Articles | Volume 18, issue 10
https://doi.org/10.5194/nhess-18-2697-2018
https://doi.org/10.5194/nhess-18-2697-2018
Research article
 | 
23 Oct 2018
Research article |  | 23 Oct 2018

Spatial consistency and bias in avalanche forecasts – a case study in the European Alps

Frank Techel, Christoph Mitterer, Elisabetta Ceaglio, Cécile Coléou, Samuel Morin, Francesca Rastelli, and Ross S. Purves

Related authors

A three-stage model pipeline predicting regional avalanche danger in Switzerland (RAvaFcast v1.0.0): a decision-support tool for operational avalanche forecasting
Alessandro Maissen, Frank Techel, and Michele Volpi
EGUsphere, https://doi.org/10.5194/egusphere-2023-2948,https://doi.org/10.5194/egusphere-2023-2948, 2024
Short summary
Prediction of natural dry-snow avalanche activity using physics-based snowpack simulations
Stephanie Mayer, Frank Techel, Jürg Schweizer, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 23, 3445–3465, https://doi.org/10.5194/nhess-23-3445-2023,https://doi.org/10.5194/nhess-23-3445-2023, 2023
Short summary
Avalanche size estimation and avalanche outline determination by experts: reliability and implications for practice
Elisabeth D. Hafner, Frank Techel, Rodrigo Caye Daudt, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 23, 2895–2914, https://doi.org/10.5194/nhess-23-2895-2023,https://doi.org/10.5194/nhess-23-2895-2023, 2023
Short summary
A random forest model to assess snow instability from simulated snow stratigraphy
Stephanie Mayer, Alec van Herwijnen, Frank Techel, and Jürg Schweizer
The Cryosphere, 16, 4593–4615, https://doi.org/10.5194/tc-16-4593-2022,https://doi.org/10.5194/tc-16-4593-2022, 2022
Short summary
Data-driven automated predictions of the avalanche danger level for dry-snow conditions in Switzerland
Cristina Pérez-Guillén, Frank Techel, Martin Hendrick, Michele Volpi, Alec van Herwijnen, Tasko Olevski, Guillaume Obozinski, Fernando Pérez-Cruz, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 22, 2031–2056, https://doi.org/10.5194/nhess-22-2031-2022,https://doi.org/10.5194/nhess-22-2031-2022, 2022
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Brief communication: The Lahaina Fire disaster – how models can be used to understand and predict wildfires
Timothy W. Juliano, Fernando Szasdi-Bardales, Neil P. Lareau, Kasra Shamsaei, Branko Kosović, Negar Elhami-Khorasani, Eric P. James, and Hamed Ebrahimian
Nat. Hazards Earth Syst. Sci., 24, 47–52, https://doi.org/10.5194/nhess-24-47-2024,https://doi.org/10.5194/nhess-24-47-2024, 2024
Short summary
Prediction of natural dry-snow avalanche activity using physics-based snowpack simulations
Stephanie Mayer, Frank Techel, Jürg Schweizer, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 23, 3445–3465, https://doi.org/10.5194/nhess-23-3445-2023,https://doi.org/10.5194/nhess-23-3445-2023, 2023
Short summary
Automated Avalanche Terrain Exposure Scale (ATES) mapping – Local validation and optimization in Western Canada
John Sykes, Håvard Toft, Pascal Haegeli, and Grant Statham
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-112,https://doi.org/10.5194/nhess-2023-112, 2023
Revised manuscript accepted for NHESS
Short summary
Early warning system for ice collapses and river blockages in the Sedongpu Valley, southeastern Tibetan Plateau
Wei Yang, Zhongyan Wang, Baosheng An, Yingying Chen, Chuanxi Zhao, Chenhui Li, Yongjie Wang, Weicai Wang, Jiule Li, Guangjian Wu, Lin Bai, Fan Zhang, and Tandong Yao
Nat. Hazards Earth Syst. Sci., 23, 3015–3029, https://doi.org/10.5194/nhess-23-3015-2023,https://doi.org/10.5194/nhess-23-3015-2023, 2023
Short summary
Fire risk modeling: an integrated and data-driven approach applied to Sicily
Alba Marquez Torres, Giovanni Signorello, Sudeshna Kumar, Greta Adamo, Ferdinando Villa, and Stefano Balbi
Nat. Hazards Earth Syst. Sci., 23, 2937–2959, https://doi.org/10.5194/nhess-23-2937-2023,https://doi.org/10.5194/nhess-23-2937-2023, 2023
Short summary

Cited articles

Baker, J. and McGee, T.: Backcountry snowmobiler' avalanche-related information-seeking and preparedness behaviors, Soc. Nat. Resour., 29, 345–356, https://doi.org/10.1080/08941920.2015.1103387, 2016. a
Ballou, D. and Pazer, H.: Modeling completeness versus consistency tradeoffs in information decision contexts, IEEE T. Knowl. Data En., 15, 240–243, https://doi.org/10.1109/TKDE.2003.1161595, 2003. a
Bivand, R.: classInt: Choose univariate class intervals, available at: https://CRAN.R-project.org/package=classInt, r package version 0.1-24, last access: 1 September 2017. a
Bivand, R. and Piras, G.: Comparing implementations of estimation methods for spatial econometrics, J. Stat. Softw., 63, 1–36, https://doi.org/10.18637/jss.v063.i18, 2015. a
Bivand, R., Pebesma, E., and Gómez-Rubio, V.: Applied spatial data analysis with R, Springer Science + Business Media New York 2013, 2 edn., https://doi.org/10.1007/978-1-4614-7618-4, 2013. a
Download
Short summary
In 1993, the European Avalanche Warning Services agreed upon a common danger scale to describe the regional avalanche hazard: the European Avalanche Danger Scale. Using published avalanche forecasts, we explored whether forecasters use the scale consistently. We noted differences in the use of the danger levels, some of which could be linked to the size of the regions a regional danger level is issued for. We recommend further harmonizing the avalanche forecast products in the Alps.
Altmetrics
Final-revised paper
Preprint