Articles | Volume 22, issue 9
https://doi.org/10.5194/nhess-22-2963-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-2963-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reliability of flood marks and practical relevance for flood hazard assessment in southwestern Germany
Annette Sophie Bösmeier
CORRESPONDING AUTHOR
Chair of Geomorphology and Recent Morphodynamics, University of
Freiburg, 79085 Freiburg, Germany
Iso Himmelsbach
Independent researcher, Gießenstraße 11, 79104 Freiburg,
Germany
Stefan Seeger
Chair of Hydrology, University of Freiburg, 79098 Freiburg, Germany
Related authors
No articles found.
Thomas Fichtner, Yuly Juliana Aguilar Avila, Andreas Hartmann, Stefan Seeger, Martin Maier, and Stephan Raspe
EGUsphere, https://doi.org/10.5194/egusphere-2025-4025, https://doi.org/10.5194/egusphere-2025-4025, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
The study examines how spatial soil moisture variability influences SVAT model calibration and the estimation of groundwater recharge in forest ecosystems. We show that model-inherent uncertainties affect predictions more strongly than soil moisture variability itself. Our results demonstrate that reliable groundwater recharge can be achieved using data from just six to seven profiles, providing practical guidance for more efficient field monitoring and model calibration.
Jonas Pyschik, Stefan Seeger, Barbara Herbstritt, and Markus Weiler
Hydrol. Earth Syst. Sci., 29, 525–534, https://doi.org/10.5194/hess-29-525-2025, https://doi.org/10.5194/hess-29-525-2025, 2025
Short summary
Short summary
We developed a device (named VapAuSa) that automates stable water isotope analysis. Stable water isotopes are a natural tracer that many researchers use to investigate water (re-)distribution processes in environmental systems. VapAuSa helps to analyse such environmental samples by automating a formerly tedious manual process, allowing for higher sample throughput. This enables larger sampling campaigns, as more samples can be processed before reaching their limited storage time.
Barbara Herbstritt, Benjamin Gralher, Stefan Seeger, Michael Rinderer, and Markus Weiler
Hydrol. Earth Syst. Sci., 27, 3701–3718, https://doi.org/10.5194/hess-27-3701-2023, https://doi.org/10.5194/hess-27-3701-2023, 2023
Short summary
Short summary
We present a method to collect water vapor samples into bags in the field without an in-field analyser, followed by isotope analysis in the lab. This new method resolves even fine-scaled natural isotope variations. It combines low-cost and lightweight components for maximum spatial and temporal flexibility regarding environmental setups. Hence, it allows for sampling even in terrains that are rather difficult to access, enabling future extended isotope datasets in soil sciences and ecohydrology.
Stefan Seeger and Markus Weiler
Hydrol. Earth Syst. Sci., 27, 3393–3404, https://doi.org/10.5194/hess-27-3393-2023, https://doi.org/10.5194/hess-27-3393-2023, 2023
Short summary
Short summary
This study proposes a low-budget method to quantify the radial distribution of water transport velocities within trees at a high spatial resolution. We observed a wide spread of water transport velocities within a tree stem section, which were on average 3 times faster than the flux velocity. The distribution of transport velocities has implications for studies that use water isotopic signatures to study root water uptake and usually assume uniform or even implicitly infinite velocities.
David Mennekes, Michael Rinderer, Stefan Seeger, and Natalie Orlowski
Hydrol. Earth Syst. Sci., 25, 4513–4530, https://doi.org/10.5194/hess-25-4513-2021, https://doi.org/10.5194/hess-25-4513-2021, 2021
Short summary
Short summary
In situ stable water isotope measurements are a recently developed method to measure water movement from the soil through the plant to the atmosphere in high resolution and precision. Here, we present important advantages of the new method in comparison to commonly used measurement methods in an experimental setup. Overall, this method can help to answer research questions such as plant responses to climate change with potentially shifting water availability or temperatures.
Stefan Seeger and Markus Weiler
Biogeosciences, 18, 4603–4627, https://doi.org/10.5194/bg-18-4603-2021, https://doi.org/10.5194/bg-18-4603-2021, 2021
Short summary
Short summary
We developed a setup for fully automated in situ measurements of stable water isotopes in soil and the stems of fully grown trees. We used this setup in a 12-week field campaign to monitor the propagation of a labelling pulse from the soil up to a stem height of 8 m.
We could observe trees shifting their main water uptake depths multiple times, depending on water availability.
The gained knowledge about the temporal dynamics can help to improve water uptake models and future study designs.
Maria Staudinger, Stefan Seeger, Barbara Herbstritt, Michael Stoelzle, Jan Seibert, Kerstin Stahl, and Markus Weiler
Earth Syst. Sci. Data, 12, 3057–3066, https://doi.org/10.5194/essd-12-3057-2020, https://doi.org/10.5194/essd-12-3057-2020, 2020
Short summary
Short summary
The data set CH-IRP provides isotope composition in precipitation and streamflow from 23 Swiss catchments, being unique regarding its long-term multi-catchment coverage along an alpine–pre-alpine gradient. CH-IRP contains fortnightly time series of stable water isotopes from streamflow grab samples complemented by time series in precipitation. Sampling conditions, catchment and climate information, lab standards and errors are provided together with areal precipitation and catchment boundaries.
Cited articles
Benito, G., Diez-Herrero, A., and Villata, M. F. de: Magnitude and frequency
of flooding in the Tagus basin (Central Spain) over the last millenium, Climatic Change, 58, 171–192, https://doi.org/10.1023/A:1023417102053, 2003.
Benito, G., Brázdil, R., Herget, J., and Machado, M. J.: Quantitative
historical hydrology in Europe, Hydrol. Earth Syst. Sci., 19, 3517–3539,
https://doi.org/10.5194/hess-19-3517-2015, 2015.
Benito, G., Castillo, O., Ballesteros-Cánovas, J. A., Machado, M., and
Barriendos, M.: Enhanced flood hazard assessment beyond decadal climate cycles based on centennial historical data (Duero basin, Spain), Hydrol. Earth Syst. Sci., 25, 6107–6132, https://doi.org/10.5194/hess-25-6107-2021, 2021.
Bivand, R., Keitt, T., and Rowlingson, B.: rgdal: Bindings for the
`Geospatial' Data Abstraction Library [code], https://CRAN.R-project.org/package=rgdal (last access: 28 January 2022), 2019.
Blöschl, G., Hall, J., Viglione, A., Perdigão, R. A. P., Parajka, J., Merz, B., Lun, D., Arheimer, B., Aronica, G. T., Bilibashi, A., Boháč, M., Bonacci, O., Borga, M., Čanjevac, I., Castellarin, A., Chirico, G. B., Claps, P., Frolova, N., Ganora, D., Gorbachova, L., Gül, A., Hannaford, J., Harrigan, S., Kireeva, M., Kiss, A., Kjeldsen, T. R., Kohnová, S., Koskela, J. J., Ledvinka, O., Macdonald, N., Mavrova-Guirguinova, M., Mediero, L., Merz, R., Molnar, P., Montanari, A., Murphy, C., Osuch, M., Ovcharuk, V., Radevski, I., Salinas, J. L., Sauquet,
E., Šraj, M., Szolgay, J., Volpi, E., Wilson, D., Zaimi, K., and
Živković, N.: Changing climate both increases and decreases European
river floods, Nature, 573, 108–111, https://doi.org/10.1038/s41586-019-1495-6, 2019.
Blöschl, G., Kiss, A., Viglione, A., Barriendos, M., Böhm, O.,
Brázdil, R., Coeur, D., Demarée, G., Llasat, M. C., Macdonald, N.,
Retsö, D., Roald, L., Schmocker-Fackel, P., Amorim, I., Bělínová, M., Benito, G., Bertolin, C., Camuffo, D., Cornel, D., Doktor, R., Elleder, L., Enzi, S., Garcia, J. C., Glaser, R., Hall, J., Haslinger, K., Hofstätter, M., Komma, J., Limanówka, D., Lun, D.,
Panin, A., Parajka, J., Petrić, H., Rodrigo, F. S., Rohr, C., Schönbein, J., Schulte, L., Silva, L. P., Toonen, W. H. J., Valent, P.,
Waser, J., and Wetter, O.: Current European flood-rich period exceptional
compared with past 500 years, Nature, 583, 560–566, https://doi.org/10.1038/s41586-020-2478-3, 2020.
Bösmeier, A.: Exploring and analyzing data for reconstruction, modeling,
and hazard assessment of historical floods in the Kinzig catchment, Upper
Rhine, Doctoral dissertation, University of Freiburg, Freiburg, https://doi.org/10.6094/UNIFR/222531, 2020.
Brázdil, R., Glaser, R., Pfister, C., Dobrovolný, P., Antoine, J.-M., Barriendos, M., Camuffo, D., Deutsch, M., Enzi, S., Guidoboni, E., Kotyza, O., and Rodrigo, F. S.: Flood Events of Selected European Rivers in the Sixteenth Century, Climatic Change, 43, 239–285, https://doi.org/10.1023/A:1005550401857, 1999.
Brázdil, R., Pfister, C., Wanner, H., Storch, H. V., and Luterbacher, J.: Historical Climatology In Europe – The State Of The Art, Climatic Change, 70, 363–430, https://doi.org/10.1007/s10584-005-5924-1, 2005.
Brázdil, R., Kundewicz, Z. W., and Benito, G.: Historical hydrology for
studying flood risk in Europe, Hydrolog. Sci. J., 51, 739–764, https://doi.org/10.1623/hysj.51.5.739, 2006.
CMH – Centralbureau für Meteorologie und Hydrographie (Ed.): Beiträge zur Hydrographie des Grossherzogthums Baden: Das badische Pegelwesen, Erstes Heft, G. Braun, Karlsruhe, 1884.
CMH – Centralbureau für Meteorologie und Hydrographie (Ed.): Beiträge zur Hydrographie des Grossherzogthums Baden: Karten zum Fünften Heft: Der Binnenflussbau im Grossherzogthum Baden, G. Braun, Karlsruhe, 1887.
CMH – Zentralbureau für Meteorologie und Hydrographie (Ed.): Beiträge zur Hydrographie des Grossherzogtums Baden: Tafeln zum Dreizehnten Heft: Die Hochwassermarken im Grossherzogtum Baden, G. Braun, Karlsruhe, 1908.
CMH – Zentralbureau für Meteorologie und Hydrographie (Ed.): Beiträge zur Hydrographie des Grossherzogtums Baden: Die Hochwassermarken im Grossherzogtum Baden, Dreizehntes Heft, G. Braun, Karlsruhe, 1911.
Deutsch, M.: Einige Bemerkungen zu historischen Hochwassermarken – eine
Bestandsaufnahme an der Unstrut, Archäologie in Sachsen-Anhalt, 7, 25–31, 1997.
Di Baldassarre, G. and Montanari, A.: Uncertainty in river discharge observations: A quantitative analysis, Hydrol. Earth Syst. Sci., 13, 913–921, https://doi.org/10.5194/hess-13-913-2009, 2009.
Disch, F.: Chronik der Stadt Wolfach, Von Franz Disch Reallehrer und
Vorstand der Bürgerschule in Wolfach. Mit 3 Tafeldrucken und 95 Textabbildungen, G. Braunsche Hofdruckerei, Wolfach, Karlsruhe, 1920.
Elleder, L.: Historical changes in frequency of extreme floods in Prague,
Hydrol. Earth Syst. Sci., 19, 4307–4315, https://doi.org/10.5194/hess-19-4307-2015, 2015.
European Environment Agency: Mapping the impacts of natural hazards and
technological accidents in Europe: An overview of the last decade, EEA
technical report, no. 13/2010, Publications Office of the European Union,
Luxembourg, 146 pp., ISBN 978-92-9213-168-5, 2010.
Glaser, R., Riemann, D., Schönbein, J., Barriendos, M., Brázdil, R.,
Bertolin, C., Camuffo, D., Deutsch, M., Dobrovolný, P., van Engelen, A.,
Enzi, S., Halíčková, M., Koenig, S. J., Kotyza, O., Limanówka, D., Macková, J., Sghedoni, M., Martin, B., and Himmelsbach, I.: The variability of European floods since AD 1500, Climatic
Change, 101, 235–256, https://doi.org/10.1007/s10584-010-9816-7, 2010.
Google Earth Pro: Version 7.3.3.7699, build date 05/07/2020. Image recording
date 10/18/2018 by Landsat/Copernicus: ca. 48∘18′00.00′′ N,
18∘13′27.00′′ E, Google Earth Pro [data set], https://earth.google.com/web/ (last access: 16 December 2021), 2020.
Gorączko, M.: Flood Marks in Poland and Their Significance in Water
Management and Flood Safety Education, in: Management of Water Resources in
Poland, edited by: Zeleňáková, M., Kubiak-Wójcicka, K., and
Negm, A. M., Springer International Publishing, Cham, 253–267,
https://doi.org/10.1007/978-3-030-61965-7_13, 2021.
Hannaford, J., Buys, G., Stahl, K., and Tallaksen, L. M.: The influence of
decadal-scale variability on trends in long European streamflow records,
Hydrol. Earth Syst. Sci., 17, 2717–2733, https://doi.org/10.5194/hess-17-2717-2013, 2013.
Heppner, R.: Gegen Hochwasser rüsten ist nötig, baden,
https://www.bo.de/lokales/kinzigtal/gegen-hochwasser-ruesten-ist-noetig
(last access: 3 March 2022), 2020.
Herget, J., Roggenkamp, T., and Krell, M.: Estimation of peak discharges of
historical floods, Hydrol. Earth Syst. Sci., 18, 4029–4037,
https://doi.org/10.5194/hess-18-4029-2014, 2014.
Hijmans, R. J.: raster: Geographic Data Analysis and Modeling, CRAN [code],
https://CRAN.R-project.org/package=raster (last access: 28 January 2022), 2020.
Himmelsbach, I.: Erfahrung – Mentalität – Management: Hochwasser und
Hochwasserschutz an den nicht-schiffbaren Flüssen im Ober-Elsass und am
Oberrhein (1480–2007), Doctoral Dissertation, Freiburger geographische
Hefte, Selbstverl. des Inst. für Umweltsozialwiss. und Geographie der
Albert-Ludwigs Univ., Freiburg im Breisgau, 244 pp., ISSN 0071-9447, 2014.
Himmelsbach, I., Glaser, R., Schoenbein, J., Riemann, D., and Martin, B.:
Reconstruction of flood events based on documentary data and transnational
flood risk analysis of the Upper Rhine and its French and German tributaries
since AD 1480, Hydrol. Earth Syst. Sci., 19, 4149–4164,
https://doi.org/10.5194/hess-19-4149-2015, 2015.
Hosking, J. R. M. and Wallis, J. R.: The Value of Historical Data in Flood
Frequency Analysis, Water Resour. Res., 22, 1606–1612, https://doi.org/10.1029/WR022i011p01606, 1986.
Jarvis, A., Reuter, H. I., Nelson, A., and Guevara, E.: Hole-filled seamless
SRTM data V4, CIAT – International Centre for Tropical Agriculture,
http://srtm.csi.cgiar.org (last access: 30 March 2017), 2008.
Kjeldsen, T. R., Macdonald, N., Lang, M., Mediero, L., Albuquerque, T., Bogdanowicz, E., Brázdil, R., Castellarin, A., David, V., Fleig, A.,
Gül, G. O., Kriauciuniene, J., Kohnová, S., Merz, B., Nicholson, O.,
Roald, L. A., Salinas, J. L., Sarauskiene, D., Šraj, M., Strupczewski,
W., Szolgay, J., Toumazis, A., Vanneuville, W., Veijalainen, N., and Wilson,
D.: Documentary evidence of past floods in Europe and their utility in flood
frequency estimation, J. Hydrol., 517, 963–973, https://doi.org/10.1016/j.jhydrol.2014.06.038, 2014.
Kuczera, G.: Correlated Rating Curve Error in Flood Frequency Inference,
Water Resour. Res., 32, 2119–2127, https://doi.org/10.1029/96WR00804, 1996.
Kundzewicz, Z. W., Pińskwar, I., and Brakenridge, G. R.: Changes in river flood hazard in Europe: a review, Hydrol. Res., 49, 294–302,
https://doi.org/10.2166/nh.2017.016, 2018.
Leese, M. N.: Use of censored data in the estimation of Gumbel distribution
parameters for annual maximum flood series, Water Resour. Res., 9, 1534–1542, https://doi.org/10.1029/WR009i006p01534, 1973.
LUBW – Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg: Abfluss-BW: Regionalisierte Abfluss-Kennwerte
Baden-Württemberg, Hochwasserabflüsse, Landesanstalt für Umwelt,
Messungen und Naturschutz Baden-Württemberg, https://udo.lubw.baden-wuerttemberg.de/projekte/themes/bwabfl/images/custom/dokumente/bwabfl/bwabfl_151012_Doku_HQ.pdf (last access: 2 ay 2018), 2015.
LUBW – Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg: Flood Hazard Maps, status as of 27.09.2018, Basis:
data provided by the environment information system (UIS) of the LUBW;
Az. 2851.9-1/19, geodata © Landesanstalt für Geoinformation und Landesentwicklung Baden-Württemberg [data set], https://www.lgl-bw.de/ (last access: 27 September 2018), 2018.
Luu, C., von Meding, J., and Kanjanabootra, S.: Assessing flood hazard using
flood marks and analytic hierarchy process approach: A case study for the
2013 flood event in Quang Nam, Vietnam, Nat. Hazards, 90, 1031–1050,
https://doi.org/10.1007/s11069-017-3083-0, 2018.
Macdonald, N.: Neil MacDonald on Epigraphic Records: A Valuable Resource in
Reassessing Flood Risk and Long-Term Climate Variability, Environ. Hist., 12, 136–140, https://doi.org/10.1093/envhis/12.1.136, 2007.
Macdonald, N.: Reassessing flood frequency for the River Trent through the
inclusion of historical flood information since ad 1320, Hydrol. Res., 44, 215–233, https://doi.org/10.2166/nh.2012.188, 2013.
Macdonald, N. and Black, A. R.: Reassessment of flood frequency using
historical information for the River Ouse at York, UK (1200–2000), Hydrolog. Sci. J., 55, 1152–1162, https://doi.org/10.1080/02626667.2010.508873, 2010.
Macdonald, N. and Sangster, H.: High-magnitude flooding across Britain since
AD 1750, Hydrol. Earth Syst. Sci., 21, 1631–1650, https://doi.org/10.5194/hess-21-1631-2017, 2017.
Machado, M. J., Botero, B. A., López, J., Francés, F., Díez-Herrero, A., and Benito, G.: Flood frequency analysis of historical flood data under stationary and non-stationary modelling, Hydrol. Earth Syst. Sci., 19, 2561–2576, https://doi.org/10.5194/hess-19-2561-2015, 2015.
Martin, B., Heitz, C., Trautmann, J., and Vincent, C.: Les repères de
crues: Réflexions géohistoriques autour d'un outil réglementaire de “culture du risque” d'inondation, in: Les Actes du CRESAT, edited by: CRESAT, Centre de recherche sur les économies, les sociétés, les arts et les techniques, Éditions du CRESAT, 195–217, ISSN 1766-4837, 2018.
McEwen, L., Garde-Hansen, J., Holmes, A., Jones, O., and Krause, F.: Sustainable flood memories, lay knowledges and the development of community
resilience to future flood risk, Trans. Inst. Brit. Geogr., 42, 14–28,
https://doi.org/10.1111/tran.12149, 2017.
Merz, R. and Blöschl, G.: Flood frequency hydrology: 1. Temporal, spatial, and causal expansion of information, Water Resour. Res., 44, W08432, https://doi.org/10.1029/2007WR006744, 2008.
Merz, B., Bittner, R., Grünewald, U., and Piroth, K.: Management von
Hochwasserrisiken: Mit Beiträgen aus den RIMAX-Forschungsprojekten,
XII, Schweizerbart, Stuttgart, p. 248, ISBN 978-3-510-65268-6, 2011.
Merz, B., Kreibich, H., Thieken, A., and Vorogushyn, S.: Überraschende
Hochwasserereignisse: Lehren für Risikoanalysen, Notfallvorsorge: die
Zeitschrift für Bevölkerungsschutz und Katastrophenhilfe, 52, 19–23, 2021.
Metzger, A., David, F., Valette, P., Rode, S., Martin, B., Desarthe, J., and
Linton, J.: Entretenir la mémoire des inondations via les repères de
crue?, developpementdurable, https://doi.org/10.4000/developpementdurable.12937, 2018.
Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg (Ed.): Bewertung des Hochwasserrisikos und Bestimmung
der Gebiete mit signifikantem Hochwasserrisiko in Baden-Württemberg:
Vorläufige Risikobewertung gemäß Artikel 4 und 5 der
Hochwasserrisikomanagementrichtlinie, https://www.hochwasser.baden-wuerttemberg.de/documents/20122/94084/Bewertung%20des%20Hochwasserrisikos%20und%20Bestimmung%20der%20Gebiete%20mit%20signifikantem%20Hochwasserrisiko%20in%20Baden-W%C3%BCrttemberg%20Vorl%C3%A4ufige%20Risikobewertung%20gem%C3%A4%C3%9F%20Artikel%204%20und%205%20der%20Hochwasserrisikomanagement-Richtlinie%20%281.Zyklus%29 (last access: 9 August 2018), 2011.
Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg: Hochwassergefahrenkarten in Baden-Württemberg:
Leitfaden, https://www.hochwasser.baden-wuerttemberg.de/documents/20122/39136/Leitfaden+Hochwassergefahrenkarten+in+Baden-Württemberg.pdf/32948fc1-abde-e029-2bb9-3e34f1a46c3f?t=1620657569991 (last access: 25 July 2017), 2016.
Naulet, R., Lang, M., Ouarda, T. B. M. J., Coeur, D., Bobée, B., Recking,
A., and Moussay, D.: Flood frequency analysis on the Ardèche river using
French documentary sources from the last two centuries, J. Hydrol., 313, 58–78, https://doi.org/10.1016/j.jhydrol.2005.02.011, 2005.
Paprotny, D., Sebastian, A., Morales-Nápoles, O., and Jonkman, S. N.:
Trends in flood losses in Europe over the past 150 years, Nat. Ccommun., 9, 1985, https://doi.org/10.1038/s41467-018-04253-1, 2018.
Parkes, B. and Demeritt, D.: Defining the hundred year flood: A Bayesian
approach for using historic data to reduce uncertainty in flood frequency
estimates, J. Hydrol., 540, 1189–1208, https://doi.org/10.1016/j.jhydrol.2016.07.025, 2016.
Payrastre, O., Gaume, E., and Andrieu, H.: Use of historical data to assess
the occurrence of floods in small watersheds in the French Mediterranean area, Adv. Geosci., 2, 313–320, https://doi.org/10.5194/adgeo-2-313-2005, 2005.
Payrastre, O., Gaume, E., and Andrieu, H.: Usefulness of historical information for flood frequency analyses: Developments based on a case
study, Water Resour. Res., 47, W08511, https://doi.org/10.1029/2010WR009812, 2011.
Pekárová, P., Halmová, D., Mitková, V. B., Miklánek, P.,
Pekár, J., and Škoda, P.: Historic flood marks and flood frequency
analysis of the Danube River at Bratislava, Slovakia, J. Hydrol. Hydromech., 61, 326–333, https://doi.org/10.2478/johh-2013-0041, 2013.
Pfister, C.: Klimageschichte der Schweiz, 1525–1860: Das Klima der Schweiz
von 1525–1860 und seine Bedeutung in der Geschichte von Bevoelkering und
Landwirtschaft, 6, 2 Bd., 2. unveraend. Aufl., Academica Helvetica, Haupt, Bern, ISBN 978-3258039565, 1985.
R Core Team: R: A Language and Environment for Statistical Computing,
Vienna, Austria, http://www.R-project.org/ (last access: 8 August 2022), 2015.
Reich, J., Bödeker, F., Gruhler-Gerling, C., Stegmaier, A., and Kirste,
D. (Eds.): Hochwassergefahrenkarte Baden-Württemberg: Beschreibung der
Vorgehensweise zur Erstellung von Hochwassergefahrenkarten in
Baden-Württemberg, Version 2.3, Ministerium für Umwelt, Naturschutz
und Verkehr Baden-Württemberg, Regierungspräsidium Freiburg,
Regierungspräsidium Karlsruhe, and Regierungspräsidium Tübingen,
https://www.hochwasser.baden-wuerttemberg.de/documents/20122/39136/Hochwassergefahrenkarten%20Beschreibung%20der%20Vorgehensweise%20zur%20Erstellung%20von%20Hochwassergefahrenkarten%20in%20Baden-W%C3%BCrttemberg (last access: 9 August 2018), 2012.
Riach, N., Scholze, N., Glaser, R., and Roy, S., and Stern, B.: Klimawandel
am Oberrhein: Ein zweisprachiges Dossier mit 24 Karten und 6 Begleittexten:
Changement climatique dans le Rhin Superieur: un dossier bilingue avec 24 cartes et 6 textes d'accompagnement, https://www.georhena.eu/sites/default/files/Cartes/Klimawandel_am_Oberrhein_Changement_climatique_dans_le_Rhin_superieur.pdf (last access: 17 September 2020), 2019.
Riemann, D., Glaser, R., Kahle, M., and Vogt, S.: The CRE tambora.org – new
data and tools for collaborative research in climate and environmental history, Geosci. Data J., 2, 63–77, https://doi.org/10.1002/gdj3.30, 2016.
Roggenkamp, T. and Herget, J.: Reconstructing peak discharges of historic floods of the River Ahr, Germany, Erdkunde, 68, 49–59, 2014.
Stedinger, J. R. and Cohn, T. A.: Flood Frequency Analysis With Historical
and Paleoflood Information, Water Resour. Res., 22, 785–793,
https://doi.org/10.1029/WR022i005p00785, 1986.
Thieken, A., Kemter, M., Vorogushyn, S., Berghäuser, L., Sieg, T.,
Natho, S., Mohor, G., Petrow, T., Merz, B., and Bronstert, A.: Extreme
Hochwasser bleiben trotz integriertem Risikomanagement eine Herausforderung,
https://www.uni-potsdam.de/fileadmin/projects/natriskchange/Taskforces/Flut2021_StatementThiekenEtAl.pdf (last access: 14 February 2022), Potsdam, 2021.
Thober, S., Kumar, R., Wanders, N., Marx, A., Pan, M., Rakovec, O., Samaniego, L., Sheffield, J., Wood, E. F., and Zink, M.: Multi-model ensemble projections of European river floods and high flows at 1.5, 2, and 3 degrees global warming, Environ. Res. Lett., 13, 14003, https://doi.org/10.1088/1748-9326/aa9e35, 2018.
Viglione, A., Merz, R., Salinas, J. L., and Blöschl, G.: Flood frequency
hydrology: 3. A Bayesian analysis, Water Resour. Res., 49, 675–692,
https://doi.org/10.1029/2011WR010782, 2013.
Wetter, O.: The potential of historical hydrology in Switzerland, Hydrol.
Earth Syst. Sci., 21, 5781–5803, https://doi.org/10.5194/hess-21-5781-2017, 2017.
Executive editor
The paper addresses historical flood marks as a information source, coming to the conclusion that it is worthwhile to maintain them, and include them in scientific evaluations. The authors find, for example, plausible and historically sound reasons in changed local hydraulic conditions by flood protection walls, and effects of exceptional processes during a massive ice jam.
The paper addresses historical flood marks as a information source, coming to the conclusion...
Short summary
Encouraging a systematic use of flood marks for more comprehensive flood risk management, we collected a large number of marks along the Kinzig, southwestern Germany, and tested them for plausibility and temporal continuance. Despite uncertainty, the marks appeared to be an overall consistent and practical source that may also increase flood risk awareness. A wide agreement between the current flood hazard maps and the collected flood marks moreover indicated a robust local hazard assessment.
Encouraging a systematic use of flood marks for more comprehensive flood risk management, we...
Altmetrics
Final-revised paper
Preprint