Articles | Volume 20, issue 4
Nat. Hazards Earth Syst. Sci., 20, 1097–1106, 2020
https://doi.org/10.5194/nhess-20-1097-2020
Nat. Hazards Earth Syst. Sci., 20, 1097–1106, 2020
https://doi.org/10.5194/nhess-20-1097-2020

Research article 24 Apr 2020

Research article | 24 Apr 2020

Satellite hydrology observations as operational indicators of forecasted fire danger across the contiguous United States

Alireza Farahmand et al.

Related authors

CARDAMOM-FluxVal Version 1.0: a FLUXNET-based Validation System for CARDAMOM Carbon and Water Flux Estimates
Yan Yang, A. Anthony Bloom, Shuang Ma, Paul Levine, Alexander Norton, Nicholas C. Parazoo, John T. Reager, John Worden, Gregory R. Quetin, T. Luke Smallman, Mathew Williams, Liang Xu, and Sassan Saatchi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-190,https://doi.org/10.5194/gmd-2021-190, 2021
Preprint under review for GMD
Short summary
Boreal forest fire CO and CH4 emission factors derived from tower observations in Alaska during the extreme fire season of 2015
Elizabeth B. Wiggins, Arlyn Andrews, Colm Sweeney, John B. Miller, Charles E. Miller, Sander Veraverbeke, Roisin Commane, Steven Wofsy, John M. Henderson, and James T. Randerson
Atmos. Chem. Phys., 21, 8557–8574, https://doi.org/10.5194/acp-21-8557-2021,https://doi.org/10.5194/acp-21-8557-2021, 2021
Short summary
Building a machine learning surrogate model for wildfire activities within a global earth system model
Qing Zhu, Fa Li, William J. Riley, Li Xu, Lei Zhao, Kunxiaojia Yuan, Huayi Wu, Jianya Gong, and James T. Randerson
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-83,https://doi.org/10.5194/gmd-2021-83, 2021
Revised manuscript under review for GMD
Short summary
Measurement report: Long-range transport patterns into the tropical northwest Pacific during the CAMP2Ex aircraft campaign: chemical composition, size distributions, and the impact of convection
Miguel Ricardo A. Hilario, Ewan Crosbie, Michael Shook, Jeffrey S. Reid, Maria Obiminda L. Cambaliza, James Bernard B. Simpas, Luke Ziemba, Joshua P. DiGangi, Glenn S. Diskin, Phu Nguyen, F. Joseph Turk, Edward Winstead, Claire E. Robinson, Jian Wang, Jiaoshi Zhang, Yang Wang, Subin Yoon, James Flynn, Sergio L. Alvarez, Ali Behrangi, and Armin Sorooshian
Atmos. Chem. Phys., 21, 3777–3802, https://doi.org/10.5194/acp-21-3777-2021,https://doi.org/10.5194/acp-21-3777-2021, 2021
Short summary
Information content of soil hydrology in the Amazon as informed by GRACE
Elias C. Massoud, A. Anthony Bloom, Marcos Longo, John T. Reager, Paul A. Levine, and John R. Worden
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-104,https://doi.org/10.5194/hess-2021-104, 2021
Revised manuscript under review for HESS
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
The mud volcanoes at Santa Barbara and Aragona (Sicily, Italy): a contribution to risk assessment
Alessandro Gattuso, Francesco Italiano, Giorgio Capasso, Antonino D'Alessandro, Fausto Grassa, Antonino Fabio Pisciotta, and Davide Romano
Nat. Hazards Earth Syst. Sci., 21, 3407–3419, https://doi.org/10.5194/nhess-21-3407-2021,https://doi.org/10.5194/nhess-21-3407-2021, 2021
Short summary
Impact of information presentation on interpretability of spatial hazard information: lessons from a study in avalanche safety
Kathryn C. Fisher, Pascal Haegeli, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 21, 3219–3242, https://doi.org/10.5194/nhess-21-3219-2021,https://doi.org/10.5194/nhess-21-3219-2021, 2021
Short summary
ABWiSE v1.0: toward an agent-based approach to simulating wildfire spread
Jeffrey Katan and Liliana Perez
Nat. Hazards Earth Syst. Sci., 21, 3141–3160, https://doi.org/10.5194/nhess-21-3141-2021,https://doi.org/10.5194/nhess-21-3141-2021, 2021
Short summary
Multi-decadal geomorphic changes of a low-angle valley glacier in the East Kunlun Mountains: remote sensing observations and detachment hazard assessment
Xiaowen Wang, Lin Liu, Yan Hu, Tonghua Wu, Lin Zhao, Qiao Liu, Rui Zhang, Bo Zhang, and Guoxiang Liu
Nat. Hazards Earth Syst. Sci., 21, 2791–2810, https://doi.org/10.5194/nhess-21-2791-2021,https://doi.org/10.5194/nhess-21-2791-2021, 2021
Short summary
Spatial and temporal subsidence characteristics in Wuhan (China), during 2015–2019, inferred from Sentinel-1 synthetic aperture radar (SAR) interferometry
Xuguo Shi, Shaocheng Zhang, Mi Jiang, Yuanyuan Pei, Tengteng Qu, Jinhu Xu, and Chen Yang
Nat. Hazards Earth Syst. Sci., 21, 2285–2297, https://doi.org/10.5194/nhess-21-2285-2021,https://doi.org/10.5194/nhess-21-2285-2021, 2021
Short summary

Cited articles

Abatzoglou, J. T.: Development of gridded surface meteorological data for ecological applications and modelling, Int. J. Climatol., 33, 121–131, https://doi.org/10.1002/joc.3413, 2013. 
Abatzoglou, J. T. and Brown, T. J.: A comparison of statistical downscaling methods suited for wildfire applications, Int. J. Climatol., 32, 772–780, https://doi.org/10.1002/joc.2312, 2012. 
Abatzoglou, J. T. and Kolden, C. A.: Relationships between climate and macroscale area burned in the western United States, Int. J. Wildland Fire, 22, 1003, https://doi.org/10.1071/WF13019, 2013. 
Abatzoglou, J. T. and Williams, A. P.: Impact of anthropogenic climate change on wildfire across western US forests, P. Natl. Acad. Sci. USA, 113, 11770–11775, https://doi.org/10.1073/pnas.1607171113, 2016. 
Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E., McMillin, L. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L., Staelin, D. H., Strow, L. L., and Susskind, J.: AIRS/AMSU/HSB on the aqua mission: design, science objectives, data products, and processing systems, IEEE T. Geosci. Remote, 41, 253–264, https://doi.org/10.1109/TGRS.2002.808356, 2003. 
Download
Short summary
Wildfires result in billions of dollars of losses each year. Most wildfire predictions have a 10 d lead-time. This study introduces a framework for a 1-month lead-time prediction of wildfires based on vapor pressure deficit and surface soil moisture in the US. The results show that the model can successfully predict burned area with relatively small margins of error. This is especially important for operational wildfire management such as national resource allocation.
Altmetrics
Final-revised paper
Preprint