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Abstract. Traditional methods for assessing fire danger often
depend on meteorological forecasts, which have reduced reli-
ability after ~ 10d. Recent studies have demonstrated long
lead-time correlations between pre-fire-season hydrological
variables such as soil moisture and later fire occurrence or
area burned, yet the potential value of these relationships
for operational forecasting has not been studied. Here, we
use soil moisture data refined by remote sensing observa-
tions of terrestrial water storage from NASA’s Gravity Re-
covery and Climate Experiment (GRACE) mission and vapor
pressure deficit from NASA’s Atmospheric Infrared Sounder
(AIRS) mission to generate monthly predictions of fire dan-
ger at scales commensurate with regional management. We
test the viability of predictors within nine US geographic area
coordination centers (GACCs) using regression models spe-
cific to each GACC. Results show that the model framework
improves interannual wildfire-burned-area prediction relative
to climatology for all GACCs. This demonstrates the impor-
tance of hydrological information to extend operational fore-
cast ability into the months preceding wildfire activity.

Copyright statement. This research was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration
(NASA). © 2020.

1 Introduction

Fires are a key disturbance globally, acting as a catalyst
for terrestrial ecosystem change and contributing signifi-
cantly to both carbon emissions (Page et al., 2002) and
changes in surface albedo (Randerson et al., 2006). Fur-
thermore, the socioeconomic impact of fires includes human
casualties as tremendous economic loss across the United
States. For example, the year 2018 was the largest fire
year on record, resulting in approximately USD 3 billion
in suppression costs (https://www.nifc.gov/fireInfo/fireInfo_
documents/SuppCosts.pdf; last access: 17 April 2020). Sev-
eral studies have shown that in the western United States,
fires have demonstrated a positive trend in annual area burned
that will likely continue into the future (Littell et al., 2010;
Stavros et al., 2014b). In response to increasing annual area
burned and detrimental losses, the US Forest Service has
increased funding for active fire management from 16 %
to 52% of their total budget that would have otherwise
been spent on land management and research (USFS, 2015).
These increased costs translate directly to increased USFS
(United States Forest Service) information needs because any
intra- or interannual early warning helps decrease the cost of
preparing for, managing and, when necessary, suppressing
fires that occur.

The severe consequences of wildfires motivate the need for
capabilities to map fire potential on timescales ranging from
days to months. Operational fire management agencies rely
on two primary sources of information to predict fire danger:
meteorological forecasts and expert judgment (e.g., https://
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www.predictiveservices.nifc.gov/outlooks/outlooks.htm; last
access: 17 April 2020). Fire danger forecasts are generally
reported in the form of qualitative categories (e.g., normal,
below-normal and above-normal). Such categories are used
by the US National Interagency Fire Center (NIFC) to allo-
cate fire management resources across jurisdictional bound-
aries (e.g., state or national) when local response capabili-
ties are exhausted. These qualitative metrics are derived from
many information layers including fire danger indices.

Fire danger indices (e.g., the US National Fire Danger Rat-
ing System — NFDRS; Bradshaw et al., 1984) typically use
meteorological input (Abatzoglou and Brown, 2012; Holden
and Jolly, 2011) that is sometimes not available with the long
lead time needed for regional, transboundary fire manage-
ment planning. Gridded meteorological data often have sev-
eral limitations. The data are interpolated between weather
stations (Daly et al., 2008); developed by combing spatial
and temporal attributes of different climate data and vali-
dated with weather stations (Abatzoglou, 2013; Abatzoglou
and Brown, 2012); or provided by meteorological reanaly-
sis, i.e., numerical weather prediction models that assimilate
weather station data (Kalnay et al., 1996; Roads et al., 1999).
These weather stations are sometimes far away from the loca-
tion of interest and do not always provide good estimates of
local climate, especially in complex topography. Moreover,
forecasts beyond 10 d for a given landscape location have low
skill (Bauer et al., 2015). The mentioned limitations of cur-
rent operational fire danger systems result in the need for ad-
ditional information that could help improve predictions of
fire danger at monthly intervals and help allocate resources
across the country as the active fire season progresses and
resources become strained. This added information could re-
sult in less subjective and more accurate fire danger forecasts
for larger areas and for timescales of a month or longer.

A number of previous studies have demonstrated relation-
ships between fire and hydrological indicators (Parks et al.,
2014; Shabbar et al., 2011; Westerling et al., 2002; Xiao
and Zhuang, 2007). Vapor pressure deficit (VPD), specifi-
cally, has been shown as an indicator of fire danger (Abat-
zoglou and Williams, 2016; Seager et al., 2015; Williams
et al.,, 2014) and is considered a viable proxy for evapo-
transpiration demand and plant water stress during drought
(Behrangi et al., 2016; Weiss et al., 2012). VPD is defined as
the amount of moisture in the air compared to the amount of
moisture the air can hold. Behrangi et al. (2016) show that
VPD on a monthly timescale has the advantage of captur-
ing onsets of meteorological droughts earlier than other vari-
ables such as precipitation. This advantage could be helpful
in developing fire danger forecast models. More recently, a
study using model-assimilated observations of terrestrial wa-
ter storage from NASA’s Gravity Recovery and Climate Ex-
periment (GRACE) mission to assess pre-fire-season surface
soil moisture conditions (January—April) demonstrated skill
in predicting both the number of fires and fire-burned area in
the following May—April period (Jensen et al., 2017).
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The goal of this work is to investigate the utility of re-
motely sensed hydrology observations for predicting fire
danger, defined as the amount of area likely to burn, at spatial
and temporal scales commensurate with regional and global
fire management decision-making. Specifically, the objec-
tive is to investigate the utility of remotely sensed satellite-
observed vapor pressure deficit (VPD) from NASA’s Atmo-
spheric Infrared Sounder (AIRS) mission and surface soil
moisture (SSM) from a numerical data assimilation of ter-
restrial water storage from NASA’s GRACE mission as in-
dicators for predicting monthly fire danger across the United
States from 2002 until 2016 at the scale of the geographic
area coordination centers (GACCs; Fig. 1). To meet the
objective, we test the hypothesis that burned area varies
monthly as a function of previous months’ water availabil-
ity in the soil (SSM) and evaporative demand (i.e., previous
months’ VPD).

2 Methods
2.1 Datasets

For the purpose of this study, four input datasets were used
(Fig. 1). First, monthly VPD (Fig. 1a) was generated from
the AIRS near-surface air temperature (7Tieqan) and relative
humidity (RH) version 6 (Aumann et al., 2003; Goldberg et
al., 2003). Please refer to Behrangi et al. (2016) for the for-
mulation based on monthly air temperature (Tinean) and dew
point temperature (Tdmean) as well as the reliability of this
formulation for monthly VPD derivation. The data are at a
0.5° spatial resolution and have been available since Septem-
ber 2002. The second input to the model was monthly surface
soil moisture data (Fig. 1b), produced at the NASA Goddard
Space Flight Center (GSFC) using the catchment land sur-
face model (CLSM; a physically based land surface model)
and assimilated ground- and space-based meteorological ob-
servations (Houborg et al., 2012; Reager et al., 2015; Tap-
ley et al., 2004; Zaitchik et al., 2008). The SSM data have
been available since April 2004 and are at a 0.25° spatial
resolution. The third dataset was the Global Fire Emissions
Database version 4 (GFED-4s), which provided wildfire-
burned area, generated at a 0.25° spatial resolution. GFED-4s
is primarily derived from MODIS from 2001 to present and
is reported as fraction of a cell burned for a given month (van
der Werf et al., 2017). GFED data have been available since
1997. Figure 1c shows GFED burned area in August 2010,
while Fig. le shows the long-term August burned area in
square kilometers. As shown, wildfires occur all around the
contiguous United States (CONUS) in August. The amount
of area burned however is considerably larger in the western
United States, such as in the Northern Rockies, Northwest,
Rocky Mountain and Northern California GACCs. Finally,
in this study, we have excluded agricultural fires by masking
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Figure 1. Snapshot of August 2010 of the datasets used in relation to the geographic area coordination centers (GACCs). Panel (e) shows
the long-term mean of August GFED burned area. GACC regions are (1) Eastern, (2) Northern California (CA), (3) Northern Rockies,
(4) Northwest, (5) Rocky Mountain, (6) Southern CA, (7) Southern, (8) Southwest and (9) Great Basin.

out agricultural regions as classified by the 2011 National
Land Cover Database (Fig. 1d; Homer et al., 2015).

For consistency, all datasets were converted using linear
interpolation into monthly 0.25° spatial-resolution products
that were then used to perform the model training and analy-
sis for the period 2003 through 2016.

2.2 Analysis

GACCs are marked by geopolitical boundaries that also de-
note similar fire weather types and are used to allocate fire
management resources across the contiguous United States
(CONUS; Abatzoglou and Kolden, 2013; Finco et al., 2012;
Fig. 1). In this study, we predict anomalous monthly burned
area using a linear regression model; a separate model is de-
veloped for each GACC and for each month in a climatolog-
ical sense. All fire events, for a given GACC and a month of
the year, are selected as a single population for model train-
ing. For example, all fires occurring in the Northern Rockies
GACC, during the months of February 2004, February 2005,
February 2006, etc. through February 2016, are placed into
a single population. Each monthly 0.25° fire-burned area ob-
servation has a matched SSM and VPD observation at the
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corresponding time and grid location. These sets are then
used to train the model, and various time lags are imposed
between the independent variables (SSM and VPD) and the
dependent variable (burned area) in order to maximize pre-
dictive skill.

Each GACC uses the best prior VPD-SSM combination
for all months. The best model was identified for each GACC
by selecting the model with the lagged input that represents
the highest-weighted Nash—Sutcliffe efficiency (Ey):

12
EWZ j=]Ej XFABj, (1)
where FAB; is the mean historical fraction of annual area
burned in month j and E; is the Nash—Sutcliffe (E) for any
given month (j). E; (Nash and Sutcliffe, 1970) is a metric
that measures the skill of the model against the skill of the
long-term mean value (i.e., persistence), defined as

Z?:] (ABobs,i - ABs,i)2
Y, (ABobsi — ABc)”

Ej=1- )

where n is total number of observations, ABgps ; is observed
area burned in month j, ABg; is the model-simulated area
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burned for month j and ABc is the mean area burned in
month j over the climatological record. E can range between
—infinity and 1. An E value of zero shows that the model per-
formance is as good as the mean of observations over the en-
tire record. If E exceeds 0, the model performs better than the
mean of observations, and if E falls below zero, the mean of
observations is a better predictor than the model simulations.
An E of 1 represents the perfect prediction by the model.

We constructed a forecasting method that would only rely
on the model prediction of burned area, as opposed to the
burned-area climatology, if the model had demonstrated skill
for a given month. The estimation of Ey, for each GACC
and for each monthly model ensures that months with higher
predictive skill are assigned a higher weight in the combined
time series. Also, months exhibiting a higher amount of his-
torical wildfire activity are assigned a higher weight.

The model is then defined as follows:

ABg; = ABc + ABa, 3)
where

ABA =a+b x (VPDy) 4+ ¢ x (SMyp)
ABA =0 if E; <0.

if Ej>0

ABg is the simulated area burned for a given month; AB,
is the climatological area burned or the mean annual area
burned by month; VPD4 and SSMy are the anomalous VPD
and SSM in the 1, 2 or 3 months prior to the wildfire month.
Different combinations of prior VPD and SSM observations
were tested to represent the reliability of a single VPD-SSM
model per GACC for the entire year.

Finally, ABg is compared to ABc by comparing
two Nash-Sutcliffe (E) values of the entire time se-
ries. The first E value is measured using the 2003-2016
monthly time series of model predictions and observations
(Esimulated,observation)- The second E value is computed by us-
ing 2003-2016 monthly time series of climatology and ob-
servations (Eclimatology,observation)~ If Esimulated, observation €X-
ceeds Eclimatology,observation, the model has more accuracy
compared to the climatology. If Eclimatology,observation 1S
greater than Egimulated,observation. then the climatology has
more accuracy in forecasting wildfire activity.

3 Results

Figure 2 shows the hydrologic-variable combination used
to develop the best model of burned-area forecast using the
monthly Nash—Sutcliffe coefficient (E), the weighted Nash—
Sutcliffe coefficient (Ey,), and the fraction of annual area
burned for each month, while Table 1 shows the best variable
combination for each GACC. There are some notable pat-
terns, though few without exceptions. For example, North-
ern California, Northern Rockies and Northwest all have
the same peak month (August) for area burned while also
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having significant fractions of evergreen vegetation (Fig. 1).
Area burned in Great Basin also peaks in August; however
it does not have substantial evergreen land cover, although
at this spatial scale we can not determine if that is where
fires happen. The models with the highest relative predic-
tive ability throughout the year (denoted by weighted Nash—
Sutcliffe coefficient) are generally in the GACCs with sub-
stantial land cover and dominated by fuel-limited systems
(herbaceous and shrublands): Great Basin, Southern Cali-
fornia, Rocky Mountain, Northwest and Northern Rockies;
however, Southwest also has heavy herbaceous vegetation
but has relatively low predictability throughout the year. To
reiterate, Northern Rockies, Northwest, Rocky Mountain and
Great Basin are all substantially covered by herbaceous vege-
tation, but they have high predictability in their peak burned-
area month, unlike Southwest. One pattern that is robust is
that Great Basin, Southwest, and Southern California all rely
on 1-month lead-time soil moisture in their predictive model
and all also have substantial shrubland cover. Notably, the
Eastern, Northern Rockies, Rocky Mountain, Southern Cal-
ifornia and Southern GACCs all have bimodal burned-area
distributions but no similar land cover characteristics to ex-
plain the pattern.

Figure 3 shows two example cases of model predictions
based on hydrological variables. We show results for our
best- and worst-performing GACC in order to capture the
range of model skill in different fire climate regions. For our
best preforming GACC, Northern Rockies, we see consistent
peaks in between the dominant hydrologic variable, VPD,
and the fire area burned, suggesting the dominant role of
VPD in fire-burned-area prediction for that GACC (Table 1).
These strong relationships between hydrology and wildfire
occurrence in Northern Rockies confirm the findings of the
previous studies (Littell et al., 2009; Westerling et al., 2011).
For our worst-performing GACC, Southern, two hydrologic
variables are seemingly much more connected and it is less
clear what drives the pattern of monthly area burned.

In order to evaluate the model predictions against the ob-
servations, we have calculated two Nash—Sutcliffe coeffi-
cients (Table 1). As shown, for all GACCs, the model fore-
casts the wildfire activity with higher accuracy than it does
the climatology, but the improvement is variable by GACC.
The results reveal that the Rocky Mountain and Northern
Rockies GACCs have the best model performance (E of
0.82 and 0.64, respectively), while the Southwest and South-
ern CA GACCs (E of 0.34 and 0.35, respectively) show the
worst model performance. Similar to the time series of the
Eastern and Southern GACCs, the model has not improved
the climatology to a great extent. In all other regions, the
improvement of the simulated performance compared to the
climatology is substantial. The key difference between the
overall evaluation metric (Es.c) and the time series is that
the time series demonstrate the variability in predictive abil-
ity from month to month.
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Figure 2. Best-model selection based on the monthly Nash—Sutcliffe coefficient for each GACC. The blue line shows variable peak fire month
by mean annual area burned (FAB), and the orange line shows the monthly Nash—Sutcliffe coefficient for each GACC showing variable peak
fire month. The weighted Nash—Sutcliffe coefficient is calculated using the different combinations of VPD and SSM. The best model was
selected based on the highest Ey, value, which demonstrates the relative strength of the different models by GACC.

Table 1. Overall model performance and separate influence of individual hydrologic variables. We use Nash—Sutcliffe coefficients to describe
the combined surface soil moisture (SSM) and vapor pressure deficit (VPD) simulation performance (Eg), the climatology performance (Ec),
and the individual predictor performance (Es ypp Es ssm) Vs. the observations.

GACC ABp Es Ec Es-Ec EsveD Esssm
Eastern VPD_,+SSM_3 0.51 0.37 0.14 0.42 0.42
Northern California VPD_;+SSM_, 044 0.22 0.22 0.29 0.33
Northern Rockies VPD_;4+SSM_, 0.64 0.38 0.26 0.63 0.39
Northwest VPD_,+SSM_3 0.58 0.28 0.30 0.46 0.42
Rocky Mountain VPD_;+SSM_3 0.82 0.51 0.31 0.64 0.61
Southern California  VPD_;+SSM_; 0.35 0.19 0.16 0.25 0.29
Southern VPD_,+SSM_3 0.64 0.57 0.07 0.63 0.59
Southwest VPD_;+SSM_; 034 0.16 0.18 0.28 0.23
Great Basin VPD_,+SSM_; 047 0.3 0.17 0.43 0.37

Figure 4 shows the time series of wildfire-burned-area ob-
servation (blue), simulation (red) and climatology (yellow)
for nine different GACCs from 2003 through 2016. This fig-
ure shows that the performance of the models varies by lo-
cation and month. In general, the models capture interannual
variability for most GACCs. Notably in Fig. 4, some months
show the simulation has higher agreement with the obser-
vations than the climatology does. In the southern GACCs,
model performance is relatively similar to the climatology.
In the Southern GACC, both the simulation and climatol-
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ogy indicate close agreement with the observations. Northern
Rockies and Rocky Mountain show the highest agreement
between model and observations in the higher-than-normal
fire years. Specifically, in Northern Rockies, the model de-
tects expected burned area for the above-normal fire activity
years 2003, 2006, 2007 and 2012; and in the Rocky Moun-
tain GACC, years 2006, 2008, 2009, 2011, 2015 and 2016
show high agreement between the simulations and the ob-
servations. The model also detects higher-than-normal fire
activity in Northern California, years 2012, 2014 and 2015;

Nat. Hazards Earth Syst. Sci., 20, 1097-1106, 2020



1102

Northern Rockies

(a) Monthly SSM anomaly 2003-2016

o
o

SM anomaly
o

&
=]

(b) Monthly VPD anomaly 2003-2016

[9)]

'
(92}

VPD anomaly
o

NE (C) Monthly wildfire BA prediction 2003-2016
~ 2000 T T T -
= = Observation
< e Simulation
cg 1000 + A A A A Climatology
= 1
§ o kel LA TR AL A.L‘L’

2003 2005 2007 2009 2011 2013 2015

Year

A. Farahmand et al.: Satellite hydrology observations as indicators of forecasted fire danger in the USA

Southern

(d) Monthly SSM anomaly 2003-2016

v
o

! 1

o
o

SM anomaly
o
:

(€) Monthly VPD anomaly 2003-2016

> 57

[

5

< 0

)

a
— > . 1 1 1 L 1 L
€ 2000 (f) Monthly wildfire BA prediction 2003-2016
x ! ! ! ' ! e ObseTVaioN
< — Simulation
Eg 1000 | I \/‘ A M A Climatology
= |
2 W "ﬂw W ,\/\ A\'M Uu WA
2 2003 2005 2007 2009 201 1 2013 2015

Year

Figure 3. The impact of hydrologic predictors on best- and worst-performing Geographic Area Coordination Center (GACC) models.
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which demonstrates the ability to capture interannual variability by Geographic Area Coordination Center.
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Northwest, years 2006, 2007, 2012, 2014 and 2015; Great
Basin, years 2006, 2007, 2012 and 2013; and Eastern for
years 2004 and 2012. Lastly, the simulation outperforms the
climatology slightly for Southern CA and Southwest. How-
ever, neither the model nor the climatology has detected in-
terannual fire activity for these regions with high accuracy.

Lastly, the models were built using only either VPD or
SSM to determine the relative influence of either variable
on burned area within each GACC (Table 1, Es vpp and
Es ssm). For some of the GACCs, the influence of the vari-
able appears to be associated with the relative fractions of
land cover influenced by that variable. For example, in North-
ern Rockies, it is roughly half evergreen forest and half
herbaceous (Fig. 1); evergreen forest typically needs to be
dry to sustain combustion (high VPD in the month prior),
while herbaceous communities typically need wet conditions
in the months prior to grow fuels (high SSM 2 months prior;
Littell et al., 2009; Stavros et al., 2014a). Similarly, in North-
west it is roughly half evergreen (high VPD 2 months prior)
and half shrub (high SSM 3 months prior). Rocky Moun-
tain is mostly herbaceous and shrubland (high SSM 3 months
prior) but has some evergreen (high VPD 1 month prior). In
Northern California, land cover is mostly evergreen (high
VPD 1 month prior) with some shrub (high soil moisture
2 months prior). The other GACCs have less obvious rela-
tionships between land cover and hydrology.

4 Discussion and conclusion

Wildfire activity results in billions of dollars of losses ev-
ery year. Forecasting wildfire activity could therefore sub-
stantially reduce the damage associated with wildfire-burned
area. Historical wildfire prediction models have limitations
including the mismatch in scale between fire danger mod-
els and common application as well as the unreliability of
meteorological data in remote regions. As such, current op-
erational wildfire forecast models for forecasts >10d are
heavily based on subjective expert knowledge to predict ex-
pected area burned. Thus, the aim of this study was to predict
area burned in different geographic regions (GACCs) of the
United States.

There are some notable patterns in predictive-model de-
velopment across GACCs largely driven by land cover frac-
tional cover and mesoscale climate (Table 1). The Great
Basin, Southwest and Southern California GACCs all have
substantial shrubland cover and have the same soil mois-
ture predictor (1-month lead time). This could be a func-
tion of the shallow rooting of shrubs. This was the only pat-
tern by land cover that was not contradicted by mesoscale
climatic influence. For example, the Great Basin, South-
ern California, Rocky Mountain, Northwest and Northern
Rockies models have the highest predictive ability through-
out the year (Ey) and have substantial land cover domi-
nated by fuel-limited systems (grasslands and shrublands).
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Fuel-limited systems typically rely on pre-fire-season condi-
tions to grow fuels that carry fire, thus influencing the total
burned area (Stavros et al., 2014a; Swetnam and Betancourt,
1998). Although Southwest also has heavy grasslands, it has
a relatively low predictability throughout the year but is the
GACC most influenced by the southwest monsoon, which
can have a variable onset that affects the fire season (Grissino
Mayer and Swetnam, 2000). The southwest monsoon also
explains why Northern Rockies, Northwest, Rocky Moun-
tain and Great Basin all have high predictability in their peak
burned area month, but Southwest (also substantially covered
by grasslands) does not. Further substantiating the claim that
mesoscale climate affects model predictability is the fact that
Southern California has a bimodal distribution of fire area
burned throughout the year. According to Jin et al. (2014),
there are two different kinds of fire in Southern California
(those in the summer driven by hot and dry conditions and
those in the fall driven by Santa Ana winds), and each has
different climatic conditions explaining the number of fires
and burned area.

Beyond climate and land cover, humans play a signifi-
cant role in the predictability of area burned (Balch et al.,
2017). This explains the bimodal fire distributions found in
the Eastern, Northern Rockies, Rocky Mountain and South-
ern GACCs. Most of the fires in the Eastern and Southern
GACC:s are prescribed burns, which can happen throughout
the year (as denoted by the relatively flat, although slight bi-
modal, distributions of percent annual area burned by month
— Table 1). Also, there is a notable decoupling of the relation-
ship between hydrologic variables and burned area (Fig. 4)
in the Southern GACC, which has mostly anthropogenic
fire ignitions, as compared to Northern Rockies, which has
mostly lightning-caused ignitions when burned area peaks in
fall (Fig. 2). This also explains why the simulation performs
closely to the climatology (Fig. 3), with only minor improve-
ments in Nash—Sutcliffe coefficients as compared to other
GACCs (Table 1). Notably, the GACCs that have a strong
bimodal distribution perform less well than those that do not;
however in all GACCs with bimodal distributions (Fig. 2),
there are substantial croplands (which were excluded from
the analysis) where agricultural burning occurs independent
of the hydrologic conditions (Fig. 1).

Mesoscale climate (e.g., monsoons) and anthropogenic in-
fluence on fire regimes have likely less direct relationships
with burned area than hydrologic variables do. Specifically,
the GACCs that are more influenced by mesoscale climate
(Southern California and Southwest) and by anthropogenic
burning (Southern and Eastern) did not show a clear associ-
ation between the relative influence of the hydrologic vari-
able and the relative fractions of land cover, unlike Northern
Rockies, Northwest, Northern California or Rocky Moun-
tain.

In general, this work demonstrates how lead data on hy-
drologic variables that can be measured by satellite (i.e., not
limited by proximity to in situ infrastructures) can be used
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to forecast fire danger 1 month before it happens. In all ge-
ographic regions, the models improved the fire danger fore-
cast compared to the climatology (Table 1) and demonstrated
the ability to capture interannual variability (Fig. 2). Future
work should consider how these models are developed by
land cover type and if there are different models based on
how that land cover type is typically managed (e.g., cropland
vs. forest).

Data availability. The data used for this study are freely avail-
able for the vapor pressure deficit (VPD), https://airs.jpl.nasa.gov/
data/get_data (NASA, 2020); surface soil moisture (SSM), https:
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