Articles | Volume 18, issue 1
https://doi.org/10.5194/nhess-18-231-2018
https://doi.org/10.5194/nhess-18-231-2018
Research article
 | 
18 Jan 2018
Research article |  | 18 Jan 2018

Seismic assessment of a multi-span steel railway bridge in Turkey based on nonlinear time history

Mehmet F. Yılmaz and Barlas Ö. Çağlayan

Related subject area

Earthquake Hazards
Risk-informed representative earthquake scenarios for Valparaíso and Viña del Mar, Chile
Hugo Rosero-Velásquez, Mauricio Monsalve, Juan Camilo Gómez Zapata, Elisa Ferrario, Alan Poulos, Juan Carlos de la Llera, and Daniel Straub
Nat. Hazards Earth Syst. Sci., 24, 2667–2687, https://doi.org/10.5194/nhess-24-2667-2024,https://doi.org/10.5194/nhess-24-2667-2024, 2024
Short summary
Harmonizing seismicity information in Central Asian countries: earthquake catalogue and active faults
Valerio Poggi, Stefano Parolai, Natalya Silacheva, Anatoly Ischuk, Kanatbek Abdrakhmatov, Zainalobudin Kobuliev, Vakhitkhan Ismailov, Roman Ibragimov, Japar Karaev, Paola Ceresa, and Paolo Bazzurro
Nat. Hazards Earth Syst. Sci., 24, 2597–2613, https://doi.org/10.5194/nhess-24-2597-2024,https://doi.org/10.5194/nhess-24-2597-2024, 2024
Short summary
Comparing components for seismic risk modelling using data from the 2019 Le Teil (France) earthquake
Konstantinos Trevlopoulos, Pierre Gehl, Caterina Negulescu, Helen Crowley, and Laurentiu Danciu
Nat. Hazards Earth Syst. Sci., 24, 2383–2401, https://doi.org/10.5194/nhess-24-2383-2024,https://doi.org/10.5194/nhess-24-2383-2024, 2024
Short summary
Modelling seismic ground motion and its uncertainty in different tectonic contexts: challenges and application to the 2020 European Seismic Hazard Model (ESHM20)
Graeme Weatherill, Sreeram Reddy Kotha, Laurentiu Danciu, Susana Vilanova, and Fabrice Cotton
Nat. Hazards Earth Syst. Sci., 24, 1795–1834, https://doi.org/10.5194/nhess-24-1795-2024,https://doi.org/10.5194/nhess-24-1795-2024, 2024
Short summary
Scoring and ranking probabilistic seismic hazard models: an application based on macroseismic intensity data
Vera D'Amico, Francesco Visini, Andrea Rovida, Warner Marzocchi, and Carlo Meletti
Nat. Hazards Earth Syst. Sci., 24, 1401–1413, https://doi.org/10.5194/nhess-24-1401-2024,https://doi.org/10.5194/nhess-24-1401-2024, 2024
Short summary

Cited articles

Alam, M. S., Bhuiyan, M. A. R., and Billah, A. H. M. M.: Seismic fragility assessment of SMA-bar restrained multi-span continuous highway bridge isolated by different laminated rubber bearings in medium to strong seismic risk zones, Bull. Earthq. Eng., 10, 1885–1909, https://doi.org/10.1007/s10518-012-9381-8, 2012. 
Banerjee, S. and Shinozuka, M.: Nonlinear static procedure for seismic vulnerability assessment of bridges, Comput. Civ. Infrastruct. Eng., 22, 293–305, https://doi.org/10.1111/j.1467-8667.2007.00486.x, 2007. 
Bignell, J. L., LaFave, J. M., Wilkey, J. P., and Hawkins, N. M.: 13th World Conference on Earthquake Engineering Seismic Evaluation Of Vulnerable Highway Bridges With Wall Piers on Emergency Routes in Southern Illinois, 1–6 August 2004, Vancouver, BC, Canada, 286–299, 2004. 
Bruneau, M., Wilson, J. C., and Tremblay, R.: Performance of steel bridges during the 1995 Hyogo-ken Nanbu (Kobe, Japan) earthquake, Can. J. Civ. Eng., 23, 678–713, 1996. 
Byers, W. G.: Railroad Lifeline Damege in Earthquaked, 13th World Conf. Earthq. Eng., Vancouver, B.C., Canada, 324–335, 2004. 
Download
Short summary
This study focuses on the determination of seismic behavior and safety of specific bridges under seismic conditions. One of the nine intensity measures is selected considering practicality, efficiency, and proficiency. Component and system fragility curves are derived considering serviceability limits and component capacity. The results show that serves velocity limits has important effects on fragility curves of bridges and truss piers elements are the most vulnerable elements in the system.
Altmetrics
Final-revised paper
Preprint