Articles | Volume 22, issue 6
https://doi.org/10.5194/nhess-22-2031-2022
https://doi.org/10.5194/nhess-22-2031-2022
Research article
 | Highlight paper
 | 
14 Jun 2022
Research article | Highlight paper |  | 14 Jun 2022

Data-driven automated predictions of the avalanche danger level for dry-snow conditions in Switzerland

Cristina Pérez-Guillén, Frank Techel, Martin Hendrick, Michele Volpi, Alec van Herwijnen, Tasko Olevski, Guillaume Obozinski, Fernando Pérez-Cruz, and Jürg Schweizer

Related authors

Assessing the performance and explainability of an avalanche danger forecast model
Cristina Pérez-Guillén, Frank Techel, Michele Volpi, and Alec van Herwijnen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2374,https://doi.org/10.5194/egusphere-2024-2374, 2024
Short summary
Autoencoder-based feature extraction for the automatic detection of snow avalanches in seismic data
Andri Simeon, Cristina Pérez-Guillén, Michele Volpi, Christine Seupel, and Alec van Herwijnen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-76,https://doi.org/10.5194/gmd-2024-76, 2024
Revised manuscript under review for GMD
Short summary
On the correlation between a sub-level qualifier refining the danger level with observations and models relating to the contributing factors of avalanche danger
Frank Techel, Stephanie Mayer, Cristina Pérez-Guillén, Günter Schmudlach, and Kurt Winkler
Nat. Hazards Earth Syst. Sci., 22, 1911–1930, https://doi.org/10.5194/nhess-22-1911-2022,https://doi.org/10.5194/nhess-22-1911-2022, 2022
Short summary
Seismic location and tracking of snow avalanches and slush flows on Mt. Fuji, Japan
Cristina Pérez-Guillén, Kae Tsunematsu, Kouichi Nishimura, and Dieter Issler
Earth Surf. Dynam., 7, 989–1007, https://doi.org/10.5194/esurf-7-989-2019,https://doi.org/10.5194/esurf-7-989-2019, 2019
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Statistical calibration of probabilistic medium-range Fire Weather Index forecasts in Europe
Stephanie Bohlmann and Marko Laine
Nat. Hazards Earth Syst. Sci., 24, 4225–4235, https://doi.org/10.5194/nhess-24-4225-2024,https://doi.org/10.5194/nhess-24-4225-2024, 2024
Short summary
Glide-snow avalanches: a mechanical, threshold-based release area model
Amelie Fees, Alec van Herwijnen, Michael Lombardo, Jürg Schweizer, and Peter Lehmann
Nat. Hazards Earth Syst. Sci., 24, 3387–3400, https://doi.org/10.5194/nhess-24-3387-2024,https://doi.org/10.5194/nhess-24-3387-2024, 2024
Short summary
Improving fire severity prediction in south-eastern Australia using vegetation-specific information
Kang He, Xinyi Shen, Cory Merow, Efthymios Nikolopoulos, Rachael V. Gallagher, Feifei Yang, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 3337–3355, https://doi.org/10.5194/nhess-24-3337-2024,https://doi.org/10.5194/nhess-24-3337-2024, 2024
Short summary
Review article: A scoping review of human factors in avalanche decision-making
Audun Hetland, Rebecca Anne Hetland, Tarjei Tveito Skille, and Andrea Mannberg
EGUsphere, https://doi.org/10.5194/egusphere-2024-1628,https://doi.org/10.5194/egusphere-2024-1628, 2024
Short summary
How hard do avalanche practitioners tap during snow stability tests?
Håvard B. Toft, Samuel V. Verplanck, and Markus Landrø
Nat. Hazards Earth Syst. Sci., 24, 2757–2772, https://doi.org/10.5194/nhess-24-2757-2024,https://doi.org/10.5194/nhess-24-2757-2024, 2024
Short summary

Cited articles

Baggi, S. and Schweizer, J.: Characteristics of wet-snow avalanche activity: 20 years of observations from a high alpine valley (Dischma, Switzerland), Nat. Hazards, 50, 97–108, https://doi.org/10.1007/s11069-008-9322-7, 2009. a
Bavay, M. and Egger, T.: MeteoIO 2.4.2: a preprocessing library for meteorological data, Geosci. Model Dev., 7, 3135–3151, https://doi.org/10.5194/gmd-7-3135-2014, 2014. a
Bowler, N. E.: Explicitly accounting for observation error in categorical verification of forecasts, Mon. Weather Rev., 134, 1600–1606, https://doi.org/10.1175/MWR3138.1, 2006. a
Brabec, B. and Meister, R.: A nearest-neighbor model for regional avalanche forecasting, Ann. Glaciol., 32, 130–134, https://doi.org/10.3189/172756401781819247, 2001. a
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001. a
Download
Executive editor
The paper could have a strong impact in the entire Alpine region, where avalanche forecasting is a critical issue to manage
Short summary
A fully data-driven approach to predicting the danger level for dry-snow avalanche conditions in Switzerland was developed. Two classifiers were trained using a large database of meteorological data, snow cover simulations, and danger levels. The models performed well throughout the Swiss Alps, reaching a performance similar to the current experience-based avalanche forecasts. This approach shows the potential to be a valuable supplementary decision support tool for assessing avalanche hazard.
Altmetrics
Final-revised paper
Preprint