Articles | Volume 25, issue 1
https://doi.org/10.5194/nhess-25-1-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-25-1-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Testing the 2020 European Seismic Hazard Model (ESHM20) against observations from Romania
National Institute for Earth Physics, Măgurele, 077125, Ilfov, Romania
GNS Science, PO Box 30-368, Te Awa Kairangi ki Tai / Lower Hutt, Aotearoa / New Zealand
Laurentiu Danciu
CORRESPONDING AUTHOR
ETH Zurich, Seismology and Geodynamics, Sonneggstrasse 5, 8092 Zurich, Switzerland
Carmen O. Cioflan
National Institute for Earth Physics, Măgurele, 077125, Ilfov, Romania
Dragos Toma-Danila
National Institute for Earth Physics, Măgurele, 077125, Ilfov, Romania
Matthew C. Gerstenberger
GNS Science, PO Box 30-368, Te Awa Kairangi ki Tai / Lower Hutt, Aotearoa / New Zealand
Related authors
No articles found.
Bénédicte Donniol Jouve, Anne Socquet, Céline Beauval, Jesus Piña Valdès, and Laurentiu Danciu
Nat. Hazards Earth Syst. Sci., 25, 1789–1809, https://doi.org/10.5194/nhess-25-1789-2025, https://doi.org/10.5194/nhess-25-1789-2025, 2025
Short summary
Short summary
We investigate how geodetic monitoring enhances accuracy in seismic hazard assessment. By utilizing geodetic strain rate maps for Europe and the European Seismic Hazard Model 2020 source model, we compare geodetic and seismic moment rates across the continent while addressing associated uncertainties. Our analysis reveals primary compatibility in high-activity zones. In well-constrained regions of lower activity, we also observed an overlap in the distribution of seismic and geodetic moments.
Roberto Basili, Laurentiu Danciu, Céline Beauval, Karin Sesetyan, Susana Pires Vilanova, Shota Adamia, Pierre Arroucau, Jure Atanackov, Stéphane Baize, Carolina Canora, Riccardo Caputo, Michele Matteo Cosimo Carafa, Edward Marc Cushing, Susana Custódio, Mine Betul Demircioglu Tumsa, João C. Duarte, Athanassios Ganas, Julián García-Mayordomo, Laura Gómez de la Peña, Eulàlia Gràcia, Petra Jamšek Rupnik, Hervé Jomard, Vanja Kastelic, Francesco Emanuele Maesano, Raquel Martín-Banda, Sara Martínez-Loriente, Marta Neres, Hector Perea, Barbara Šket Motnikar, Mara Monica Tiberti, Nino Tsereteli, Varvara Tsironi, Roberto Vallone, Kris Vanneste, Polona Zupančič, and Domenico Giardini
Nat. Hazards Earth Syst. Sci., 24, 3945–3976, https://doi.org/10.5194/nhess-24-3945-2024, https://doi.org/10.5194/nhess-24-3945-2024, 2024
Short summary
Short summary
This study presents the European Fault-Source Model 2020 (EFSM20), a dataset of 1248 geologic crustal faults and four subduction systems, each having the necessary parameters to forecast long-term earthquake occurrences in the European continent. This dataset constituted one of the main inputs for the recently released European Seismic Hazard Model 2020, a key instrument to mitigate seismic risk in Europe. EFSM20 adopts recognized open-standard formats, and it is openly accessible and reusable.
Athanasios N. Papadopoulos, Philippe Roth, Laurentiu Danciu, Paolo Bergamo, Francesco Panzera, Donat Fäh, Carlo Cauzzi, Blaise Duvernay, Alireza Khodaverdian, Pierino Lestuzzi, Ömer Odabaşi, Ettore Fagà, Paolo Bazzurro, Michèle Marti, Nadja Valenzuela, Irina Dallo, Nicolas Schmid, Philip Kästli, Florian Haslinger, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3561–3578, https://doi.org/10.5194/nhess-24-3561-2024, https://doi.org/10.5194/nhess-24-3561-2024, 2024
Short summary
Short summary
The Earthquake Risk Model of Switzerland (ERM-CH23), released in early 2023, is the culmination of a multidisciplinary effort aiming to achieve, for the first time, a comprehensive assessment of the potential consequences of earthquakes on the Swiss building stock and population. ERM-CH23 provides risk estimates for various impact metrics, ranging from economic loss as a result of damage to buildings and their contents to human losses, such as deaths, injuries, and displaced population.
Laurentiu Danciu, Domenico Giardini, Graeme Weatherill, Roberto Basili, Shyam Nandan, Andrea Rovida, Céline Beauval, Pierre-Yves Bard, Marco Pagani, Celso G. Reyes, Karin Sesetyan, Susana Vilanova, Fabrice Cotton, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3049–3073, https://doi.org/10.5194/nhess-24-3049-2024, https://doi.org/10.5194/nhess-24-3049-2024, 2024
Short summary
Short summary
The 2020 European Seismic Hazard Model (ESHM20) is the latest seismic hazard assessment update for the Euro-Mediterranean region. This state-of-the-art model delivers a broad range of hazard results, including hazard curves, maps, and uniform hazard spectra. ESHM20 provides two hazard maps as informative references in the next update of the European Seismic Design Code (CEN EC8), and it also provides a key input to the first earthquake risk model for Europe.
Konstantinos Trevlopoulos, Pierre Gehl, Caterina Negulescu, Helen Crowley, and Laurentiu Danciu
Nat. Hazards Earth Syst. Sci., 24, 2383–2401, https://doi.org/10.5194/nhess-24-2383-2024, https://doi.org/10.5194/nhess-24-2383-2024, 2024
Short summary
Short summary
The models used to estimate the probability of exceeding a level of earthquake damage are essential to the reduction of disasters. These models consist of components that may be tested individually; however testing these types of models as a whole is challenging. Here, we use observations of damage caused by the 2019 Le Teil earthquake and estimations from other models to test components of seismic risk models.
Graeme Weatherill, Sreeram Reddy Kotha, Laurentiu Danciu, Susana Vilanova, and Fabrice Cotton
Nat. Hazards Earth Syst. Sci., 24, 1795–1834, https://doi.org/10.5194/nhess-24-1795-2024, https://doi.org/10.5194/nhess-24-1795-2024, 2024
Short summary
Short summary
The ground motion models (GMMs) selected for the 2020 European Seismic Hazard Model (ESHM20) and their uncertainties require adaptation to different tectonic environments. Using insights from new data, local experts and developments in the scientific literature, we further calibrate the ESHM20 GMM logic tree to capture previously unmodelled regional variation. We also propose a new scaled-backbone logic tree for application to Europe's subduction zones and the Vrancea deep seismic source.
Maren Böse, Laurentiu Danciu, Athanasios Papadopoulos, John Clinton, Carlo Cauzzi, Irina Dallo, Leila Mizrahi, Tobias Diehl, Paolo Bergamo, Yves Reuland, Andreas Fichtner, Philippe Roth, Florian Haslinger, Frédérick Massin, Nadja Valenzuela, Nikola Blagojević, Lukas Bodenmann, Eleni Chatzi, Donat Fäh, Franziska Glueer, Marta Han, Lukas Heiniger, Paulina Janusz, Dario Jozinović, Philipp Kästli, Federica Lanza, Timothy Lee, Panagiotis Martakis, Michèle Marti, Men-Andrin Meier, Banu Mena Cabrera, Maria Mesimeri, Anne Obermann, Pilar Sanchez-Pastor, Luca Scarabello, Nicolas Schmid, Anastasiia Shynkarenko, Bozidar Stojadinović, Domenico Giardini, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 583–607, https://doi.org/10.5194/nhess-24-583-2024, https://doi.org/10.5194/nhess-24-583-2024, 2024
Short summary
Short summary
Seismic hazard and risk are time dependent as seismicity is clustered and exposure can change rapidly. We are developing an interdisciplinary dynamic earthquake risk framework for advancing earthquake risk mitigation in Switzerland. This includes various earthquake risk products and services, such as operational earthquake forecasting and early warning. Standardisation and harmonisation into seamless solutions that access the same databases, workflows, and software are a crucial component.
Irina Dallo, Michèle Marti, Nadja Valenzuela, Helen Crowley, Jamal Dabbeek, Laurentiu Danciu, Simone Zaugg, Fabrice Cotton, Domenico Giardini, Rui Pinho, John F. Schneider, Céline Beauval, António A. Correia, Olga-Joan Ktenidou, Päivi Mäntyniemi, Marco Pagani, Vitor Silva, Graeme Weatherill, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 291–307, https://doi.org/10.5194/nhess-24-291-2024, https://doi.org/10.5194/nhess-24-291-2024, 2024
Short summary
Short summary
For the release of cross-country harmonised hazard and risk models, a communication strategy co-defined by the model developers and communication experts is needed. The strategy should consist of a communication concept, user testing, expert feedback mechanisms, and the establishment of a network with outreach specialists. Here we present our approach for the release of the European Seismic Hazard Model and European Seismic Risk Model and provide practical recommendations for similar efforts.
John Douglas, Helen Crowley, Vitor Silva, Warner Marzocchi, Laurentiu Danciu, and Rui Pinho
EGUsphere, https://doi.org/10.5194/egusphere-2023-991, https://doi.org/10.5194/egusphere-2023-991, 2023
Preprint withdrawn
Short summary
Short summary
Estimates of the earthquake ground motions expected during the lifetime of a building or the length of an insurance policy are frequently calculated for locations around the world. Estimates for the same location from different studies can show large differences. These differences affect engineering, financial and risk management decisions. We apply various approaches to understand when such differences have an impact on such decisions and when they are expected because data are limited.
Cited articles
Allen, T. I., Ghasemi, H, and Griffin, J. D.: Exploring Australian hazard map exceedance using an Atlas of historical ShakeMaps, Earthq. Spectra, 39, 985–1006, https://doi.org/10.1177/87552930231151977, 2023.
Ardeleanu, L., Leydecker, G., Bonjer, K.-P., Busche, H., Kaiser, D., and Schmitt, T.: Probabilistic seismic hazard map for Romania as a basis for a new building code, Nat. Hazards Earth Syst. Sci., 5, 679–684, https://doi.org/10.5194/nhess-5-679-2005, 2005.
Ardeleanu, L., Neagoe, C., and Ionescu, C.: Empirical relationships between macroseimic intensity and instrumental ground motion parameters for the intermediate-depth earthquakes of Vrancea region, Romania, Nat. Hazards, 103, 2021–2043, https://doi.org/10.1007/s11069-020-04070-0, 2020.
Atanasiu, I.: Cutremurele de pamant din Romania, Ed. Academiei Romane, 196 pp, Bucharest, 1961.
Caprio, M., Tarigan, B., Worden, C. B., Wiemer, S., and Wald, D. J.: Ground Motion to Intensity Conversion Equations (GMICEs): A Global Relationship and Evaluation of Regional Dependency, B. Seismol. Soc. Am., 105, 1476–1490, https://doi.org/10.1785/0120140286, 2015.
Cioflan, C. O., Toma-Danila, D., and Manea, E. F.: Seismic Loss Estimates for Scenarios of the 1940 Vrancea Earthquake, in: The 1940 Vrancea Earthquake. Issues, Insights and Lessons Learnt, edited by: Vacareanu, R. and Ionescu, C., Springer Natural Hazards, Springer, Cham, https://doi.org/10.1007/978-3-319-29844-3_30, 2016.
Cioflan, C. O., Manea, E. F., and Apostol, B. F.: Insights from neo-deterministic seismic hazard analyses in Romania, in: Earthquakes and sustainable infrastructure, 415–432, Elsevier, https://doi.org/10.1016/B978-0-12-823503-4.00013-0, 2022.
Coman, A., Manea, E. F., Cioflan, C. O., and Radulian, M.: Interpreting the fundamental frequency of resonance for Transylvanian Basin, Rom. J. Phys., 65, 1–10, 2020.
Comité Européen de Normalisation (CEN): Eurocode 8, design of structures for earthquake resistance – Part 1: General rules, seismic actions and rules for buildings, European Standard NF EN 1998-1, CEN, Brussels, 2004.
Constantin, A. P., Pantea, A., and Stoica, R.: Vrancea (Romania) Subcrustal Earthquakes: Historical Sources and Macroseismic Intensity Assessment, Romanian Journal of Physics, 56, 813–826, 2011.
Constantin, A. P., Moldovan, I. A., Craiu, A., Radulian, M., and Ionescu, C.: Macroseismic intensity investigation of the November 2014, M=5.7, Vrancea (Romania) crustal earthquake, Ann. Geophys., 59, 5, https://doi.org/10.4401/ag-6998, 2016.
Constantin, A., Manea, L., Diaconescu, M., and Moldovan, I.: Intensity and macroseismic maps of the latest moderate sized Vrancea earthquakes, Rom. Rep. Phys., 75, 1–12, 2023.
Constantin, A. P. and Pantea, A.: Macroseismic field of the October 27, 2004 Vrancea (Romania) moderate subcrustal earthquake, J. Seismol., 17, 1149–1156, https://doi.org/10.1007/s10950-013-9383-2, 2013.
Craiu, A., Ferrand, T. P., Manea, E. F., Vrijmoed, J. C., and Mărmureanu, A.: A switch from horizontal compression to vertical extension in the Vrancea slab explained by the volume reduction of serpentine dehydration, Sci. Rep., 12, 22320, https://doi.org/10.1038/s41598-022-26260-5, 2022.
Craiu, A., Craiu, M., Mihai, M., Manea, E. F., and Marmureanu, A.: Vrancea intermediate-depth focal mechanism catalog: a useful instrument for local and regional stress field estimation, Acta Geophys., 71, 29–52, 2023.
Danciu, L., Nandan, S., Reyes, C., Basili, R., Weatherill, G., Beauval, C., Rovida A., Vilanova, S., Sesetyan, K., Bard, P-Y., Cotton, F., Wiemer, S., and Giardini, D.: The 2020 update of the European Seismic Hazard Model: Model Overview, EFEHR Technical Report 001, v1.0.0, https://doi.org/10.12686/a15, 2021a.
Danciu, L., Nandan, S., Reyes, C., Wiemer, S., and Giardini, D.: OpenQuake Input Files for the 2020 Update of the European Seismic Hazard Model (ESHM20), EFEHR European Facilities of Earthquake Hazard and Risk [data set], https://doi.org/10.12686/ESHM20-OQ-INPUT, 2021b.
Danciu, L., Weatherill, G., Rovida, A., Basili, R., Bard, P. Y., Beauval, C., Nandan, S., Pagani, M., Crowley, H., Sesetyan, K., Villanova, S., Reyes, C., Marti, M., Cotton, F., Wiemer, S., and Giardini, D.: The 2020 European Seismic Hazard Model: Milestones and Lessons Learned, edited by: Vacareanu, R. and Ionescu, C., in: Progresses in European Earthquake Engineering and Seismology, ECEES 2022, Springer Proceedings in Earth and Environmental Sciences, Springer, Cham, https://doi.org/10.1007/978-3-031-15104-0_1, 2022.
Danciu, L., Giardini, D., Weatherill, G., Basili, R., Nandan, S., Rovida, A., Beauval, C., Bard, P.-Y., Pagani, M., Reyes, C. G., Sesetyan, K., Vilanova, S., Cotton, F., and Wiemer, S.: The 2020 European Seismic Hazard Model: overview and results, Nat. Hazards Earth Syst. Sci., 24, 3049–3073, https://doi.org/10.5194/nhess-24-3049-2024, 2024.
Esri: ArcGIS, http://www.esri.com/software/arcgis, last access: 1 March 2023.
Ferrand, T. P. and Manea, E. F.: Dehydration-induced earthquakes identified in a subducted oceanic slab beneath Vrancea, Romania, Sci. Rep., 11, 10315, https://doi.org/10.1038/s41598-021-89601-w, 2021.
Gerstenberger, M. C., Marzocchi, W., Allen, T., Pagani, M., Adams, J., Danciu, L., Field, E. H., Fujiwara, H., Luco, N., Ma, K. F., and Meletti, C.: Probabilistic seismic hazard analysis at regional and national scales: State of the art and future challenges, Rev. Geophys., 58, https://doi.org/10.1029/2019RG000653, 2020
Hanks, T. C., Beroza, G. C., and Toda, S.: Have recent earthquakes exposed flaws in or misunderstandings of probabilistic seismic hazard analysis?, Seismol. Res. Lett., 83, 759–764, https://doi.org/10.1785/0220120043, 2012.
Iervolino, I., Chioccarelli, E., and Cito, P.: Testing three seismic hazard models for Italy via multi-site observations, PLoS ONE, 18, e0284909, https://doi.org/10.1371/journal.pone.0284909, 2023.
Ivan, M.: Attenuation of P and pP waves in Vrancea area–Romania, J. Seismol., 11, 73-85, https://doi.org/10.1007/s10950-006-9038-7, 2007.
Kronrod, T., Radulian, M., Panza, G., Popa, M., Paskaleva, I., Radovanovich, S., Gribovszki, K., Sandu, I., and Pekevski, L.: Integrated transnational macroseismic data set for the strongest earthquakes of Vrancea (Romania), Tectonophysics, 590, 1–23, https://doi.org/10.1016/j.tecto.2013.01.019, 2013.
Mak, S. and Schorlemmer, D.: A Comparison between the Forecast by the United States National Seismic Hazard Maps with Recent Ground-Motion Records, B. Seismol. Soc. Am., 106, 1817–1831, https://doi.org/10.1785/0120150323, 2016.
Manea, E. F., Predoiu, A., Cioflan, C. O., and Diaconescu, M.: Interpretation of resonance fundamental frequency for Moldavian and Scythian platforms, Rom. Rep. Phys., 71, 1–9, 2019.
Manea, E. F., Cioflan, C. O., and Danciu, L.: Ground-motion models for Vrancea intermediate-depth earthquakes, Earthq. Spectra, 38, 407–431, https://doi.org/10.1177/87552930211032985, 2022.
Marmureanu, G., Cioflan, C. O., and Marmureanu, A.: Intensity seismic hazard map of Romania by probabilistic and (neo) deterministic approaches, linear and nonlinear analyses, Rom. Rep. Phys, 63, 226–239, 2011.
Marmureanu, G., Marmureanu, A., Manea, E. F., Toma-Danila, D., and Vlad, M.: Can we still use classic seismic hazard analysis for strong and deep Vrancea earthquakes, Rom. Rep. Phys., 61, 728-738, 2016a.
Marmureanu, G., Cioflan, C. O., Marmureanu, A., and Manea, E. F.: Main Characteristics of November 10, 1940 Strong Vrancea Earthquake in Seismological and Physics of Earthquake Terms, edited by: Vacareanu, R. and Ionescu, C.: The 1940 Vrancea Earthquake. Issues, Insights and Lessons Learnt, Springer Natural Hazards, Springer, Cham, https://doi.org/10.1007/978-3-319-29844-3_5, 2016b.
Marmureanu, G., Manea, E. F., Cioflan, C. O., Marmureanu, A., and Toma-Danila, D.: Spectral response features used in last IAEA stress test to NPP Cernavoda (ROMANIA) by considering strong nonlinear behaviour of site soils, Rom. J. Phys., 62, 1–11, 2017.
Marmureanu, G., Vacareanu, R., Cioflan, C. O., Ionescu, C., and Toma-Danila, D.: Historical Earthquakes: New Intensity Data Points Using Complementary Data from Churches and Monasteries (chapter), Seismic Hazard and Risk Assessment, Updated Overview with Emphasis on Romania, edited by: Vacareanu, R. and Ionescu, C., Springer Natural Hazards, Springer International Publishing, https://doi.org/10.1007/978-3-319-74724-8_7, 2018.
Mărmureanu, A., Ionescu, C., Grecu, B., Toma-Danila, D., Tiganescu, A., Neagoe, C., Toader, V., Craifaleanu, I. G., Dragomir, C. S., Meiţă, V., Liashchuk, O. I., Dimitrova, L., and Ilies, I.: From national to transnational seismic monitoring products and services in the Republic of Bulgaria, Republic of Moldova, Romania, and Ukraine, Seismol. Soc. Am., 92, 1685–1703, 2021.
Marzocchi, W. and Jordan, T. H.: Testing for ontological errors in probabilistic forecasting models of natural systems, P. Natl. Acad. Sci. USA, 111, 11973–11978, https://doi.org/10.1073/pnas.1410183111, 2014.
Marzocchi, W. and Jordan, T. H.: A unified probabilistic framework for seismic hazard analysis, B. Seismol. Soc. Am., 107, 2738–2744, https://doi.org/10.1785/0120170008, 2017.
Marzocchi, W. and Jordan, T. H.: Experimental concepts for testing probabilistic earthquake forecasting and seismic hazard models, Geophys. J. Int., 215, 2, 780–798, https://doi.org/10.1093/gji/ggy276, 2018.
Meletti, C., Marzocchi, W., D’Amico, V., Lanzano, G., Luzi, L., Martinelli, F., Pace, B., Rovida, A., Taroni, M., Visini, F., and Group, M. W.: The new Italian seismic hazard model (MPS19), Ann. Geophys., 64, SE112, https://doi.org/10.4401/ag-8579, 2021.
Mousavi, S. M. and Beroza, G. C.: Evaluating the 2016 One-Year Seismic Hazard Model for the Central and Eastern United States Using Instrumental Ground-Motion Data, Seismol. Res. Lett., 89, 1185–1196, https://doi.org/10.1785/0220170226, 2018.
Musson, R. M. W., Grünthal, G., and Stucchi, M.: The comparison of macroseismic intensity scales, J. Seismol., 14, 413–428, https://doi.org/10.1007/s10950-009-9172-0, 2010.
Oncescu, M. C., Marza, V. I, Rizescu, M., and Popa, M.: The Romanian earthquake catalogue between 984–1997, in: “Vrancea Earthquakes: Tectonics, Hazard and Risk Mitigation: Contributions from the First International Workshop on Vrancea Earthquakes”, Bucharest, Romania, 1–4 November 1997, 43–47, https://doi.org/10.1007/978-94-011-4748-4_4, 1999.
Pagani, M., Monelli, D., Weatherill, G., Danciu, L., Crowley, H., Silva, V., Henshaw, P., Butler, L., Nastasi, M., Panzeri, L., and Simionato, M.: OpenQuake engine: An open hazard (and risk) software for the global earthquake model, Seismol. Res. Lett., 85, 692–702, https://doi.org/10.1785/0220130087, 2014 (software available at: https://doi.org/10.13117/openquake.engine).
Radu, C.: Catalogue of Strong Earthquakes Originated on the Romanian Teritm T, Part I: Before 1901, in: Seismological Researches on the Earthquake of March 4, 1977, Monograph, edited by: Cornea, I. and Radu, C., Central Institute of Physics, Bucharest, 1979.
Radulian, M., Panza, G. F., Popa, M., and Grecu, B.: Seismic wave attenuation for Vrancea events revisited, J. Earthq. Eng., 10, 411–427, https://doi.org/10.1080/13632460609350603, 2006.
Rey, J., Beauval, C., and Douglas, J.: Do French macroseismic intensity observations agree with expectations from the European Seismic Hazard Model 2013?, J. Seismol., 22, 589–604, https://doi.org/10.1007/s10950-017-9724-7, 2018.
Rogozea, M.: Impactul cutremurelor majore din România: trecut, prezent şi viitor, Editura Electra, Bucureşti, 2016.
Rogozea, M., Marmureanu, G., Radulian, M., and Toma, D.: Reevaluation of the macroseismic effects of the 23 January 1838 Vrancea earthquake, Rom. Rep. Phys., 66, 520–538, 2014.
Rovida, A., Albini, P., Locati, M., and Antonucci, A.: Insights into Preinstrumental Earthquake Data and Catalogs in Europe, Seismol. Res. Lett., 91, 2546–2553, https://doi.org/10.1785/0220200058, 2020.
Salditch, L., Gallahue, M. M., Lucas, M. C., Neely, J. S., Hough, S. E., and Stein, S.: California Historical Intensity Mapping Project (CHIMP): A consistently reinterpreted dataset of seismic intensities for the past 162 yr and implications for seismic hazard maps, Seismol. Res. Lett., 91, 2631–2650, https://doi.org/10.1785/0220200065, 2020.
Shebalin, N. V., Karnik, V., and Hadzievski, D.: UNDP-Unesco Survey of the Seismicity of Balkan Region. Catalogue of earthquakes of the Balkan region, Printing Office of the University Kiril and Metodij, Skopje, 599 pp., 1974.
Sibson, R.: A Brief Description of Natural Neighbor Interpolation, in: Interpreting Multivariate Data, edited by: Barnett, V., John Wiley & Sons, New York, 21–36, ISBN 9780471280392, 1981.
Stirling, M., Manea, E., Gerstenberger, M., and Bora, S.: Testing and Evaluation of the New Zealand National Seismic Hazard Model 2022, B. Seismol. Soc. Am., 114, 474–485, https://doi.org/10.1785/0120230108, 2023.
Stirling, M. W. and Gerstenberger, M. C.: Ground motion-based testing of seismic hazard models in New Zealand, B. Seismol. Soc. Am., 100, 1407–1414, https://doi.org/10.1785/0120090336, 2010.
Tasan, H., Beauval, C., Helmstetter, A., Sandikkaya, A., and Guéguen, P: Testing probabilistic seismic hazard estimates against accelerometric data in two countries: France and Turkey, Geophys. J. Int., 198, 1554–1571, https://doi.org/10.1093/gji/ggu191, 2014.
Vacareanu, R., Marmureanu, G., Pavel, F., Neagu, C., Cioflan, C. O., and Aldea, A.: Analysis of soil factor S using strong ground motions from Vrancea subcrustal seismic source, Rom. Rep. Phys., 66, 893–906, 2014.
Vacareanu, R., Iancovici, M., Neagu, C., and Pavel, F.: Macroseismic intensity prediction equations for Vrancea intermediate-depth seismic source, Nat. Hazards, 79, 2005–2031, https://doi.org/10.1007/s11069-015-1944-y, 2015.
Vanneste, K., Stein, S., Camelbeeck, T., and Vleminckx, B.: Insights into earthquake hazard map performance from shaking history simulations. Sci. Rep., 8, 1855, https://doi.org/10.1038/s41598-018-20214-6 , 2018.
Weatherill, G., Kotha, S. R., and Cotton, F.: A regionally-adaptable “scaled backbone” ground motion logic tree for shallow seismicity in Europe: application to the 2020 European seismic hazard model, B. Earthq. Eng., 18, 5087–5117, https://doi.org/10.1007/s10518-020-00899-9, 2020.
Weatherill, G., Kotha, S. R., Danciu, L., Vilanova, S., and Cotton, F.: Modelling seismic ground motion and its uncertainty in different tectonic contexts: challenges and application to the 2020 European Seismic Hazard Model (ESHM20), Nat. Hazards Earth Syst. Sci., 24, 1795–1834, https://doi.org/10.5194/nhess-24-1795-2024, 2024.
Short summary
We test and evaluate the results of the 2020 European Seismic Hazard Model (ESHM20) against observations spanning a few centuries at 12 cities in Romania. The full distributions of the hazard curves at the given locations were considered, and the testing was performed for two relevant peak ground acceleration (PGA) values. Our analysis suggests that the observed exceedance rates for the selected PGA levels are consistent with ESHM20 estimates.
We test and evaluate the results of the 2020 European Seismic Hazard Model (ESHM20) against...
Special issue
Altmetrics
Final-revised paper
Preprint