme temperatures in the main cities of China from 1955 to 2014

Kuo Li and Gyilbag Amatus

Related authors

Risk assessment of meteorological drought in China under RCP scenarios from 2016 to 2050
Kuo Li and Jie Pan
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2016-257,https://doi.org/10.5194/nhess-2016-257, 2016
Manuscript not accepted for further review
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Global estimates of 100-year return values of daily precipitation from ensemble weather prediction data
Florian Ruff and Stephan Pfahl
Nat. Hazards Earth Syst. Sci., 24, 2939–2952, https://doi.org/10.5194/nhess-24-2939-2024,https://doi.org/10.5194/nhess-24-2939-2024, 2024
Short summary
Exploring the sensitivity of extreme event attribution of two recent extreme weather events in Sweden using long-running meteorological observations
Erik Holmgren and Erik Kjellström
Nat. Hazards Earth Syst. Sci., 24, 2875–2893, https://doi.org/10.5194/nhess-24-2875-2024,https://doi.org/10.5194/nhess-24-2875-2024, 2024
Short summary
Probabilistic short-range forecasts of high-precipitation events: optimal decision thresholds and predictability limits
François Bouttier and Hugo Marchal
Nat. Hazards Earth Syst. Sci., 24, 2793–2816, https://doi.org/10.5194/nhess-24-2793-2024,https://doi.org/10.5194/nhess-24-2793-2024, 2024
Short summary
Surprise floods: the role of our imagination in preparing for disasters
Joy Ommer, Jessica Neumann, Milan Kalas, Sophie Blackburn, and Hannah L. Cloke
Nat. Hazards Earth Syst. Sci., 24, 2633–2646, https://doi.org/10.5194/nhess-24-2633-2024,https://doi.org/10.5194/nhess-24-2633-2024, 2024
Short summary
Modelling crop hail damage footprints with single-polarization radar: the roles of spatial resolution, hail intensity, and cropland density
Raphael Portmann, Timo Schmid, Leonie Villiger, David N. Bresch, and Pierluigi Calanca
Nat. Hazards Earth Syst. Sci., 24, 2541–2558, https://doi.org/10.5194/nhess-24-2541-2024,https://doi.org/10.5194/nhess-24-2541-2024, 2024
Short summary

Cited articles

Angélil, O., Stone, D., Wehner, M., Paciorek, C. J., Krishnan, H., and Collins, W.: An independent assessment of anthropogenic attribution statements for recent extreme temperature and rainfall events, J. Climate, 30, 5–16, https://doi.org/10.1175/JCLI-D-16-0077.1, 2017. 
Bonsal, B. R., Zhang, X., Vincent, L. A., and Hogg, W. D.: Characteristics of daily and extreme temperatures over Canada, J. Climate, 14, 1959–1976, 2001. 
Buscail, C., Upegui, E., and Viel, J. F.: Mapping heatwave health risk at the community level for public health action, Int. J. Health Geogr., 11, 38, https://doi.org/10.1186/1476-072X-11-38, 2012. 
Chen, Y. and Li, Y.: An Inter-comparison of Three Heat Wave Types in China during 1961–2010: Observed Basic Features and Linear Trends, Sci. Rep., 7, 45619, https://doi.org/10.1038/srep45619, 2017. 
Download
Short summary
In recent years, heat waves have become more frequent in the world, e.g., in Europe, Australia, China and the US, at huge detriment to human health and natural resources. Thus we establish an integrated index of heat waves and extreme-temperature days to provide unified standards for assessing heat waves and hot years. It provides a clear picture of the evolution and spatial distribution of heat waves and hot years in China.
Altmetrics
Final-revised paper
Preprint