Research article 25 Nov 2019
Research article | 25 Nov 2019
Meteorological conditions leading to the 2015 Salgar flash flood: lessons for vulnerable regions in tropical complex terrain
Carlos D. Hoyos et al.
Related authors
Nicolás Velásquez, Carlos D. Hoyos, Jaime I. Vélez, and Esneider Zapata
Hydrol. Earth Syst. Sci., 24, 1367–1392, https://doi.org/10.5194/hess-24-1367-2020, https://doi.org/10.5194/hess-24-1367-2020, 2020
Short summary
Short summary
During 18 May 2015, a storm event produced a flash flood in the municipality of Salgar (northwestern Colombian Andes), resulting in more than 100 human casualties and significant economic losses. Here we present a modeled process reconstruction of what happened during this event. For this, we only use radar rainfall estimations and a digital elevation model. Results show that with scarce data there is an opportunity to obtain acceptable tools for risk management and decision making.
Andrés Esteban Bedoya-Velásquez, Gloria Titos, Juan Antonio Bravo-Aranda, Martial Haeffelin, Olivier Favez, Jean-Eudes Petit, Juan Andrés Casquero-Vera, Francisco José Olmo-Reyes, Elena Montilla-Rosero, Carlos D. Hoyos, Lucas Alados-Arboledas, and Juan Luis Guerrero-Rascado
Atmos. Chem. Phys., 19, 7883–7896, https://doi.org/10.5194/acp-19-7883-2019, https://doi.org/10.5194/acp-19-7883-2019, 2019
Short summary
Short summary
This study is related to the first time hygroscopic enhancement factors retrieved directly for ambient aerosols using remote sensing techniques are combined with online chemical composition in situ measurements to evaluate the role of the different aerosol species in aerosol hygroscopicity at ACTRIS SIRTA observatory. The results showed 8 cases that fulfilled strict criteria over 107 cases identified in this study.
Andrés Esteban Bedoya-Velásquez, Francisco Navas-Guzmán, María José Granados-Muñoz, Gloria Titos, Roberto Román, Juan Andrés Casquero-Vera, Pablo Ortiz-Amezcua, Jose Antonio Benavent-Oltra, Gregori de Arruda Moreira, Elena Montilla-Rosero, Carlos David Hoyos, Begoña Artiñano, Esther Coz, Francisco José Olmo-Reyes, Lucas Alados-Arboledas, and Juan Luis Guerrero-Rascado
Atmos. Chem. Phys., 18, 7001–7017, https://doi.org/10.5194/acp-18-7001-2018, https://doi.org/10.5194/acp-18-7001-2018, 2018
Short summary
Short summary
This study focuses on the analysis of aerosol hygroscopic growth during the SLOPE I campaign combining active and passive remote sensors at ACTRIS Granada station and in situ instrumentation at a mountain station (Sierra Nevada station, SNS). The results showed good agreement on gamma parameters by using remote sensing with respect to those calculated using Mie theory at SNS, with relative differences lower than 9 % at 532 nm and 11 % at 355 nm.
Nicolás Velásquez, Carlos D. Hoyos, Jaime I. Vélez, and Esneider Zapata
Hydrol. Earth Syst. Sci., 24, 1367–1392, https://doi.org/10.5194/hess-24-1367-2020, https://doi.org/10.5194/hess-24-1367-2020, 2020
Short summary
Short summary
During 18 May 2015, a storm event produced a flash flood in the municipality of Salgar (northwestern Colombian Andes), resulting in more than 100 human casualties and significant economic losses. Here we present a modeled process reconstruction of what happened during this event. For this, we only use radar rainfall estimations and a digital elevation model. Results show that with scarce data there is an opportunity to obtain acceptable tools for risk management and decision making.
Andrés Esteban Bedoya-Velásquez, Gloria Titos, Juan Antonio Bravo-Aranda, Martial Haeffelin, Olivier Favez, Jean-Eudes Petit, Juan Andrés Casquero-Vera, Francisco José Olmo-Reyes, Elena Montilla-Rosero, Carlos D. Hoyos, Lucas Alados-Arboledas, and Juan Luis Guerrero-Rascado
Atmos. Chem. Phys., 19, 7883–7896, https://doi.org/10.5194/acp-19-7883-2019, https://doi.org/10.5194/acp-19-7883-2019, 2019
Short summary
Short summary
This study is related to the first time hygroscopic enhancement factors retrieved directly for ambient aerosols using remote sensing techniques are combined with online chemical composition in situ measurements to evaluate the role of the different aerosol species in aerosol hygroscopicity at ACTRIS SIRTA observatory. The results showed 8 cases that fulfilled strict criteria over 107 cases identified in this study.
Andrés Esteban Bedoya-Velásquez, Francisco Navas-Guzmán, María José Granados-Muñoz, Gloria Titos, Roberto Román, Juan Andrés Casquero-Vera, Pablo Ortiz-Amezcua, Jose Antonio Benavent-Oltra, Gregori de Arruda Moreira, Elena Montilla-Rosero, Carlos David Hoyos, Begoña Artiñano, Esther Coz, Francisco José Olmo-Reyes, Lucas Alados-Arboledas, and Juan Luis Guerrero-Rascado
Atmos. Chem. Phys., 18, 7001–7017, https://doi.org/10.5194/acp-18-7001-2018, https://doi.org/10.5194/acp-18-7001-2018, 2018
Short summary
Short summary
This study focuses on the analysis of aerosol hygroscopic growth during the SLOPE I campaign combining active and passive remote sensors at ACTRIS Granada station and in situ instrumentation at a mountain station (Sierra Nevada station, SNS). The results showed good agreement on gamma parameters by using remote sensing with respect to those calculated using Mie theory at SNS, with relative differences lower than 9 % at 532 nm and 11 % at 355 nm.
Related subject area
Atmospheric, Meteorological and Climatological Hazards
Are Kenya Meteorological Department heavy rainfall advisories useful for forecast-based early action and early preparedness for flooding?
A methodology for attributing the role of climate change in extreme events: a global spectrally nudged storyline
A 30 m scale modeling of extreme gusts during Hurricane Irma (2017) landfall on very small mountainous islands in the Lesser Antilles
Modelling a tropical-like cyclone in the Mediterranean Sea under present and warmer climate
Extension of the WRF-Chem volcanic emission preprocessor to integrate complex source terms and evaluation for different emission scenarios of the Grimsvötn 2011 eruption
The contribution of air temperature and ozone to mortality rates during hot weather episodes in eight German cities during the years 2000 and 2017
Predictive modeling of hourly probabilities for weather-related road accidents
Assessing atmospheric moisture effects on heavy precipitation during HyMeX IOP16 using GPS nudging and dynamical downscaling
Modeling volcanic ash aggregation processes and related impacts on the April–May 2010 eruptions of Eyjafjallajökull volcano with WRF-Chem
Intra-annual variability of the Western Mediterranean Oscillation (WeMO) and occurrence of extreme torrential precipitation in Catalonia (NE Iberia)
Review article: A comprehensive review of datasets and methodologies employed to produce thunderstorm climatologies
Assessing heat exposure to extreme temperatures in urban areas using the Local Climate Zones classification
Simulating Synthetic Tropical Cyclone Tracks for Statistically Reliable Wind and Pressure Estimations
Bias correction of a gauge-based gridded product to improve extreme precipitation analysis in the Yarlung Tsangpo–Brahmaputra River basin
Analysis of the Universal Thermal Climate Index during heat waves in Serbia
Brief Communication: An electrifying atmospheric river – understanding the thunderstorm event in Santa Barbara County during March 2019
Spatiotemporal changes of heat waves and extreme temperatures in the main cities of China from 1955 to 2014
Ambient conditions prevailing during hail events in central Europe
Present and future changes in winter climate indices relevant for access disruptions in Troms, northern Norway
Hydrometeorological droughts in the Miño–Limia–Sil hydrographic demarcation (northwestern Iberian Peninsula): the role of atmospheric drivers
Brief communication: The role of using precipitation or river discharge data when assessing global coastal compound flooding
The Impact of Drought on Soil Moisture Trends across Brazilian Biomes
Estimation of tropical cyclone wind hazards in coastal regions of China
Radar-based assessment of hail frequency in Europe
A methodology to conduct wind damage field surveys for high-impact weather events of convective origin
The sensitivity of intense rainfall to aerosol particle loading – a comparison of bin-resolved microphysics modelling with observations of heavy precipitation from HyMeX IOP7a
Brief communication: Hurricane Dorian: automated near-real-time mapping of the “unprecedented” flooding in the Bahamas using synthetic aperture radar
Data impact studies with the AROME WMED reanalysis of the HyMeX SOP1
Systematic error analysis of heavy-precipitation-event prediction using a 30-year hindcast dataset
An 18-year climatology of derechos in Germany
A New View on Risk of Typhoon Occurrence in the Western North Pacific
Exposure of real estate properties to the 2018 Hurricane Florence flooding
Modelling global tropical cyclone wind footprints
Remote sensing in an index-based insurance design for hedging economic impacts on rice cultivation
Contribution of personal weather stations to the observation of deep-convection features near the ground
Improving sub-seasonal forecast skill of meteorological drought: a weather pattern approach
Simulations of the 2005, 1910, and 1876 Vb cyclones over the Alps – sensitivity to model physics and cyclonic moisture flux
Changes in flood damage with global warming on the eastern coast of Spain
Probabilistic modelling of the dependence between rainfed crops and drought hazard
First reported case of thunderstorm asthma in Israel
Estimates of tropical cyclone geometry parameters based on best-track data
Identifying a transition climate zone in an arid river basin using the evaporative stress index
A statistical-parametric model of tropical cyclones for hazard assessment
The impact of lightning and radar reflectivity factor data assimilation on the very short-term rainfall forecasts of RAMS@ISAC: application to two case studies in Italy
Impact of the dry-day definition on Mediterranean extreme dry-spell analysis
Effects of horizontal resolution and air–sea flux parameterization on the intensity and structure of simulated Typhoon Haiyan (2013)
Flood risk in a range of spatial perspectives – from global to local scales
Radar-derived convective storms' climatology for the Prut River basin: 2003–2017
The impact of drought on the productivity of two rainfed crops in Spain
A high-resolution spatial assessment of the impacts of drought variability on vegetation activity in Spain from 1981 to 2015
David MacLeod, Mary Kilavi, Emmah Mwangi, Maurine Ambani, Michael Osunga, Joanne Robbins, Richard Graham, Pedram Rowhani, and Martin C. Todd
Nat. Hazards Earth Syst. Sci., 21, 261–277, https://doi.org/10.5194/nhess-21-261-2021, https://doi.org/10.5194/nhess-21-261-2021, 2021
Short summary
Short summary
Forecasts of natural hazards save lives. But the accuracy of forecasts must be evaluated before use. Here we evaluate heavy rainfall advisories over Kenya. We assess their ability to anticipate heavy rainfall and show how well they warned of recent floods which had significant impacts. We find that although they effectively warn of heavy rainfall and flooding, issues such as a lack of spatial detail limit their utility for systematic approaches to preparedness.
Linda van Garderen, Frauke Feser, and Theodore G. Shepherd
Nat. Hazards Earth Syst. Sci., 21, 171–186, https://doi.org/10.5194/nhess-21-171-2021, https://doi.org/10.5194/nhess-21-171-2021, 2021
Short summary
Short summary
The storyline method is used to quantify the effect of climate change on a particular extreme weather event using a global atmospheric model by simulating the event with and without climate change. We present the method and its successful application for the climate change signals of the European 2003 and the Russian 2010 heatwaves.
Raphaël Cécé, Didier Bernard, Yann Krien, Frédéric Leone, Thomas Candela, Matthieu Péroche, Emmanuel Biabiany, Gael Arnaud, Ali Belmadani, Philippe Palany, and Narcisse Zahibo
Nat. Hazards Earth Syst. Sci., 21, 129–145, https://doi.org/10.5194/nhess-21-129-2021, https://doi.org/10.5194/nhess-21-129-2021, 2021
Short summary
Short summary
The present innovative modeling aims to combine the most realistic simulated strongest gusts driven by tornado-scale vortices within the eyewall and the most realistic complex terrain effects. The present modeling method could be easily extended to other small mountainous islands to improve the understanding of observed past damage and to develop safer urban management and appropriate building standards.
Shunya Koseki, Priscilla A. Mooney, William Cabos, Miguel Ángel Gaertner, Alba de la Vara, and Juan Jesus González-Alemán
Nat. Hazards Earth Syst. Sci., 21, 53–71, https://doi.org/10.5194/nhess-21-53-2021, https://doi.org/10.5194/nhess-21-53-2021, 2021
Short summary
Short summary
This study investigated one case of a tropical-like cyclone over the Mediterranean Sea under present and future climate conditions with a regional climate model. A pseudo global warming (PGW) technique is employed to simulate the cyclone under future climate, and our simulation showed that the cyclone is moderately strengthened by warmer climate. Other PGW simulations where only ocean and atmosphere are warmed reveal the interesting results that both have counteracting effects on the cyclone.
Marcus Hirtl, Barbara Scherllin-Pirscher, Martin Stuefer, Delia Arnold, Rocio Baro, Christian Maurer, and Marie D. Mulder
Nat. Hazards Earth Syst. Sci., 20, 3099–3115, https://doi.org/10.5194/nhess-20-3099-2020, https://doi.org/10.5194/nhess-20-3099-2020, 2020
Short summary
Short summary
The paper shows the application of a new volcanic emission preprocessor for the chemical transport model WRF-Chem. The model is evaluated with different observational data sets for the eruption of the Grimsvötn volcano 2011.
Alexander Krug, Daniel Fenner, Hans-Guido Mücke, and Dieter Scherer
Nat. Hazards Earth Syst. Sci., 20, 3083–3097, https://doi.org/10.5194/nhess-20-3083-2020, https://doi.org/10.5194/nhess-20-3083-2020, 2020
Short summary
Short summary
This study investigates hot weather episodes in eight German cities which are statistically associated with increased mortality. Besides air temperature, ozone concentrations partly explain these mortality rates. The strength of the respective contributions of the two stressors varies across the cities. Results highlight that during hot weather episodes, not only high air temperature affects urban populations; concurrently high ozone concentrations also play an important role in public health.
Nico Becker, Henning W. Rust, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 20, 2857–2871, https://doi.org/10.5194/nhess-20-2857-2020, https://doi.org/10.5194/nhess-20-2857-2020, 2020
Short summary
Short summary
A set of models is developed to forecast hourly probabilities of weather-related road accidents in Germany at the spatial scale of administrative districts. Model verification shows that using precipitation and temperature data leads to the best accident forecasts. Based on weather forecast data we show that skilful predictions of accident probabilities of up to 21 h ahead are possible. The models can be used to issue impact-based warnings, which are relevant for road users and authorities.
Alberto Caldas-Alvarez and Samiro Khodayar
Nat. Hazards Earth Syst. Sci., 20, 2753–2776, https://doi.org/10.5194/nhess-20-2753-2020, https://doi.org/10.5194/nhess-20-2753-2020, 2020
Short summary
Short summary
Heavy precipitation causes serious losses and several casualties in the western Mediterranean every year. To predict this phenomenon better, we aim at understanding how the models represent the interaction between atmospheric moisture and precipitation by nudging a 10 min, state-of-the-art GPS data set. We found, for the selected case in autumn 2012, that the improvement in the modelling of precipitation stems from relevant variations of atmospheric instability and humidity above 1.5 km.
Sean D. Egan, Martin Stuefer, Peter W. Webley, Taryn Lopez, Catherine F. Cahill, and Marcus Hirtl
Nat. Hazards Earth Syst. Sci., 20, 2721–2737, https://doi.org/10.5194/nhess-20-2721-2020, https://doi.org/10.5194/nhess-20-2721-2020, 2020
Short summary
Short summary
The Weather Research Forecasting with Chemistry (WRF-Chem) model was modified to include volcanic ash aggregation. The modified WRF-Chem model was run with and without aggregation, and changes in the model output were measured. Changes in the lifetime of volcanic ash a function of the chosen fractal dimension were quantified. A case study using the 2010 eruptions of Eyjafjallajökull revealed that the aggregation modifications result in tephra fallout and ash concentrations near observed values.
Joan Albert Lopez-Bustins, Laia Arbiol-Roca, Javier Martin-Vide, Antoni Barrera-Escoda, and Marc Prohom
Nat. Hazards Earth Syst. Sci., 20, 2483–2501, https://doi.org/10.5194/nhess-20-2483-2020, https://doi.org/10.5194/nhess-20-2483-2020, 2020
Short summary
Short summary
We considered the Western Mediterranean Oscillation index (WeMOi) to analyse the occurrence of extreme torrential episodes (≥ 200 mm in 24 h) over Catalonia (NE Iberia) during the 1951–2016 period. Principal results reveal the occurrence of 50 episodes, mainly in autumn, especially during the second 10 d period of October (11–20), coinciding with the most negative WeMOi values of the year. Seasonal changes in these episodes and in WeMOi values might be due to sea warming.
Leah Hayward, Malcolm Whitworth, Nick Pepin, and Steve Dorling
Nat. Hazards Earth Syst. Sci., 20, 2463–2482, https://doi.org/10.5194/nhess-20-2463-2020, https://doi.org/10.5194/nhess-20-2463-2020, 2020
Short summary
Short summary
This review article outlines the state of thunderstorm climatologies, which are underrepresented in the literature. Thunderstorms overlap with lightning and intense precipitation events, both of which create important hazards. This article compiles and evaluates information on datasets, research approaches and methodologies used in quantifying thunderstorm distribution, providing an introduction to the topic and signposting new and established researchers to research articles and datasets.
Joan Gilabert, Anna Deluca, Dirk Lauwaet, Joan Ballester, Jordi Corbera, and Maria Carmen Llasat
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-240, https://doi.org/10.5194/nhess-2020-240, 2020
Revised manuscript accepted for NHESS
Kees Nederhoff, Jasper Hoek, Tim Leijnse, Maarten van Ormondt, Sofia Caires, and Alessio Giardino
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-250, https://doi.org/10.5194/nhess-2020-250, 2020
Revised manuscript accepted for NHESS
Xian Luo, Xuemei Fan, Yungang Li, and Xuan Ji
Nat. Hazards Earth Syst. Sci., 20, 2243–2254, https://doi.org/10.5194/nhess-20-2243-2020, https://doi.org/10.5194/nhess-20-2243-2020, 2020
Short summary
Short summary
In this study, we corrected Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE) in the Yarlung Tsangpo–Brahmaputra River Basin using both linear and nonlinear methods, and their influences on resulting extreme precipitation indices were assessed. Results showed that all methods were able to correct mean precipitation, but their ability to correct wet-day frequency and coefficient of variation were markedly different.
Milica M. Pecelj, Milica Z. Lukić, Dejan J. Filipović, Branko M. Protić, and Uroš M. Bogdanović
Nat. Hazards Earth Syst. Sci., 20, 2021–2036, https://doi.org/10.5194/nhess-20-2021-2020, https://doi.org/10.5194/nhess-20-2021-2020, 2020
Short summary
Short summary
The variation in UTCI heat stress grade was observed during heat waves over the past 20 years in order to identify patterns of biothermal heat stress conditions in Serbia.
Very strong heat stressdescribes an alarming biothermal state and has occurred frequently in the last 10 years. The findings indicate the UTCI14 h index
very strong heat stress event(VSHSE) as an indicator of biothermal heat hazard.
Deanna Nash and Leila M. V. Carvalho
Nat. Hazards Earth Syst. Sci., 20, 1931–1940, https://doi.org/10.5194/nhess-20-1931-2020, https://doi.org/10.5194/nhess-20-1931-2020, 2020
Short summary
Short summary
On 6 March 2019, during an atmospheric river (AR) event, over 8000 lightning flashes were recorded near southern California in under 24 h, resulting in a unique meteorological event for this region. This study examines the characteristics of this AR compared to previous landfalling ARs in Santa Barbara and explores how the conditions led to the formation of hail and enhanced electrification in a region that sees little to no lightning.
Kuo Li and Gyilbag Amatus
Nat. Hazards Earth Syst. Sci., 20, 1889–1901, https://doi.org/10.5194/nhess-20-1889-2020, https://doi.org/10.5194/nhess-20-1889-2020, 2020
Short summary
Short summary
In recent years, heat waves have become more frequent in the world, e.g., in Europe, Australia, China and the US, at huge detriment to human health and natural resources. Thus we establish an integrated index of heat waves and extreme-temperature days to provide unified standards for assessing heat waves and hot years. It provides a clear picture of the evolution and spatial distribution of heat waves and hot years in China.
Michael Kunz, Jan Wandel, Elody Fluck, Sven Baumstark, Susanna Mohr, and Sebastian Schemm
Nat. Hazards Earth Syst. Sci., 20, 1867–1887, https://doi.org/10.5194/nhess-20-1867-2020, https://doi.org/10.5194/nhess-20-1867-2020, 2020
Short summary
Short summary
Severe convective storms are major loss drivers across Europe. We reconstructed several thousand storm tracks from radar reflectivity over a 10-year period for parts of Europe. The tracks were additionally combined with hail reports, reanalysis data, and front detections based on ERA-Interim (ECMWF Reanalysis). It is found that frontal hailstorms on average produce larger hailstones and have longer tracks and that wind shear is important not only for the hail diameter but also for track length.
Anita Verpe Dyrrdal, Ketil Isaksen, Jens Kristian Steen Jacobsen, and Irene Brox Nilsen
Nat. Hazards Earth Syst. Sci., 20, 1847–1865, https://doi.org/10.5194/nhess-20-1847-2020, https://doi.org/10.5194/nhess-20-1847-2020, 2020
Short summary
Short summary
We have studied changes in winter weather known to trigger road closures and isolation of small seaside communities in northern Norway. We find that snow amounts and heavy snowfall events have increased in the past, while future projections for 2040–2100 show a decrease in snow-related indices. Events of heavy water supply and zero crossings are expected to increase. Our results imply fewer dry-snow-related access disruptions in the future, while wet-snow avalanches and slushflows may increase.
Rogert Sorí, Marta Vázquez, Milica Stojanovic, Raquel Nieto, Margarida L. R. Liberato, and Luis Gimeno
Nat. Hazards Earth Syst. Sci., 20, 1805–1832, https://doi.org/10.5194/nhess-20-1805-2020, https://doi.org/10.5194/nhess-20-1805-2020, 2020
Emanuele Bevacqua, Michalis I. Vousdoukas, Theodore G. Shepherd, and Mathieu Vrac
Nat. Hazards Earth Syst. Sci., 20, 1765–1782, https://doi.org/10.5194/nhess-20-1765-2020, https://doi.org/10.5194/nhess-20-1765-2020, 2020
Short summary
Short summary
Coastal compound flooding (CF), caused by interacting storm surges and high water runoff, is typically studied based on concurring storm surge extremes with either precipitation or river discharge extremes. Globally, these two approaches show similar CF spatial patterns, especially where the CF potential is the highest. Deviations between the two approaches increase with the catchment size. The precipitation-based analysis allows for considering
local-rainfall-driven CF and CF in small rivers.
Flavio Lopes Ribeiro, Mario Guevara, Alma Vázquez-Lule, Ana Paula Cunha, Marcelo Zeri, and Rodrigo Vargas
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-185, https://doi.org/10.5194/nhess-2020-185, 2020
Revised manuscript accepted for NHESS
Short summary
Short summary
The main objective of this paper was to analyze differences in soil moisture responses to drought for each biome of Brazil. For that, we used satellite data from the European Space Agency, from 2009 to 2015. We found an overall soil moisture decline of −0.5 %/year at the country level and identified the most vulnerable biomes of Brazil. This information is crucial to enhance the national drought early warning system, develop strategies for drought risk reduction and soil moisture conservation.
Genshen Fang, Lin Zhao, Shuyang Cao, Ledong Zhu, and Yaojun Ge
Nat. Hazards Earth Syst. Sci., 20, 1617–1637, https://doi.org/10.5194/nhess-20-1617-2020, https://doi.org/10.5194/nhess-20-1617-2020, 2020
Short summary
Short summary
Coastal regions of China feature high population densities as well as flexible structures and are therefore vulnerable to tropical cyclone (TC) damage. A TC is a moving rotating storm with a small occurrence rate at a specific site. Wind anemometers are usually damaged during strong typhoon events, making the record of observed winds an unreliable predictor for design wind speed. This study uses the Monte Carlo simulation to investigate the typhoon wind hazards in coastal regions of China.
Elody Fluck, Michael Kunz, Peter Geissbuehler, and Stefan P. Ritz
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-138, https://doi.org/10.5194/nhess-2020-138, 2020
Revised manuscript accepted for NHESS
Short summary
Short summary
Severe convective storms (SCS) and related hail constitute a major atmospheric hazard in various parts of Europe. In our study we identified the regions the most affected by hail over a 10-year period (2005 to 2014) covering France, Germany, Belgium and Luxembourg. A cell-tracking algorithm was computed on remote-sensing data to enable the reconstruction of several thousands of SCS tracks. The location of hail hotspots will help to understand hail formation and improve hail forecasting.
Oriol Rodríguez, Joan Bech, Juan de Dios Soriano, Delia Gutiérrez, and Salvador Castán
Nat. Hazards Earth Syst. Sci., 20, 1513–1531, https://doi.org/10.5194/nhess-20-1513-2020, https://doi.org/10.5194/nhess-20-1513-2020, 2020
Short summary
Short summary
Post-event damage assessment data are used to study the consequences of natural hazards, such as strong convective winds (i.e. tornadoes, downbursts). The information gathered during fieldwork can be used to characterize those events, which is necessary to build up and maintain robust and homogeneous databases of severe weather cases and high-impact weather events. Accordingly, a methodology to carry out damage surveys of strong-convective-wind events is presented in this article.
Christina Kagkara, Wolfram Wobrock, Céline Planche, and Andrea I. Flossmann
Nat. Hazards Earth Syst. Sci., 20, 1469–1483, https://doi.org/10.5194/nhess-20-1469-2020, https://doi.org/10.5194/nhess-20-1469-2020, 2020
Short summary
Short summary
Over the Cévennes–Vivarais region in southern France, 5 h intensive rainfall covering an area of 1000 km2 with more than 50 mm rain accumulation was observed during IOP7a of HyMeX. This study evaluates the performance of a bin-resolved cloud model for simulating this heavy-precipitation event. The simulation results were compared with observations of rain accumulation, radar reflectivity, temporal and spatial evolution of precipitation, 5 min rain rates, and raindrop size distributions.
Diego Cerrai, Qing Yang, Xinyi Shen, Marika Koukoula, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 20, 1463–1468, https://doi.org/10.5194/nhess-20-1463-2020, https://doi.org/10.5194/nhess-20-1463-2020, 2020
Short summary
Short summary
On 1 September 2019 Hurricane Dorian made landfall on Great Abaco, unleashing unprecedented destruction on the northern Bahamas. Dorian was characterized by extreme winds, extensive coastal flooding, and impressive precipitation. We studied the event through images acquired by the synthetic aperture radars (SARs) mounted on European Space Agency satellites to derive flooding maps showing the extent of the devastation. We found that the flooded area in the Bahamas was at least 3000 km2.
Nadia Fourrié, Mathieu Nuret, Pierre Brousseau, and Olivier Caumont
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-153, https://doi.org/10.5194/nhess-2020-153, 2020
Revised manuscript accepted for NHESS
Short summary
Short summary
Impact of assimilation of various observation data set on the forecasts is studied in a mesoscale weather model. The ground-based GNSS Zenithal Total Delay data set providing information on humidity has the largest impact on the analyses and the forecasts. Indeed it represents an evenly spread and frequent data set available at each analysis time over the model domain. Moreover, the reprocessing of these data also improves the forecast quality but this impact is not statistically significant.
Matteo Ponzano, Bruno Joly, Laurent Descamps, and Philippe Arbogast
Nat. Hazards Earth Syst. Sci., 20, 1369–1389, https://doi.org/10.5194/nhess-20-1369-2020, https://doi.org/10.5194/nhess-20-1369-2020, 2020
Short summary
Short summary
We assess a methodology to evaluate and improve intense precipitation forecasting in the southeastern French region. This methodology is based on the use of a 30-year dataset of past forecasts which are analysed using a spatial verification approach. We found that precipitation forecasting is qualitatively driven by the deep-convection parametrization. Locally the model is able to reproduce the distribution of spatially integrated rainfall patterns of the most intense precipitation.
Christoph P. Gatzen, Andreas H. Fink, David M. Schultz, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 20, 1335–1351, https://doi.org/10.5194/nhess-20-1335-2020, https://doi.org/10.5194/nhess-20-1335-2020, 2020
Short summary
Short summary
Derechos are widespread, convectively induced severe wind events. A climatology of derechos in Germany is presented. It shows that derechos are not uncommon across the country. Two seasonal peaks indicate a comparable derecho risk in summer and winter. At the same time, we found two different derecho types, a warm- and a cold-season type. We present characteristics of both derecho types that can help forecasters to estimate the potential derecho threat in a given weather situation.
Kelvin S. Ng and Gregor C. Leckebusch
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-74, https://doi.org/10.5194/nhess-2020-74, 2020
Revised manuscript accepted for NHESS
Short summary
Short summary
Of severe tropical cyclones (TCs) lead to devastating losses. Nevertheless, to construct a robust risk assessment is difficult based on historical TC records only. This paper addresses this issue by introducing a computationally simple approach, using operational ensemble forecasts to build a physically consistent high-impact TC event set with data equivalent to more than 10 000 years of TC events. This method will be of high relevance for insurance and disaster risk reduction applications.
Marco Tedesco, Steven McAlpine, and Jeremy R. Porter
Nat. Hazards Earth Syst. Sci., 20, 907–920, https://doi.org/10.5194/nhess-20-907-2020, https://doi.org/10.5194/nhess-20-907-2020, 2020
Short summary
Short summary
Quantifying the exposure of house property to extreme weather events is crucial to study their impact on economy. Here, we show that value of property exposed to Hurricane Florence in September 2018 was USD 52 billion vs. USD 10 billion that would have occurred at the beginning of the 19th century due to urban expansion that increased after 1950s and the increasing number of houses built near water, showing the importance of accounting for the distribution of new buildings in risk and exposure.
James M. Done, Ming Ge, Greg J. Holland, Ioana Dima-West, Samuel Phibbs, Geoffrey R. Saville, and Yuqing Wang
Nat. Hazards Earth Syst. Sci., 20, 567–580, https://doi.org/10.5194/nhess-20-567-2020, https://doi.org/10.5194/nhess-20-567-2020, 2020
Short summary
Short summary
Assessing tropical cyclone (TC) wind risk is challenging due to a lack of historical TC wind data. This paper presents a novel approach to simulating landfalling TC winds anywhere on Earth. It captures local features such as high winds over coastal hills and lulls over rough terrain. A dataset of over 700 global historical wind footprints has been generated to provide new views of historical events. This dataset can be used to advance our understanding of overland TC wind risk.
Omar Roberto Valverde-Arias, Paloma Esteve, Ana María Tarquis, and Alberto Garrido
Nat. Hazards Earth Syst. Sci., 20, 345–362, https://doi.org/10.5194/nhess-20-345-2020, https://doi.org/10.5194/nhess-20-345-2020, 2020
Short summary
Short summary
We designed an index-based insurance (IBI) for drought and flood in rice crops in Babahoyo (Ecuador). We assessed Babahoyo's soil, climatic and topographic variability, finding two homogeneous zones inside this area. We set differentiated insurance premiums according to the particular risk status of each zone. Results demonstrate that this IBI is an efficient risk transfer tool for policyholders. This insurance design could contribute to stabilizing farmers' incomes and rice production.
Marc Mandement and Olivier Caumont
Nat. Hazards Earth Syst. Sci., 20, 299–322, https://doi.org/10.5194/nhess-20-299-2020, https://doi.org/10.5194/nhess-20-299-2020, 2020
Short summary
Short summary
The number of connected personal weather stations has dramatically increased in the last years. These weather stations produce a high number of data that need a thorough quality control to unleash their potential. A novel quality-control algorithm now allows us to take full advantage of these data and observe thunderstorms with fine-scale details that cannot be caught by standard networks. These results pave the way for tremendous advances in both understanding and forecasting thunderstorms.
Doug Richardson, Hayley J. Fowler, Christopher G. Kilsby, Robert Neal, and Rutger Dankers
Nat. Hazards Earth Syst. Sci., 20, 107–124, https://doi.org/10.5194/nhess-20-107-2020, https://doi.org/10.5194/nhess-20-107-2020, 2020
Short summary
Short summary
Models are not particularly skilful at forecasting rainfall more than 15 d in advance. However, they are often better at predicting atmospheric variables such as mean sea-level pressure (MSLP). Comparing a range of models, we show that UK winter and autumn rainfall and drought prediction skill can be improved by utilising forecasts of MSLP-based weather patterns (WPs) and subsequently estimating rainfall using the historical WP–precipitation relationships.
Peter Stucki, Paul Froidevaux, Marcelo Zamuriano, Francesco Alessandro Isotta, Martina Messmer, and Andrey Martynov
Nat. Hazards Earth Syst. Sci., 20, 35–57, https://doi.org/10.5194/nhess-20-35-2020, https://doi.org/10.5194/nhess-20-35-2020, 2020
Short summary
Short summary
In 1876, 1910, and 2005, Switzerland was impacted by extreme rainfall and floods. All events were linked to a Vb cyclone. We test a range of weather model setups (short spinup and standard physics are best) to understand the sensitivity of atmospheric dynamics. The simulated Vb cyclones are (not) well defined for 2005 and 1910 (1876). To reproduce the events, intense moisture flux from the right direction is needed. Storms that slightly deviate from an ideal path produce erroneous precipitation.
Maria Cortès, Marco Turco, Philip Ward, Josep A. Sánchez-Espigares, Lorenzo Alfieri, and Maria Carmen Llasat
Nat. Hazards Earth Syst. Sci., 19, 2855–2877, https://doi.org/10.5194/nhess-19-2855-2019, https://doi.org/10.5194/nhess-19-2855-2019, 2019
Short summary
Short summary
The main objective of this paper is to estimate changes in the probability of damaging flood events with global warming of 1.5, 2 and 3 °C above pre-industrial levels and taking into account different socioeconomic scenarios in two western Mediterranean regions. The results show a general increase in the probability of a damaging event, with larger increments when higher warming is considered. Moreover, this increase is higher when both climate and population change are included.
Andreia F. S. Ribeiro, Ana Russo, Célia M. Gouveia, Patrícia Páscoa, and Carlos A. L. Pires
Nat. Hazards Earth Syst. Sci., 19, 2795–2809, https://doi.org/10.5194/nhess-19-2795-2019, https://doi.org/10.5194/nhess-19-2795-2019, 2019
Short summary
Short summary
This work investigates the dependence between drought hazard and yield anomalies of rainfed cropping systems in the Iberian Peninsula using the copula theory. The applied methodology allows us to estimate the likelihood of wheat and barley loss under drought conditions, and a dependence among extreme values is suggested. From the decision-making point of view this study aims to contribute to the mitigation of drought-related crop failure.
Yoav Yair, Yifat Yair, Baruch Rubin, Ronit Confino-Cohen, Yosef Rosman, Eduardo Shachar, and Menachem Rottem
Nat. Hazards Earth Syst. Sci., 19, 2715–2725, https://doi.org/10.5194/nhess-19-2715-2019, https://doi.org/10.5194/nhess-19-2715-2019, 2019
Short summary
Short summary
During severe thunderstorms, cold outflows can eject pollen and dust particles from the surface, releasing allergens and causing
thunderstorm asthmaepidemics in sensitive populations. We report the first case in Israel that occurred on 25 October 2015. The emergency room presentation records from three hospitals in central Israel showed a clear increase in patients with respiratory complaints immediately after the passage of a massive super-cell thunderstorm in the area.
Kees Nederhoff, Alessio Giardino, Maarten van Ormondt, and Deepak Vatvani
Nat. Hazards Earth Syst. Sci., 19, 2359–2370, https://doi.org/10.5194/nhess-19-2359-2019, https://doi.org/10.5194/nhess-19-2359-2019, 2019
Short summary
Short summary
Tropical cyclone wind models are often used in engineering applications. However, these models lack the required accuracy when the size of the tropical cyclone is not known. In this paper, new relationships are derived to describe parameters affecting the size. These relationships are formulated using observed data and make it possible to estimate tropical cyclone size and to use this information in tropical cyclone wind models to obtain more reliable estimates of the tropical cyclone winds.
Yongqiang Liu, Lu Hao, Decheng Zhou, Cen Pan, Peilong Liu, Zhe Xiong, and Ge Sun
Nat. Hazards Earth Syst. Sci., 19, 2281–2294, https://doi.org/10.5194/nhess-19-2281-2019, https://doi.org/10.5194/nhess-19-2281-2019, 2019
Short summary
Short summary
A transition zone often exists between a moist upper river reach and an arid lower reach in a watershed with complex topography. This zone is more suitable for human activities but is difficult to identify in climate classification. We found that a hydrological index overpowers a meteorological index in identifying a transition zone of a watershed in northwestern China, indicating the important role of the land-surface processes and human disturbances in formulating the transition zone.
William C. Arthur
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-192, https://doi.org/10.5194/nhess-2019-192, 2019
Short summary
Short summary
We have developed a statistical-parametric model of tropical cyclones (TCs), to undertake hazard and risk assessments at continental scales. The model enables users to build an understanding of the likelihood and magnitude of TC-related wind speeds across full ocean basins, but at a fine spatial resolution. The model can also be applied to single events, either scenarios or forecast events, to inform detailed impact assessments.
Stefano Federico, Rosa Claudia Torcasio, Elenio Avolio, Olivier Caumont, Mario Montopoli, Luca Baldini, Gianfranco Vulpiani, and Stefano Dietrich
Nat. Hazards Earth Syst. Sci., 19, 1839–1864, https://doi.org/10.5194/nhess-19-1839-2019, https://doi.org/10.5194/nhess-19-1839-2019, 2019
Short summary
Short summary
This study shows the possibility to improve the weather forecast at the very short range (0–3 h) using lightning and/or radar reflectivity observations. We consider two challenging events that occurred over Italy, named Serrano and Livorno, characterized by moderate and exceptional rainfall, respectively.
The improvement given to the forecast by using the lightning and/or radar reflectivity observations is considerable. The best performance is obtained when using both data.
Pauline Rivoire, Yves Tramblay, Luc Neppel, Elke Hertig, and Sergio M. Vicente-Serrano
Nat. Hazards Earth Syst. Sci., 19, 1629–1638, https://doi.org/10.5194/nhess-19-1629-2019, https://doi.org/10.5194/nhess-19-1629-2019, 2019
Short summary
Short summary
In order to define a dry period, a threshold for wet days is usually considered to account for measurement errors and evaporation. In the present study, we compare the threshold of 1 mm d−1, the most commonly used threshold, to a time-varying threshold describing evapotranspiration to compare how the risk of extreme dry spells is estimated with both thresholds. Results indicate that considering a fixed threshold can underestimate extreme dry spells during the extended summer.
Mien-Tze Kueh, Wen-Mei Chen, Yang-Fan Sheng, Simon C. Lin, Tso-Ren Wu, Eric Yen, Yu-Lin Tsai, and Chuan-Yao Lin
Nat. Hazards Earth Syst. Sci., 19, 1509–1539, https://doi.org/10.5194/nhess-19-1509-2019, https://doi.org/10.5194/nhess-19-1509-2019, 2019
Short summary
Short summary
In this study, we show that both the model horizontal resolution and air–sea flux parameterization can exert a large influence on tropical cyclone intensity simulation but with different impacts on wind structures. We highlight the intensification and contraction of the TC eyewall in response to the reduction of grid spacing. We also suggest that a well-developed eyewall is more conducive to the positive effect of flux formulas on TC development.
Zbigniew W. Kundzewicz, Buda Su, Yanjun Wang, Guojie Wang, Guofu Wang, Jinlong Huang, and Tong Jiang
Nat. Hazards Earth Syst. Sci., 19, 1319–1328, https://doi.org/10.5194/nhess-19-1319-2019, https://doi.org/10.5194/nhess-19-1319-2019, 2019
Short summary
Short summary
Considering flood risk composed of hazard, exposure, and vulnerability from global to local scales, this paper reviews and presents increasing observed flood losses and projections of flood hazard and losses. We acknowledge existence of multiple driving factors and of considerable uncertainty, in particular with regards to projections for the future. Finally, this paper analyses options for flood risk reduction from a global framework to regional and local scales.
Sorin Burcea, Roxana Cică, and Roxana Bojariu
Nat. Hazards Earth Syst. Sci., 19, 1305–1318, https://doi.org/10.5194/nhess-19-1305-2019, https://doi.org/10.5194/nhess-19-1305-2019, 2019
Short summary
Short summary
The mapping of convective storms in the area of the transboundary Prut River basin was developed using a 15-year radar dataset (2003–2017). The analysis is based on data sampled in successive 6 min scans of the atmosphere, to detect and track the convective storms. The results highlighted a yearly, monthly, and daily variation of convective activity but also spatial distribution patterns. The study of atmospheric convection is important in assessing the risks associated with extreme weather.
Marina Peña-Gallardo, Sergio Martín Vicente-Serrano, Fernando Domínguez-Castro, and Santiago Beguería
Nat. Hazards Earth Syst. Sci., 19, 1215–1234, https://doi.org/10.5194/nhess-19-1215-2019, https://doi.org/10.5194/nhess-19-1215-2019, 2019
Short summary
Short summary
Drought events are of great importance in most Mediterranean climate regions, and the impacts caused on rainfed crops are particularly evident. In this study the impacts of drought on two representative rainfed crops in Spain (wheat and barley) are assessed by testing various worldwide drought indices and two datasets at different spatial resolution.
Sergio M. Vicente-Serrano, Cesar Azorin-Molina, Marina Peña-Gallardo, Miquel Tomas-Burguera, Fernando Domínguez-Castro, Natalia Martín-Hernández, Santiago Beguería, Ahmed El Kenawy, Iván Noguera, and Mónica García
Nat. Hazards Earth Syst. Sci., 19, 1189–1213, https://doi.org/10.5194/nhess-19-1189-2019, https://doi.org/10.5194/nhess-19-1189-2019, 2019
Short summary
Short summary
Drought is a major driver of vegetation activity in Spain. Here we used a high-resolution remote-sensing dataset spanning the period from 1981 to 2015 to assess the sensitivity of 23 vegetation types to drought across Spain. Results demonstrate that vegetation activity is controlled largely by the interannual variability of drought. Nevertheless, there are some considerable spatio-temporal variations, which can be linked to differences in land cover and aridity conditions.
Cited articles
ASF-JAXA: Dataset: ASF DAAC 2015, ALOS PALSAR Radiometric Terrain Corrected
high res, Includes Material JAXA/METI 2007, https://doi.org/10.5067/Z97HFCNKR6VA, 2011. a
Bacchi, B. and Ranzi, R.: On the derivation of the areal reduction factor of
storms, Atmos. Res., 42, 123–135, https://doi.org/10.1016/0169-8095(95)00058-5, 1996. a
Baltaci, H.: Meteorological analysis of flash floods in Artvin (NE Turkey) on
24 August 2015, Nat. Hazards Earth Syst. Sci., 17, 1221–1230,
https://doi.org/10.5194/nhess-17-1221-2017, 2017. a
Barbero, G., Moisello, U., and Todeschini, S.: Evaluation of the Areal
Reduction Factor in an Urban Area through Rainfall Records of Limited Length:
A Case Study, J. Hydrol. Eng., 19, 05014016,
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001022, 2014. a
Bellerby, T., Hsu, K.-L., and Sorooshian, S.: LMODEL: A Satellite Precipitation Methodology Using Cloud Development Modeling. Part I: Algorithm Construction and Calibration, J. Hydrometeorol., 10, 1081–1095,
https://doi.org/10.1175/2009JHM1091.1, 2009. a
Berne, A. and Krajewski, W.: Radar for hydrology: Unfulfilled promise or
unrecognized potential?, Adv. Water Resour., 51, 357–366,
https://doi.org/10.1016/j.advwatres.2012.05.005, 2013. a
Betz, H. D., Schmidt, K., Oettinger, W. P., and Montag, B.: Cell-tracking with lightning data from LINET, Adv. Geosci., 17, 55–61, https://doi.org/10.5194/adgeo-17-55-2008, 2008. a
Betz, H. D., Schmidt, K., Laroche, P., Blanchet, P., Oettinger, W. P., Defer,
E., Dziewit, Z., and Konarski, J.: LINET – An international lightning
detection network in Europe, Atmos. Res., 91, 564–573, https://doi.org/10.1016/j.atmosres.2008.06.012, 2009. a
Bookhagen, B. and Strecker, M. R.: Orographic barriers, high-resolution TRMM
rainfall, and relief variations along the eastern Andes, Geophys. Res. Lett., 35, L06403, https://doi.org/10.1029/2007GL032011, 2008. a
Borga, M., Boscolo, P., Zanon, F., and Sangati, M.: Hydrometeorological
Analysis of the 29 August 2003 Flash Flood in the Eastern Italian Alps, J. Hydrometeorol., 8, 1049–1067, 2007. a
Borga, M., Anagnostou, E. N., Blöschl, G., and Creutin, J. D.: Flash
flood forecasting, warning and risk management: The HYDRATE project, Environ. Sci. Policy, 14, 834–844, https://doi.org/10.1016/j.envsci.2011.05.017, 2011. a
Braud, I., Borga, M., Gourley, J., Hürlimann, M., Zappa, M., and Gallart, F.: Flash floods, hydro-geomorphic response and risk management, J. Hydrol., 541, 1–5, https://doi.org/10.1016/j.jhydrol.2016.08.005, 2016. a
Cardona-Duque, M. A.: Construcción Social Del Riesgo De Desastres. Caso Salgar-Antioquia, PhD thesis, Universidad pontificia Bolivariana – Sede
Medellín, available at: https://repository.upb.edu.co/handle/20.500.11912/4349 (last access: 20 November 2019), 2018. a
Carvalho, L. M. V. and Jones, C.: A Satellite Method to Identify Structural
Properties of Mesoscale Convective Systems Based on the Maximum Spatial
Correlation Tracking Technique (MASCOTTE), J. Applied Meteorol., 40, 1683–1701, https://doi.org/10.1175/1520-0450(2001)040<1683:ASMTIS>2.0.CO;2, 2001. a
Castillo, V. M., Gómez-Plaza, A., and Martínez-Mena, M.: The role of antecedent soil water content in the runoff response of semiarid catchments: A simulation approach, J. Hydrol., 284, 114–130, https://doi.org/10.1016/S0022-1694(03)00264-6, 2003. a
Ceccherini, G., Ameztoy, I., Hernández, C. P. R., and Moreno, C. C.:
High-resolution precipitation datasets in South America and West Africa
based on satellite-derived rainfall, enhanced vegetation index and digital
elevation model, Remote Sens., 7, 6454–6488, https://doi.org/10.3390/rs70506454, 2015. a
Ciric, D., Stojanovic, M., Drumond, A., Nieto, R., and Gimeno, L.: Tracking the Origin of Moisture over the Danube River Basin Using a Lagrangian Approach, Atmosphere, 7, 162, https://doi.org/10.3390/atmos7120162, 2016. a
Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service Climate Data Store (CDS), https://doi.org/10.24381/cds.bd0915c6, 2017. a
Coustau, M., Bouvier, C., Borrell-Estupina, V., and Jourde, H.: Flood
modelling with a distributed event-based parsimonious rainfall-runoff model:
Case of the karstic Lez river catchment, Nat. Hazards Earth Syst. Sci., 12, 1119–1133, https://doi.org/10.5194/nhess-12-1119-2012, 2012. a
Creutin, J. D. and Borga, M.: Radar hydrology modifies the monitoring of
flash-flood hazard, Hydrol. Process., 17, 1453–1456, https://doi.org/10.1002/hyp.5122, 2003. a
Deidda, R.: Rainfall downscaling in a space-time multifractal framework, Water Resour. Res., 36, 1779–1794, https://doi.org/10.1029/2000WR900038, 2000. a
Delrieu, G., Nicol, J., Yates, E., Kirstetter, P.-E., Creutin, J. D., Anquetin, S., Obled, C., Saulnier, G.-M., Ducrocq, V., Gaume, E., Payrastre, O., Andrieu, H., Ayral, P.-A., Bouvier, C., Neppel, L., Livet, M., Lang, M.,
du Châtelet, J. P., Walpersdorf, A., and Wobrock, W.: The Catastrophic
Flash-Flood Event of 8–9 September 2002 in the Gard Region, France: A First Case Study for the Cévennes–Vivarais Mediterranean Hydrometeorological Observatory, J. Hydrometeorol., 6, 34–52, 2005. a
Deser, C., Alexander, M. A., Xie, S.-P., and Phillips, A. S.: Sea Surface
Temperature Variability: Patterns and Mechanisms, Annu. Rev. Mar. Sci., 2, 115–143, https://doi.org/10.1146/annurev-marine-120408-151453, 2010. a
Diaz, H. F., Hoerling, M. P., and Eischeid, J. K.: ENSO variability,
teleconnections and climate change, Int. J. Climatol., 21, 1845–1862, https://doi.org/10.1002/joc.631, 2001. a
Dirmeyer, P. A. and Brubaker, K. L.: Characterization of the Global Hydrologic Cycle from a Back-Trajectory Analysis of Atmospheric Water Vapor, J. Hydrometeorol., 8, 20–37, https://doi.org/10.1175/JHM557.1, 2007. a
Doswell, C. A., Brooks, H. E., and Maddox, R. A.: Flash Flood Forecasting: An
Ingredients-Based Methodology, Weather Forecast., 11, 560–581,
https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2, 1996. a, b
Douinot, A., Roux, H., Garambois, P. A., Larnier, K., Labat, D., and Dartus,
D.: Accounting for rainfall systematic spatial variability in flash flood
forecasting, J. Hydrol., 541, 359–370, https://doi.org/10.1016/j.jhydrol.2015.08.024, 2016. a
Drumond, A., Nieto, R., Gimeno, L., and Ambrizzi, T.: A Lagrangian
identification of major sources of moisture over Central Brazil and La Plata
Basin, J. Geophys. Res.-Atmos., 113, D14128, https://doi.org/10.1029/2007JD009547, 2008. a
Drumond, A., Marengo, J., Ambrizzi, T., Nieto, R., Moreira, L., and Gimeno, L.: The role of the Amazon Basin moisture in the atmospheric branch of the
hydrological cycle: a Lagrangian analysis, Hydrol. Earth Syst. Sci., 18, 2577–2598, https://doi.org/10.5194/hess-18-2577-2014, 2014. a
Falvey, M. and Garreaud, R.: Wintertime Precipitation Episodes in Central
Chile: Associated Meteorological Conditions and Orographic Influences, J. Hydrometeorol., 8, 171–193, https://doi.org/10.1175/JHM562.1, 2007. a
Fang, X., Thompson, D. B., Cleveland, T. G., Pradhan, P., and Malla, R.: Time
of Concentration Estimated Using Watershed Parameters Determined by Automated
and Manual Methods, J. Irrig. Drain. Eng., 134, 202–211, https://doi.org/10.1061/(ASCE)0733-9437(2008)134:2(202), 2008. a
Ferrier, B. S.: A Double-Moment Multiple-Phase Four-Class Bulk Ice Scheme. Part I: Description, J. Atmos. Sci., 51, 249–280,
https://doi.org/10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2, 1994. a
Field, C. B., Barros, V., Stocker, T. F., Dahe, Q., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G. K., Allen, S. K., Tignor, M., and Midgley, P. M.: Managing the risks of extreme events and disasters to
advance climate change adaptation, in: Special report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, 2012. a
Fragoso, M., Trigo, R. M., Pinto, J. G., Lopes, S., Lopes, A., Ulbrich, S., and Magro, C.: The 20 February 2010 Madeira flash-floods: Synoptic analysis and extreme rainfall assessment, Nat. Hazards Earth Syst. Sci., 12,
715–730, https://doi.org/10.5194/nhess-12-715-2012, 2012. a
Gimeno, L., Stohl, A., Trigo, R. M., Dominguez, F., Yoshimura, K., Yu, L.,
Drumond, A., Durán-Quesada, A. M., and Nieto, R.: Oceanic and terrestrial
sources of continental precipitation, Rev. Geophys., 50, RG4003, https://doi.org/10.1029/2012RG000389, 2012. a
Gochis, D., Schumacher, R., Friedrich, K., Doesken, N., Kelsch, M., Sun, J.,
Ikeda, K., Lindsey, D., Wood, A., Dolan, B., Matrosov, S., Newman, A., Mahoney, K., Rutledge, S., Johnson, R., Kucera, P., Kennedy, P., Sempere-Torres, D., Steiner, M., Roberts, R., Wilson, J., Yu, W., Chandrasekar, V., Rasmussen, R., Anderson, A., and Brown, B.: The great
Colorado flood of September 2013, B. Am. Meteoro. Soc., 96, 1461–1487, https://doi.org/10.1175/BAMS-D-13-00241.1, 2015. a, b, c
Gruntfest, E. and Handmer, J.: Coping with flash floods, in: NATO Science series, Environmental Security, vol. 77, Proceedings of the NATO Advanced Study Institute, 8–17 November 1999, Ravello, Italy, Springer Netherlands, p. 322, 2001. a
Handwerker, J.: Cell tracking with TRACE3D – a new algorithm, Atmos. Res., 61, 15–34, https://doi.org/10.1016/S0169-8095(01)00100-4, 2002. a
Hapuarachchi, H. A. P., Wang, Q. J., and Pagano, T. C.: A review of advances in flash flood forecasting, Hydrol. Process., 25, 2771–2784,
https://doi.org/10.1002/hyp.8040, 2011. a
Hardy, J., Gourley, J. J., Kirstetter, P. E., Hong, Y., Kong, F., and Flamig,
Z. L.: A method for probabilistic flash flood forecasting, J. Hydrol., 541, 480–494, https://doi.org/10.1016/j.jhydrol.2016.04.007, 2016. a, b
Haylock, M. R., Peterson, T. C., Alves, L. M., Ambrizzi, T., Anunciação, Y. M. T., Baez, J., Barros, V. R., Berlato, M. A., Bidegain, M., Coronel, G., Corradi, V., Garcia, V. J., Grimm, A. M., Karoly, D., Marengo, J. A., Marino, M. B., Moncunill, D. F., Nechet, D., Quintana, J., Rebello, E., Rusticucci, M., Santos, J. L., Trebejo, I., and Vincent, L. A.: Trends in Total and Extreme South American Rainfall in 1960–2000 and Links with Sea Surface Temperature, J. Climate, 19, 1490–1512, https://doi.org/10.1175/JCLI3695.1, 2006. a
Houze, R. A.: Mesoscale convective systems, Rev. Geophys., 42, RG4003, https://doi.org/10.1029/2004RG000150, 2004. a
Houze, R. A., Rasmussen, K. L., Zuluaga, M. D., and Brodzik, S. R.: The
variable nature of convection in the tropics and subtropics: A legacy of
16 years of the Tropical Rainfall Measuring Mission satellite, Rev. Geophys., 53, 994–1021, https://doi.org/10.1002/2015RG000488, 2015. a, b
Hoyos, C. D. and Webster, P. J.: Evolution and modulation of tropical heating
from the last glacial maximum through the twenty-first century, Clim. Dynam., 38, 1501–1519, https://doi.org/10.1007/s00382-011-1181-3, 2012. a
Hoyos, I., Dominguez, F., Cañón-Barriga, J., Martínez, J. A.,
Nieto, R., Gimeno, L., and Dirmeyer, P. A.: Moisture origin and transport
processes in Colombia, northern South America, Clim. Dynam., 50, 971–990, https://doi.org/10.1007/s00382-017-3653-6, 2018. a
Huang, Y. and Cui, X.: Moisture sources of an extreme precipitation event in
Sichuan, China, based on the Lagrangian method, Atmos. Sci. Lett., 16, 177–183, https://doi.org/10.1002/asl2.562, 2015. a
Huffman, G. J.: GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree × 0.1 degree V05, Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, MD, https://doi.org/10.5067/GPM/IMERG/3B-HH/05, 2017. a
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu,
G., Hong, Y., Bowman, K. P., and Stocker, E. F.: The TRMM Multisatellite
Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor
Precipitation Estimates at Fine Scales, J. Hydrometeorol., 8, 38–55, 2007. a, b
IPCC: Climate Change 2014: Synthesis Report, in: Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland, 2014. a
Jha, A., Bloch, R., and Lamond, J.: Cities and Flooding: A Guide to Integrated Urban Flood Risk Management for the 21st Century,
World Bank Publications, Washington, D.C., USA, https://doi.org/10.1596/978-0-8213-8866-2, 2012. a
Jonkman, S.: Global perspectives on loss of human life caused by floods, Nat. Hazards, 34, 151–175, https://doi.org/10.1007/s11069-004-8891-3, 2005. a, b
Joyce, R. J. and Xie, P.: Kalman Filter-Based CMORPH, J. Hydrometeorol., 12, 1547–1563, 2011. a
Kahana, R., Ziv, B., Enzel, Y., and Dayan, U.: Synoptic climatology of major
floods in the Negev Desert, Israel, Int. J. Climatol., 22, 867–882, https://doi.org/10.1002/joc.766, 2002. a
Kirpich, Z. P.: Time of concentration of small agricultural watersheds, J. Civ. Eng., 10, 362, 1940. a
Klemeš, V.: Conceptualization and scale in hydrology, J. Hydrol., 65, 1–23, 1983. a
Klemeš, V.: Probability of extreme hydrometeorological events – A different approach, in: Extreme Hydrological Events: Precipitation, Floods and Droughts, IAHS Publ. no. 213, Yokohama, Japan, 167–176,, 1993. a
Kober, K. and Tafferner, A.: Tracking and nowcasting of convective cells using remote sensing data from radar and satellite, Meteorol. Z., 18, 75–84, https://doi.org/10.1127/0941-2948/2009/359, 2009. a
Kummerow, C., Barnes, W., Kozu, T., Shiue, J., and Simpson, J.: The tropical
rainfall measuring mission (TRMM) sensor package, J. Atmos. Ocean. Tech., 15, 809–817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2, 1998. a
Li, L., Schmid, W., and Joss, J.: Nowcasting of Motion and Growth of
Precipitation with Radar over a Complex Orography, J. Appl. Meteorol., 34, 1286–1300, https://doi.org/10.1175/1520-0450(1995)034<1286:NOMAGO>2.0.CO;2, 1995. a, b
Lin, Y.-L., Farley, R. D., and Orville, H. D.: Bulk Parameterization of the
Snow Field in a Cloud Model, J. Clim. Appl. Meteorol., 22, 1065–1092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2, 1983. a, b
Llasat, M. C., Marcos, R., Turco, M., Gilabert, J., and Llasat-Botija, M.:
Trends in flash flood events versus convective precipitation in the
Mediterranean region: The case of Catalonia, J. Hydrol., 541, 24–37, https://doi.org/10.1016/j.jhydrol.2016.05.040, 2016. a, b, c
Mapes, B., Warner, T., Xu, M., and Negri, A. J.: Diurnal Patterns of Rainfall
in Northwestern South America. Part I: Observations and Context, Mon.
Weather Rev., 131, 799–812,
https://doi.org/10.1175/1520-0493(2003)131<0799:DPORIN>2.0.CO;2, 2003. a
Marra, F., Destro, E., Nikolopoulos, E. I., Zoccatelli, D., Dominique Creutin, J., Guzzetti, F., and Borga, M.: Impact of rainfall spatial aggregation on the identification of debris flow occurrence thresholds, Hydrol. Earth Syst. Sci., 21, 4525–4532, https://doi.org/10.5194/hess-21-4525-2017, 2017. a, b
Merk, D. and Zinner, T.: Detection of convective initiation using Meteosat
SEVIRI: implementation in and verification with the tracking and nowcasting
algorithm Cb-TRAM, Atmos. Meas. Tech., 6, 1903–1918,
https://doi.org/10.5194/amt-6-1903-2013, 2013. a
Merz, R. and Blöschl, G.: A process typology of regional floods, Water
Resour. Res., 39, 1–20, https://doi.org/10.1029/2002WR001952, 2003. a, b
Milelli, M., Llasat, M. C., and Ducrocq, V.: The cases of June 2000,
November 2002 and September 2002 as examples of Mediterranean floods, Nat. Hazards Earth Syst. Sci., 6, 271–284, https://doi.org/10.5194/nhess-6-271-2006, 2006. a
Mora, A., Parra, M., Strecker, M. R., Sobel, E. R., Hooghiemstra, H., Torres,
V., and Jaramillo, J. V.: Climatic forcing of asymmetric orogenic evolution
in the Eastern Cordillera of Colombia, Geol. Soc. Am. Bull., 120, 930–949, https://doi.org/10.1130/B26186.1, 2008. a
Norbiato, D., Borga, M., Degli Esposti, S., Gaume, E., and Anquetin, S.:
Flash flood warning based on rainfall thresholds and soil moisture conditions: An assessment for gauged and ungauged basins, J. Hydrol., 362, 274–290, https://doi.org/10.1016/j.jhydrol.2008.08.023, 2008. a
Orlowsky, B. and Seneviratne, S. I.: Global changes in extreme events: regional and seasonal dimension, Climatic Change, 110, 669–696,
https://doi.org/10.1007/s10584-011-0122-9, 2012. a
Penna, D., Tromp-Van Meerveld, H. J., Gobbi, A., Borga, M., and Dalla Fontana, G.: The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment, Hydrol. Earth Syst. Sci., 15, 689–702, https://doi.org/10.5194/hess-15-689-2011, 2011. a, b
Peters, J. M. and Roebber, P. J.: Synoptic Control of Heavy-Rain-Producing
Convective Training Episodes, Mon. Weather Rev., 142, 2464–2482,
https://doi.org/10.1175/MWR-D-13-00263.1, 2014. a
Peters, J. M. and Schumacher, R. S.: Mechanisms for Organization and Echo
Training in a Flash-Flood-Producing Mesoscale Convective System, Mon. Weather Rev., 143, 1058–1085, https://doi.org/10.1175/MWR-D-14-00070.1, 2015. a
Piper, D., Kunz, M., Ehmele, F., Mohr, S., Mühr, B., Kron, A., and Daniell, J.: Exceptional sequence of severe thunderstorms and related flash floods in May and June 2016 in Germany – Part 1: Meteorological background, Nat. Hazards Earth Syst. Sci., 16, 2835–2850, https://doi.org/10.5194/nhess-16-2835-2016, 2016. a
Polanco, C. and Bedoya, G.: Compilación y análisis de los desastres
naturales reportados en el departamento de Antioquia exceptuando los
municipios del Valle de Aburrá-Colombia, entre 1920–1999, Ingeniería y Ciencia, 1, 45–65, 2005. a
Poveda, G. and Mesa, O. J.: On the existence of Lloró (the rainiest locality on Earth): Enhanced ocean-land-atmosphere interaction by a low-level jet, Geophys. Res. Lett., 27, 1675–1678, https://doi.org/10.1029/1999GL006091, 2000. a
Poveda, G., Mesa, O. J., Salazar, L. F., Arias, P. A., Moreno, H. A., Vieira,
S. C., Agudelo, P. A., Toro, V. G., and Alvarez, J. F.: The Diurnal Cycle of
Precipitation in the Tropical Andes of Colombia, Mon. Weather Rev., 133, 228–240, https://doi.org/10.1175/MWR-2853.1, 2005. a
Poveda, G., Waylen, P. R., and Pulwarty, R. S.: Annual and inter-annual
variability of the present climate in northern South America and southern
Mesoamerica, Palaeogeogr. Palaeocl., 234, 3–27, https://doi.org/10.1016/j.palaeo.2005.10.031, 2006. a
Poveda, G., Vélez, J. I., Mesa, O. J., Cuartas, A., Barco, J., Mantilla,
R. I., Mejía, J. F., Hoyos, C. D., Ramírez, J. M., Ceballos, L. I., Zuluaga, M. D., Arias, P. A., Botero, B. A., Montoya, M. I., Giraldo, J. D., and Quevedo, D. I.: Linking Long-Term Water Balances and Statistical Scaling to Estimate River Flows along the Drainage Network of Colombia, J. Hydrol. Eng., 12, 4–13, https://doi.org/10.1061/(ASCE)1084-0699(2007)12:1(4), 2007. a
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.: An
Improved In Situ and Satellite SST Analysis for Climate, J. Climate, 15, 1609–1625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2, 2002. a
Rodriguez-Blanco, M., Taboada-Castro, M., and Taboada-Castro, M.:
Rainfall–runoff response and event-based runoff coefficients in a humid area (northwest Spain), Hydrolog. Sci. J., 403, 319–329, https://doi.org/10.1080/02626669509491418, 2012. a
Rodriguez-Iturbe, I. and Mejía, J. M.: On the transformation of point rainfall to areal rainfall, Water Resour. Res., 10, 729–735,
https://doi.org/10.1029/WR010i004p00729, 1974. a
Roux, H., Labat, D., Garambois, P. A., Maubourguet, M. M., Chorda, J., and
Dartus, D.: A physically-based parsimonious hydrological model for flash
floods in Mediterranean catchments, Nat. Hazards Earth Syst. Sci., 11, 2567–2582, https://doi.org/10.5194/nhess-11-2567-2011, 2011. a
Ruiz-Villanueva, V., Díez-Herrero, A., Bodoque, J. M., Ballesteros Cánovas, J. A., and Stoffel, M.: Characterisation of flash floods in small ungauged mountain basins of Central Spain using an integrated
approach, Catena, 110, 32–43, https://doi.org/10.1016/j.catena.2013.06.015, 2013. a
Šálek, M., Brezková, L., and Novák, P.: The use of radar in hydrological modeling in the Czech Republic – case studies of flash floods, Nat. Hazards Earth Syst. Sci., 6, 229–236, https://doi.org/10.5194/nhess-6-229-2006, 2006. a, b, c
Schumacher, R. S. and Johnson, R. H.: Organization and Environmental Properties of Extreme-Rain-Producing Mesoscale Convective Systems, Mon. Weather Rev., 133, 961–976, https://doi.org/10.1175/MWR2899.1, 2005. a
Sepúlveda, J.: Estimación cuantitativa de precipitación a partir de la información de Radar Meteorológico delÁrea Metropolitana del Valle de Aburrá, MS thesis, Universidad Nacional de Colombia – Sede
Medellín, available at: http://bdigital.unal.edu.co/54581/ (last access: 20 November 2019), 2016. a
Sepúlveda, J. and Hoyos, C. D.: Disdrometer-based C-Band Radar
Quantitative Precipitation Estimation (QPE) in a highly complex terrain
region in tropical Colombia, in: AGU Fall Meeting Abstracts, 13 December 2017, New Orleans, 2017. a
Sivapalan, M. and Blöschl, G.: Transformation of point rainfall to areal
rainfall: Intensity-duration-frequency curves, J. Hydrol., 204, 150–167, https://doi.org/10.1016/S0022-1694(97)00117-0, 1998. a
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang,
W., and Powers, J. G.: A description of the Advanced Research WRF version 3,
NCAR Technical note -475+STR, National Center for Atmospheric Research, Boulder, Colorado, USA, 2008. a
Steiner, M., Houze, R. A., and Yuter, S. E.: Climatological Characterization of Three-Dimensional Storm Structure from Operational Radar and Rain Gauge Data, J. Appl. Meteorol., 34, 1978–2007, https://doi.org/10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2, 1995. a, b, c
Stojanovic, M., Drumond, A., Nieto, R., and Gimeno, L.: Moisture Transport
Anomalies over the Danube River Basin during Two Drought Events: A Lagrangian
Analysis, Atmosphere, 8, 193, https://doi.org/10.3390/atmos8100193, 2017. a
Tao, K. and Barros, A. P.: Using Fractal Downscaling of Satellite Precipitation Products for Hydrometeorological Applications, J. Atmos. Ocean. Tech., 27, 409–427, https://doi.org/10.1175/2009JTECHA1219.1, 2010. a
Tramblay, Y., Bouaicha, R., Brocca, L., Dorigo, W., Bouvier, C., Camici, S.,
and Servat, E.: Estimation of antecedent wetness conditions for flood modelling in northern Morocco, Hydrol. Earth Syst. Sci., 16, 4375–4386, https://doi.org/10.5194/hess-16-4375-2012, 2012. a, b
TRMM: TRMM (TMPA) Rainfall Estimate L3 3 hour 0.25 degree × 0.25 degree V7, Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, MD, https://doi.org/10.5067/TRMM/TMPA/3H/7, 2011. a
Tuttle, J. D. and Foote, G. B.: Determination of the Boundary Layer Airflow
from a Single Doppler Radar, J. Atmos. Ocean. Tech., 7, 218–232, https://doi.org/10.1175/1520-0426(1990)007<0218:DOTBLA>2.0.CO;2, 1990. a
UCAR/NCAR-EOL: GOES-13 Imager 4 km All Channel Data – netCDF, Version 1.0,
UCAR/NCAR – Earth Observing Laboratory, https://doi.org/10.5065/D6057D99, 2015. a
UN-CEPAL: Valoración de daños y pérdidas: Ola invernal en Colombia 2010–2011, Naciones Unidas, Comisión Económica para América Latina y el Caribe, available at: https://www.cepal.org/es/publicaciones/37958-valoracion-danos-perdidas-ola-invernal-colombia-2010 (last access: 20 November 2019), 2012. a
Urán, J. D.: Cambios en los valores extremos de variables climáticas en Colombia asociados a cambio climático, MS thesis, Universidad
Nacional de Colombia – Sede Medellín, available at: http://bdigital.unal.edu.co/52475/ (last access: 20 November 2019), 2016. a
Urán, J. D., Hoyos, C. D., and Agudelo, P. A.: Assesment Of The Long-Term
Changes In Sub-Daily Precipitation In A Tropical Complex-Terrain Region:
Extreme Events And Their Relation With Temperature Increase, Earth and Space Science Open Archive, https://doi.org/10.1002/essoar.10500551.1, 2019. a
Velásquez, N., Hoyos, C. D., Vélez, J. I., and Zapata, E.: Reconstructing the Salgar 2015 Flash Flood Using Radar Retrievals and a Conceptual Modeling Framework: A Basis for a Better Flood Generating Mechanisms Discrimination, Hydrol. Earth Syst. Sci. Discuss.,
https://doi.org/10.5194/hess-2018-452, in review, 2018. a, b, c, d
Veneziano, D. and Langousis, A.: The areal reduction factor: A multifractal
analysis, Water Resour. Res., 41, W07008, https://doi.org/10.1029/2004WR003765, 2005. a
Vila, D. A., Machado, L. A. T., Laurent, H., and Velasco, I.: Forecast and
Tracking the Evolution of Cloud Clusters (ForTraCC) Using Satellite Infrared
Imagery: Methodology and Validation, Weather Forecast., 23, 233–245,
https://doi.org/10.1175/2007WAF2006121.1, 2008. a
Viste, E. and Sorteberg, A.: Moisture transport into the Ethiopian highlands,
Int. J. Climatology, 33, 249–263, https://doi.org/10.1002/joc.3409, 2013. a
Wagner, W., Lemoine, G., and Rott, H.: A method for estimating soil moisture
from ERS Scatterometer and soil data, Remote Sens. Environ., 70, 191–207, https://doi.org/10.1016/S0034-4257(99)00036-X, 1999. a
Wolter, K. and Timlin, M. S.: El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext),
Int. J. Climatol., 31, 1074–1087, https://doi.org/10.1002/joc.2336, 2011. a
Yamanaka, T. and Ma, W.: Runoff prediction in a poorly gauged basin using
isotope-calibrated models, J. Hydrol., 544, 567–574,
https://doi.org/10.1016/j.jhydrol.2016.12.005, 2017. a
Yatheendradas, S., Wagener, T., Gupta, H., Unkrich, C., Goodrich, D., Schaffner, M., and Stewart, A.: Understanding uncertainty in distributed flash flood forecasting for semiarid regions, Water Resour. Res., 44, W05S19, https://doi.org/10.1029/2007WR005940, 2008.
a, b
Younis, J., Anquetin, S., and Thielen, J.: The benefit of high-resolution operational weather forecasts for flash flood warning, Hydrol. Earth Syst. Sci., 12, 1039–1051, https://doi.org/10.5194/hess-12-1039-2008, 2008. a
Yuter, S. E. and Houze, R. A.: Measurements of Raindrop Size Distributions over the Pacific Warm Pool and Implications for Z–R Relations, J. Appl. Meteorol., 36, 847–867,
https://doi.org/10.1175/1520-0450(1997)036<0847:MORSDO>2.0.CO;2, 1997. a
Zehe, E., Graeff, T., Morgner, M., Bauer, A., and Bronstert, A.: Plot and
field scale soil moisture dynamics and subsurface wetness control on runoff
generation in a headwater in the Ore Mountains, Hydrol. Earth Syst. Sci., 14, 873–889, https://doi.org/10.5194/hess-14-873-2010, 2010. a
Zinner, T., Mannstein, H., and Tafferner, A.: Cb-TRAM: Tracking and monitoring severe convection from onset over rapid development to mature phase using multi-channel Meteosat-8 SEVIRI data, Meteorol. Atmos. Phys.,
101, 191–210, https://doi.org/10.1007/s00703-008-0290-y, 2008. a
Zuluaga, M. D. and Houze, R. A.: Extreme Convection of the Near-Equatorial
Americas, Africa, and Adjoining Oceans as seen by TRMM, Mon. Weather Rev., 143, 298–316, https://doi.org/10.1175/MWR-D-14-00109.1, 2015. a
Short summary
On the morning of 18 May 2015, a flash flood in the La Liboriana river basin inundated the town of Salgar, killing more than 100 people. The ultimate goal of science, regarding risk management, is to be able to reduce the number of people affected by severe storms. Our goal is to identify the meteorological conditions that led to the flood, assess the characteristics of the rainfall events before the disaster, and identify lessons for vulnerable regions settled in complex terrains.
On the morning of 18 May 2015, a flash flood in the La Liboriana river basin inundated the town...
Altmetrics
Final-revised paper
Preprint