Articles | Volume 23, issue 9
https://doi.org/10.5194/nhess-23-3079-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-3079-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Lessons learnt from a rockfall time series analysis: data collection, statistical analysis, and applications
Sandra Melzner
CORRESPONDING AUTHOR
GEOCHANGE Consulting e.U., Klagenfurt, 9020, Austria
Institute of Mountain Risk Engineering (IAN), University of Natural
Resources and Life Sciences (BOKU), Vienna, 1190, Austria
Marco Conedera
Research Unit Community Ecology, Swiss Federal Research Institute
(WSL), Cadenazzo, 6593, Switzerland
Johannes Hübl
Institute of Mountain Risk Engineering (IAN), University of Natural
Resources and Life Sciences (BOKU), Vienna, 1190, Austria
Department of Civil Engineering and Natural Hazards, University of
Natural Resources and Life Sciences (BOKU), Vienna, 1190, Austria
Mauro Rossi
Istituto di Ricerca per la Protezione Idrogeologica, Consiglio
Nazionale delle Ricerche, Perugia, 06128, Italy
Related authors
No articles found.
Georg Nagl, Maximilian Ender, Felix Klein, Brian McArdell, Stefan Boss, Jordan Aaron, Friedrich Zott, Johannes Hübl, and Roland Kaitna
EGUsphere, https://doi.org/10.5194/egusphere-2025-4872, https://doi.org/10.5194/egusphere-2025-4872, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Debris flows, fast-moving mixtures of water, mud, and rocks, are hard to study in nature. Traditional models assume no movement at the base, but experiments suggest sliding can occur. To test this, we installed a monitoring system in an Austrian catchment to measure basal sliding. Data from two events showed the base moves slower than the surface, challenging existing models and highlighting the importance of basal sliding in understanding debris flow behavior.
Roberto Sarro, Mauro Rossi, Paola Reichenbach, and Rosa María Mateos
Nat. Hazards Earth Syst. Sci., 25, 1459–1479, https://doi.org/10.5194/nhess-25-1459-2025, https://doi.org/10.5194/nhess-25-1459-2025, 2025
Short summary
Short summary
This study proposes a novel systematic workflow that integrates source area identification, deterministic runout modelling, the classification of runout outputs to derive susceptibility zonation, and robust procedures for validation and comparison. The proposed approach enables the integration and comparison of different modelling, introducing a robust and consistent workflow/methodology that allows us to derive and verify rockfall susceptibility zonation, considering different steps.
Marko Sinčić, Sanja Bernat Gazibara, Mauro Rossi, and Snježana Mihalić Arbanas
Nat. Hazards Earth Syst. Sci., 25, 183–206, https://doi.org/10.5194/nhess-25-183-2025, https://doi.org/10.5194/nhess-25-183-2025, 2025
Short summary
Short summary
The paper focuses on classifying continuous landslide conditioning factors for susceptibility modelling, which resulted in 54 landslide susceptibility models that tested 11 classification criteria in combination with 5 statistical methods. The novelty of the research is that using stretched landslide conditioning factor values results in models with higher accuracy and that certain statistical methods are more sensitive to the landslide conditioning factor classification criteria than others.
Luca Schilirò, Mauro Rossi, Federica Polpetta, Federica Fiorucci, Carolina Fortunato, and Paola Reichenbach
Nat. Hazards Earth Syst. Sci., 23, 1789–1804, https://doi.org/10.5194/nhess-23-1789-2023, https://doi.org/10.5194/nhess-23-1789-2023, 2023
Short summary
Short summary
We present a database of the main scientific articles published on earthquake-triggered landslides in the last 4 decades. To enhance data viewing, the articles were catalogued into a web-based GIS, which was specifically designed to show different types of information, such as bibliometric information, the relevant topic and sub-topic category (or categories), and earthquake(s) addressed. Such information can be useful to obtain a general overview of the topic, especially for a broad readership.
Jose V. Moris, Pedro Álvarez-Álvarez, Marco Conedera, Annalie Dorph, Thomas D. Hessilt, Hugh G. P. Hunt, Renata Libonati, Lucas S. Menezes, Mortimer M. Müller, Francisco J. Pérez-Invernón, Gianni B. Pezzatti, Nicolau Pineda, Rebecca C. Scholten, Sander Veraverbeke, B. Mike Wotton, and Davide Ascoli
Earth Syst. Sci. Data, 15, 1151–1163, https://doi.org/10.5194/essd-15-1151-2023, https://doi.org/10.5194/essd-15-1151-2023, 2023
Short summary
Short summary
This work describes a database on holdover times of lightning-ignited wildfires (LIWs). Holdover time is defined as the time between lightning-induced fire ignition and fire detection. The database contains 42 datasets built with data on more than 152 375 LIWs from 13 countries in five continents from 1921 to 2020. This database is the first freely-available, harmonized and ready-to-use global source of holdover time data, which may be used to investigate LIWs and model the holdover phenomenon.
Mauro Rossi, Txomin Bornaetxea, and Paola Reichenbach
Geosci. Model Dev., 15, 5651–5666, https://doi.org/10.5194/gmd-15-5651-2022, https://doi.org/10.5194/gmd-15-5651-2022, 2022
Short summary
Short summary
LAND-SUITE is a software package designed to support landslide susceptibility zonation. The software integrates, extends, and completes LAND-SE (Rossi et al., 2010; Rossi and Reichenbach, 2016). The software is implemented in R, a free software environment for statistical computing and graphics, and gives expert users the possibility to perform easier, more flexible, and more informed statistically based landslide susceptibility applications and zonations.
Andrew Mitchell, Sophia Zubrycky, Scott McDougall, Jordan Aaron, Mylène Jacquemart, Johannes Hübl, Roland Kaitna, and Christoph Graf
Nat. Hazards Earth Syst. Sci., 22, 1627–1654, https://doi.org/10.5194/nhess-22-1627-2022, https://doi.org/10.5194/nhess-22-1627-2022, 2022
Short summary
Short summary
Debris flows are complex, surging movements of sediment and water. Discharge observations from well-studied debris-flow channels were used as inputs for a numerical modelling study of the downstream effects of chaotic inflows. The results show that downstream impacts are sensitive to inflow conditions. Inflow conditions for predictive modelling are highly uncertain, and our method provides a means to estimate the potential variability in future events.
Cited articles
Agliardi, F., Crosta, G. B., and Frattini, P.: Integrating rockfall risk assessment and countermeasure design by 3D modelling techniques, Nat. Hazards Earth Syst. Sci., 9, 1059–1073, https://doi.org/10.5194/nhess-9-1059-2009, 2009.
Antonini, G., Ardizzone, F., Cardinali, C., Galli, M., Guzzetti, F., and
Reichenbach, P.: Surface deposits and landslide inventory map of the area
affected by the 1997 Umbria-Marche earthquakes, Boll. Soc. Geol. Lt., 1, 843–853, 2002.
Brown, R. L., Durbin, J., and Evans, J. M.: Techniques for Testing the
Constancy of Regression Relationships over Time, J. Roy. Stat. Soc. Ser. B, 37, 149–192, 1975.
Chau, K. T., Wong, R. H. C., Liu, J., and Lee, C. F.: Rockfall Hazard Analysis for Hong Kong Based on Rockfall Inventory, Rock Mech. Rock Eng., 36, 383–408, https://doi.org/10.1007/s00603-002-0035-z, 2003.
Corominas, J., Mavrouli, O., and Ruiz-Carulla, R.: Magnitude and frequency
relations: are there geological constraints to the rockfall size?, Landslides, 15, 829–845, https://doi.org/10.1007/s10346-017-0910-z, 2017.
Crosta, G. B., Agliardi, F., Frattini, P., and Lari, S.: Key Issues in Rock
Fall Modeling, Hazard and Risk Assessment for Rockfall Protection, in:
Engineering Geology for Society and Territory – Volume 2, Springer, Cham, 43–58, https://doi.org/10.1007/978-3-319-09057-3_4, 2015.
De Biagi, V., Napoli, M. L., Barbero, M., and Peila, D.: Estimation of the return period of rockfall blocks according to their size, Nat. Hazards Earth Syst. Sci., 17, 103–113, https://doi.org/10.5194/nhess-17-103-2017, 2017.
eHYD: Der Zugang zu hydrographischen Daten Österreichs,
https://ehyd.gv.at/ (last access: 28 December 2021), 2021.
Gilbert, R. O.: Statistical methods for environmental pollution monitoring,
John Wiley & Sons, ISBN 0-471-28878-0, 1987.
Grant, A., Wartman, J., Massey, C., Olsen, M. J., O'Banion, M., and Motley, M.: The impact of rockfalls on dwellings during the 2011 Christchurch, New
Zealand, earthquakes, Landslides, 15, 31–42, https://doi.org/10.1007/s10346-017-0855-2, 2018.
Guzzetti, F. and Tonelli, G.: Information system on hydrological and geomorphological catastrophes in Italy (SICI): a tool for managing landslide and flood hazards, Nat. Hazards Earth Syst. Sci., 4, 213–232, https://doi.org/10.5194/nhess-4-213-2004, 2004.
Guzzetti, F., Cardinali, M., and Reichenbach, P.: The AVI project: A bibliographical and archive inventory of landslides and floods in Italy,
Environ. Manage., 18, 623–633, https://doi.org/10.1007/BF02400865, 1994.
Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., and Chang, K.-T.: Landslide inventory maps: New tools for an old problem, Earth-Sci. Rev., 112, 42–66, 2012.
Historical rock falls in Yosemite National Park: California (1857–2011),
https://pubs.er.usgs.gov/publication/ds746 (last access: 29 January 2018), 2018.
Huang, R. Q. and Li, W. L.: Analysis of the geo-hazards triggered by the 12 May 2008 Wenchuan Earthquake, China, Bull. Eng. Geol. Environ., 68, 363–371, https://doi.org/10.1007/s10064-009-0207-0, 2009.
Janeras Casanova, M., Jara, J., Royán, M. J., Vilaplana, J., Aguasca, A., Fabregas, X., A. Gili, J., and Buxó, P.: Multi-technique approach to rockfall monitoring in the Montserrat massif (Catalonia, NE Spain), Eng. Geol., 219, 4–20, https://doi.org/10.1016/j.enggeo.2016.12.010, 2017.
Katz, O., Paola, R., and Guzzetti, F.: Rock fall hazard along the railway
corridor to Jerusalem, Israel, in the Soreq and Refaim valleys, Nat. Hazards, 56, 649–665, https://doi.org/10.1007/s11069-010-9580-z, 2011.
Kendall, M. G.: Rank Correlation Methods, in: 4th Edn., Charles Griffin, London, ISBN 9780852641996, 1975.
Kobayashi, Y., Harp, E. L., and Kagawa, T.: Simulation of rockfalls triggered by earthquakes, Rock Mech. Rock Eng., 23, 1–20, 1990.
Luckman, B. H.: Forty Years of Rockfall Accumulation at the Mount Wilcox Site, Jasper National Park, Alberta, Canada, Geogr. Polon., 81, 79–91, 2008.
Mann, H. B.: Nonparametric tests against trend, Econometrica, 13, 245–259, 1945.
Mavrouli, O. and Corominas, J.: Comparing rockfall scar volumes and kinematically detachable rock masses, Eng. Geol., 219, 64–73,
https://doi.org/10.1016/j.enggeo.2016.08.013, 2017.
Melzner, S.: Analyse des Gefahrenpotentials durch primäre Sturzprozesse
(Steinschlag/ Felssturz) – Gemeindegebiet Hallstatt, Geological Survey of
Austria, Vienna, Austria, 2015.
Melzner, S.: Erstellung eines Ereignis- und Schadenkatasters auf Basis der
Chroniken der Gendarmerie und Polizei Salzburg, Geological Survey of Austria
(GBA), Vienna, Austria, https://www.geochange-consulting.com/wp-content/uploads/2023/08/Melzner_2022.pdf (last access: 14 September 2023), 2016.
Melzner, S.: Steinschlag- und Felssturzdisposition im Dachsteinkalk, in:
Arbeitstagung 2017 – Angewandte Geowissenschaften, 19–22 June 2017, Bad
Ischl, Hallstatt, Gmunden, Vienna, Austria, 126–131, https://www.geologie.ac.at/onlineshop/detail/?pid=1771&seo=arbeitstagung-2017-bad-ischl-hallstatt-gmunden&no_cache=1 (last access: 14 September 2023), 2017.
Melzner, S. and Braunstingl, R.: Erstellung eines Ereignis- und Schadenskatasters auf Basis der Chroniken der Polizei Salzburg, in:
Arbeitstagung 2017 – Angewandte Geowissenschaften, 19–22 June 2017, Bad
Ischl, Hallstatt, Gmunden, Vienna, Austria, 208–209, https://www.geologie.ac.at/onlineshop/detail/?pid=1771&seo=arbeitstagung-2017-bad-ischl-hallstatt-gmunden&no_cache=1 (last access date: 14 September 2023), 2017.
Melzner, S., Moser, M., Ottowitz, D., Otter, J., Lotter, M., Motschka, K.,
Imrek, E., Wimmer-Frey, I., Rohn, J., and Preh, A.: Multidisziplinäre
Grundlagenerhebung als Basis für die Implementierung eines Monitoringsystems am Plassen, in: Arbeitstagung 2017 – Angewandte
Geowissenschaften, 19–22 June 2017, Bad Ischl, Hallstatt, Gmunden, Wien,
140–146, https://www.geologie.ac.at/onlineshop/detail/?pid=1771&seo=arbeitstagung-2017-bad-ischl-hallstatt-gmunden&no_cache=1 (last access: 14 September 2023), 2017.
Melzner, S., Shtober-Zisu, N., Katz, O., and Wittenberg, L.: Brief communication: Post-wildfire rockfall risk in the eastern Alps, Nat. Hazards Earth Syst, Sci., 19, 2879–2885, https://doi.org/10.5194/nhess-19-2879-2019, 2019.
Melzner, S., Rossi, M., and Guzzetti, F.: Impact of mapping strategies on
rockfall frequency-size distributions, Eng. Geol., 272, 105639,
https://doi.org/10.1016/j.enggeo.2020.105639, 2020.
Moya, J., Corominas, J., Pérez Arcas, J., and Baeza, C.: Tree-ring based
assessment of rockfall frequency on talus slopes at Solà d'Andorra,
Eastern Pyrenees, Geomorphology, 118, 393–408, https://doi.org/10.1016/j.geomorph.2010.02.007, 2010.
Pettitt, A.: A non-parametric approach t, Stat. Soc. Ser. C, 28, 126–135,
1979.
Pohlert, T.: Trend: Non-Parametric Trend Tests and Change-Point Detection, R package version 1.1.4, CRAN, https://CRAN.R-project.org/package=trend (last access: 14 September 2023), 2020.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 14 September 2023), 2020.
Salvati, P., Bianchi, C., Rossi, M., and Guzzetti, F.: Societal landslide
and flood risk in Italy, Nat. Hazards Earth Syst. Sci., 10, 465–483,
https://doi.org/10.5194/nhess-10-465-2010, 2010.
Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau, J. Am. Stat. Assoc., 63, 1379–1389, 1968.
Stock, G. M., Bawden, G. W., Green, J. K., Hanson, E., Downing, G., Collins, B. D., Bond, S., and Leslar, M.: High-resolution three-dimensional imaging and analysis of rock falls in Yosemite Valley, California, Geosphere, 7, 573–581, 2011.
Urstöger, H.-J.: Hallstatt-Chronik- von den Anfängen bis zum Jahr 2000, in: 3rd Edn., Verlag des Musealvereins Hallstatt, Hallstatt, 748 pp., https://shop.salzkammergut.co.at/pi.php/Buecher1/Salzkammergut/hallstatt-chronik-von-den-anfaengen-bis-zum-jahr-2000.html (last access: 14 September 2023), 2000.
Wieczorek, G. F. and Snyder, J. B.: Historical Rock Falls in Yosemite National Park, California, US Geological Survey Open-File Report 03-491, US Geological Survey, 10 pp., https://pubs.usgs.gov/of/2003/of03-491/of03-491.pdf (last access: 14 September 2023), 2004.
Wieczorek, G. F., Snyder, J. B., Alger, C. S., and Issacson, K. A.: Rock falls in Yosemite Valley, California, Open-File Report 92-387, US Geological Survey, https://doi.org/10.3133/ofr92387, 1992.
Xie, H., Li, D., and Xiong, L.: Exploring the ability of the Pettitt method
for detecting change point by Monte Carlo simulation, Stoch. Environ. Res. Risk A., 28, 1643–1655, https://doi.org/10.1007/s00477-013-0814-y, 2013.
Short summary
The estimation of the temporal frequency of the involved rockfall processes is an important part in hazard and risk assessments. Different methods can be used to collect and analyse rockfall data. From a statistical point of view, rockfall datasets are nearly always incomplete. Accurate data collection approaches and the application of statistical methods on existing rockfall data series as reported in this study should be better considered in rockfall hazard and risk assessments in the future.
The estimation of the temporal frequency of the involved rockfall processes is an important part...
Altmetrics
Final-revised paper
Preprint