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Abstract. Even today, the assessment of avalanche danger
is by and large a subjective yet data-based decision-making
process. Human experts analyse heterogeneous data vol-
umes, diverse in scale, and conclude on the avalanche sce-
nario based on their experience. Nowadays, modern machine
learning methods and the rise in computing power in com-
bination with physical snow cover modelling open up new
possibilities for developing decision support tools for opera-
tional avalanche forecasting. Therefore, we developed a fully
data-driven approach to assess the regional avalanche danger
level, the key component in public avalanche forecasts, for
dry-snow conditions in the Swiss Alps. Using a large data set
of more than 20 years of meteorological data measured by a
network of automated weather stations, which are located at
the elevation of potential avalanche starting zones, and snow
cover simulations driven with these input weather data, we
trained two random forest (RF) classifiers. The first classi-
fier (RF 1) was trained relying on the forecast danger levels
published in the official Swiss avalanche bulletin. To reduce
the uncertainty resulting from using the forecast danger level
as target variable, we trained a second classifier (RF 2) that
relies on a quality-controlled subset of danger level labels.
We optimized the RF classifiers by selecting the best set of
input features combining meteorological variables and fea-
tures extracted from the simulated profiles. The accuracy of
the models, i.e. the percentage of correct danger level pre-
dictions, ranged between 74 % and 76 % for RF 1 and be-
tween 72 % and 78 % for RF 2. We assessed the accuracy of
forecasts with nowcast assessments of avalanche danger by
well-trained observers. The performance of both models was

similar to the agreement rate between forecast and nowcast
assessments of the current experience-based Swiss avalanche
forecasts (which is estimated to be 76 %). The models per-
formed consistently well throughout the Swiss Alps, thus in
different climatic regions, albeit with some regional differ-
ences. Our results suggest that the models may well have po-
tential to become a valuable supplementary decision support
tool for avalanche forecasters when assessing avalanche haz-
ard.

1 Introduction

Avalanche forecasting, i.e. anticipating the probability of
avalanche occurrence and the expected avalanche size in
a given region (and time period) (Schweizer et al., 2020;
Techel et al., 2020a), is crucial to ensure safety and mo-
bility in avalanche-prone areas. Therefore, in many coun-
tries with snow-covered mountain regions, avalanche warn-
ing services regularly issue forecasts to inform the public
and local authorities about the avalanche hazard. Even today,
these forecasts are prepared by human experts. Avalanche
forecasters analyse and interpret heterogeneous data volumes
diverse in scale, such as meteorological observations and
model output in combination with snow cover and snow in-
stability data, covering a wide range of data qualities. Even-
tually, forecasters decide, by expert judgement, on the likely
avalanche scenario according to guidelines such as the Eu-
ropean Avalanche Danger Scale (EAWS, 2021a) or descrip-
tion of the typical avalanche problems (Statham et al., 2018;
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EAWS, 2021c). Hence, operational forecasting by and large
still follows the approach described by LaChapelle (1980),
despite the increasing relevance of modelling approaches
(Morin et al., 2020).

A key component of public avalanche forecasts is the
avalanche danger level, usually communicated according to a
five-level, ordinal danger scale (EAWS, 2021a). The danger
level summarizes avalanche conditions in a given region with
regard to the snowpack stability, its frequency distribution,
and the avalanche size (Techel et al., 2020a). Accurate dan-
ger level forecasts support recreationists and professionals
in their decision-making process when mitigating avalanche
risk. However, avalanche danger cannot be measured and
hence is also not easily verified – and avalanche forecast-
ing has even been described as an art based on experience
and intuition (LaChapelle, 1980; Schweizer et al., 2003). To
improve the quality and consistency of avalanche forecasts,
various statistical models (see Dkengne Sielenou et al., 2021,
for a recent review) and conceptual approaches have been de-
veloped. The latter, for instance, include a proposition for a
structured workflow (Statham et al., 2018) and look-up tables
(e.g. EAWS, 2017; Techel et al., 2020a), both aiding forecast-
ers in the decision-making process of danger assessment.

A major challenge when developing or verifying statisti-
cal models, as well as avalanche forecasts in general, is the
lack of a measurable target variable. Since avalanche occur-
rence seems a logical target variable, most of the previous
approaches have focused on the estimation of avalanche ac-
tivity using typical machine learning methods such as clas-
sification trees (Davis et al., 1999; Hendrikx et al., 2014;
Baggi and Schweizer, 2009), nearest neighbours (Purves
et al., 2003), support vector machines (Pozdnoukhov et al.,
2008, 2011), and random forests (Mitterer and Schweizer,
2013; Möhle et al., 2014; Dreier et al., 2016; Dkengne Sie-
lenou et al., 2021). To build and validate these models, a
substantial number of avalanche data are required. However,
avalanche catalogues are particularly uncertain and incom-
plete (Schweizer et al., 2020) since they rely on visual obser-
vations that are not always possible or are delayed; a practical
solution is to use avalanche detection systems, but such data
are still scarce and/or only locally available (e.g. Hendrikx
et al., 2018; van Herwijnen et al., 2016; Heck et al., 2019;
Mayer et al., 2020).

Apart from estimating avalanche activity, a few models
have focused on automatically forecasting danger levels.
Schweizer et al. (1992) prepared a data set for model devel-
opment that included the verified danger level for the region
of Davos. Based on these data, Schweizer et al. (1994) de-
veloped a hybrid expert system to assess the danger level, in-
tegrating symbolic learning with neuronal networks and us-
ing weather and snow cover data as input parameters for the
model, which correctly classified about 70 % of the cases. A
similar performance was achieved by Schweizer and Föhn
(1996) using an expert system approach. Brabec and Meis-
ter (2001) trained and tested a nearest-neighbour algorithm

to forecast danger levels for the entire Swiss Alps using
manually observed snow and weather data from 60 sta-
tions. They reported a low overall accuracy of 52 %, prob-
ably due to the lack of input variables related to the snow
cover stability. Combining different feature sets of simulated
snow cover data and meteorological variables, Schirmer et al.
(2009) compared the performance of several machine learn-
ing methods (e.g. classification trees, artificial neural net-
works, nearest-neighbour methods, support vector machines,
and hidden Markov models) to predict the danger level in
the region of Davos (Switzerland). Their best classifier was
a nearest-neighbour model, including the avalanche danger
level of the previous day as an additional input variable, that
achieved a cross-validated accuracy of 73 %.

Despite many efforts, few of the previously developed
models have been operationally applied due to lack of auto-
mated and real-time data, transferability to other regions, or
snowpack stability input – all deficiencies that limited their
utility for operational forecasting. Moreover, most models
have used daily snow and weather data, manually observed at
low elevations, that do not reflect avalanche conditions in the
high Alpine environment. Today, ample data from automated
weather stations and snow cover model outputs are available
(Lehning et al., 1999). The quality and breadth of these data
make them suitable for applying modern machine learning
methods.

Therefore, our aim is to develop an effective data-driven
approach to assess the regional avalanche danger level. An
inherent characteristic of avalanche forecasts is that they are,
at times, erroneous. In general, forecast accuracy is difficult
to assess as avalanche danger cannot be measured and re-
mains a matter of expert assessment even in hindsight (Föhn
and Schweizer, 1995; Schweizer et al., 2003). Even though
this target variable is hard to verify and susceptible to hu-
man biases and errors, the danger level is the key component
of avalanche bulletins for communicating avalanche hazard
to the public. We will focus on dry-snow conditions as dry-
snow slab avalanches are the most prominent danger and de-
velop a model that can be applied to all snow climate re-
gions in the Swiss Alps and should have an accuracy compa-
rable to the operational experienced-based forecast. We ad-
dress avalanche prediction (in nowcast mode) as a supervised
classification task that involves assigning a class label corre-
sponding to the avalanche danger level to each set of mete-
orological and simulated snow cover data from an automatic
weather station network located in Switzerland.

2 Data

We rely on more than 20 years of data, collected in the con-
text of operational avalanche forecasting in the Swiss Alps,
covering measured meteorological data and snow cover sim-
ulations (Sect. 2.1), as well as the regional danger level pub-
lished in the avalanche forecasts (Sect. 2.2) and local as-
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Figure 1. Snow stations of the IMIS network (points) located throughout the Swiss Alps (one station in northeastern Jura region) and the
warning regions (white contours) used to communicate avalanche danger in the public avalanche forecast. Stations are coloured according to
their elevation: below 2000 m a.s.l., between 2000 and 2500 m a.s.l., and above 2500 m a.s.l.

sessments of avalanche danger provided by experienced ob-
servers (Sect. 2.3). The data cover the winters from 1997/98
to 2019/20.

2.1 Meteorological measurements and snow cover
simulations

In Switzerland, a dense network of automatic weather sta-
tions (AWSs), located at the elevation of potential avalanche
starting zones, provides real-time weather and snow data for
avalanche hazard assessment. These data are used both by the
Swiss national avalanche warning service for issuing the pub-
lic avalanche forecast and by local authorities responsible for
the safety of exposed settlements and infrastructure. This net-
work, the Intercantonal Measurement and Information Sys-
tem (IMIS), was set up in 1996 with an initial set of 50 opera-
tional stations in the winter of 1997/98 (Lehning et al., 1999).
It currently consists of 182 stations (2020), of which 124 are
snow stations located in level terrain at locations sheltered
from the wind (Fig. 1). About 15 % of the stations are situ-
ated at elevations between 1500 and 2000 m a.s.l., 61 % be-
tween 2000 and 2500 m a.s.l., and 24 % between 2500 and
3000 m a.s.l. The IMIS stations operate autonomously, and
the data are transmitted every hour to a data server located at
WSL Institute for Snow and Avalanche Research SLF (SLF)
in Davos.

Based on the measurements provided by the AWSs, snow
cover simulations with the 1D physically based, multi-layer
model SNOWPACK (Lehning et al., 1999, 2002) are per-
formed automatically throughout the winter, providing out-

put for local and regional avalanche forecasting. The mete-
orological data are pre-processed (MeteoIO library; Bavay
and Egger, 2014), filtering erroneous data and imputing miss-
ing data relying on temporal interpolation or on gap filling
by spatially interpolating from neighbouring stations. The
SNOWPACK model provides two types of output: (1) the
pre-processed meteorological data and (2) the simulated
snow stratigraphy data. For an overview of the SNOWPACK
model, refer to Wever et al. (2014) and Morin et al. (2020). In
this study, we extracted the flat-field snow cover simulations
from the database used operationally for avalanche forecast-
ing.

2.2 Avalanche forecast

The avalanche forecast is published by the national avalanche
warning service at SLF. During the time period analysed,
the forecast was published daily in winter – generally be-
tween early December and late April – at 17:00 LT (local
time), valid until 17:00 LT the following day, for the whole
area of the Swiss Alps (Fig. 2). In addition, since 2013, the
forecast has been updated daily at 08:00 LT – between about
mid-December and early April to mid-April. Furthermore,
an avalanche forecast has also been published for the Jura
Mountains since 2017 (Fig. 2).

The forecast domain of the Swiss Alps (about 26 000 km2)
is split into 130 warning regions (status in 2020), with an
average size of about 200 km2 (white polygon boundaries
shown in Figs. 1 and 2). In the forecast, these warning re-
gions are grouped according to the expected avalanche con-
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Figure 2. (a) Map of the avalanche danger issued on Friday 6 March 2020 at 08:00 LT (local time). For each danger region (black contour
lines), a danger level from 1-Low to 5-Very High and the critical elevations and slope aspects are graphically displayed. The white polygons
show the 130 warning regions. (b) Close-up map of the warning region Davos, with the location of the IMIS stations (points). To develop the
model, we filtered days and stations as a function of the critical forecast elevation (Sect. 3.3), with stations coloured black being above this
elevation on this day (here 2200 m a.s.l.) and hence considered and the white station, located below this elevation, not considered.

ditions into danger regions (black polygon boundaries shown
in Fig. 2). For each of these danger regions, avalanche danger
is summarized by a danger level; the aspects and elevations
where the danger level is valid, together with one or several
avalanche problems (since 2013); and a textual description
of the danger situation. The danger level is assigned accord-
ing to the five-level European Avalanche Danger Scale: 1-
Low, 2-Moderate, 3-Considerable, 4-High, and 5-Very High
(EAWS, 2021a).

2.3 Local nowcast of avalanche danger level

Specifically trained observers assess the avalanche danger in
the field and transmit their estimate to the national avalanche
warning service. Observers rate the current conditions for
the area of their observations, for instance after a day of
backcountry touring in the mountains. To do so, they are
advised to consider their own observations as well as any
other relevant information (Techel and Schweizer, 2017). For
these local assessments of the avalanche danger level, the
same definitions (EAWS, 2021a) and guidelines (e.g. EAWS,
2017, 2021b) are applied as for the regional forecast. These
assessments, called local nowcasts, are used operationally
during the production of the forecast, for instance, to detect
deviations between the forecast of the previous day and the
actually observed conditions.

We used the local nowcasts (1) to filter potentially erro-
neous forecasts when compiling a subset of danger levels
as described in detail in Appendix A and (2) to discuss the
model performance in light of the noise inherent in regional
forecasts. These assessments are human judgements and thus
rely on a similar approach to that followed by a forecaster
when assigning a danger level. Techel (2020) compared dan-
ger level assessments in the same area and estimated the reli-
ability as 0.9, which is a factor related to the agreement rate
of pairs of local nowcast estimates between several observers
within the same warning region.

3 Data preparation

We first defined and prepared the target variable, the dan-
ger level (Sect. 3.1). In the next step, we extracted relevant
features describing meteorological and snow cover condi-
tions (Sect. 3.2), before linking them to the regional danger
levels (Sect. 3.3). Finally, we split the merged data sets for
evaluating the performance of a machine learning algorithm
(Sect. 3.4).

3.1 Preparation of target variable

We considered two approaches to define the target vari-
able: first, by simply relying on the forecast danger level
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Figure 3. Flowchart of the data set distributions and steps, including the raw data volume, the merged and filtered data set size, and the
danger level distributions of the training and test sets. Two machine learning classifiers are trained using as labels (i) the forecast danger
levels (Dforecast) in the public bulletin and (ii) a subset of tidy danger levels (Dtidy). An iterative process of hyperparameter tuning and
feature selection using 5-fold cross-validation was conducted to select the best model.

(Sect. 3.1.1) and, second, by compiling a much smaller sub-
set of “tidy” danger levels (Sect. 3.1.2). The first approach
makes use of the entire database. However, this comes at the
cost of potentially including a larger share of wrong labels. In
contrast, the second approach uses higher-quality labelling,
but the data volume is greatly reduced.

3.1.1 Target variable – forecast danger level (Dforecast)
relating to dry-snow conditions

To train the machine learning algorithms, we rely on fore-
casts related to dry-snow conditions in the forecast domain
of the Swiss Alps (Fig. 2). Whenever a morning forecast up-
date was available, we considered this update. In this update,
on average the forecast danger level is changed in less than
3 % of the cases (Techel and Schweizer, 2017). The focus
on dry-snow conditions is motivated by the fact that both the
meteorological factors and the mechanisms that lead to an
avalanche release differ greatly between dry-snow and wet-
snow avalanches. Furthermore, while danger level forecasts
for dry-snow avalanche conditions are issued on a daily basis,
forecasts for wet-snow avalanche conditions are only issued
on days when the wet-snow avalanche danger is expected to
exceed the dry-snow avalanche danger (SLF, 2020).

In total, this procedure resulted in a data set that in-
cluded forecasts issued on 3820 d during the 23 winters be-
tween 11 November 1997 and 5 May 2020, with a total of
500 545 cases (Fig. 3a). We refer to this data set as Dforecast,
which is used as ground truth data labelling. The distribution
of danger levels is clearly imbalanced (top of Fig. 3c). The

most frequent danger levels forecast in the Alps are danger
levels 2-Moderate (41 %) and 3-Considerable (36 %), which
jointly account for 77 % of the cases. Since danger level 5-
Very High is rarely forecast (< 0.1 %), we merged it with
danger level 4-High (2.0 %).

3.1.2 Compilation of subset of tidy danger level (Dtidy)

Incorrect labels in the Dforecast data set are unavoidable as
avalanche forecasts are sometimes erroneous due to inaccu-
rate weather forecasts, variations in local weather and snow-
pack conditions, and human biases (McClung and Schaerer,
2006). In general, as avalanche forecasts are expert assess-
ments, there is inherently noise (Kahneman et al., 2021). In
terms of the target variable, these errors may manifest them-
selves in errors in the danger level, the elevation information
indicated in the forecast, or the spatial extent of regions with
a specific danger level. Furthermore, all of these elements are
gradual in nature and not step-like as the danger level, the
elevation band, and the delineation of the warning regions
suggest. In the case of forecast danger levels in Switzer-
land, recent studies have estimated the accuracy of the fore-
cast danger level. The agreement rate between local nowcast
estimates of the avalanche danger with the forecast danger
level was between about 75 % and 90 %, with a decreasing
agreement rate with an increasing danger level (Techel and
Schweizer, 2017; Techel, 2020). A particularly low accu-
racy (< 70 %) was noted for forecasts issuing danger level 4-
High (Techel, 2020). Furthermore, a strong tendency towards
over-forecasting (by one level) has been noted, with fore-

https://doi.org/10.5194/nhess-22-2031-2022 Nat. Hazards Earth Syst. Sci., 22, 2031–2056, 2022



2036 C. Pérez-Guillén et al.: Data-driven automated predictions of the avalanche danger level for dry-snow conditions

casts rarely being lower compared to nowcast assessments
of avalanche danger (e.g. Techel et al., 2020b).

To reduce some of the inherent noise, we compiled a sub-
set of re-analysed danger levels, for which we were more
certain that the issued danger level was correct. This should
not be considered a verified danger level but simply a subset
of danger levels, which presumably have a greater correspon-
dence with actual avalanche conditions compared to simply
using the forecast danger level. To compile this subset, we
checked the forecast danger level Dforecast by considering ad-
ditional pieces of evidence. For this, we relied on

– observational data – for instance, danger level assess-
ments (local assessments) provided by experienced ob-
servers after a day in the field (Sect. 2.3; Techel and
Schweizer, 2017) or avalanche observations – and

– the outcome from several verification studies
(Schweizer et al., 2003; Schweizer, 2007; Bründl
et al., 2019; Zweifel et al., 2019).

Thus, this data set is essentially a subset of Dforecast, con-
taining cases of Dforecast which were either confirmed or val-
idated following multiple pieces of evidence. Comparably
few of these cases (5 %) were actually cases when the fore-
cast danger level was corrected for the purpose of this study.
These changes affected primarily days and regions when the
forecast was either 4-High or 5-Very High or when the ver-
ified danger level was one of these two levels. We refer to
this subset as tidy danger levels (Dtidy), which is also used as
ground truth data labelling. A detailed description regarding
the compilation of this data set is found in Appendix A.

Dtidy (N = 25541 cases in Fig. 3b) comprises about 10 %
of the Dforecast data set (N = 256398 cases after filtering in
Fig. 3b). In this subset, the distribution of the lower three
danger levels is approximately balanced (about 30 % each,
Fig. 3). Still, this subset contains comparably few cases of
higher danger levels (4-High, 4.1 %; 5-Very High, 0.3 %).
These two danger levels (4-High and 5-Very High) were
again merged and labelled 4-High.

3.2 Feature engineering

The SNOWPACK simulations provide two different output
files for each station: (i) time series of meteorological vari-
ables and (ii) simulated snow cover profiles. The first in-
cludes a combination of measurements (i.e. air temperature,
relative humidity, snow height, or snow temperature) and de-
rived parameters (i.e. height of new snow, outgoing and in-
coming long-wave radiation, and snow drift by wind). The
snow profiles contain the simulated snow stratigraphy de-
scribing layers and their properties. Figure 4 shows an ex-
ample of these data. A list of the 67 available weather and
profile features is shown in Tables C1 and C2 (Appendix C).

3.2.1 Meteorological input features

The meteorological time series with a 3 h resolution are re-
sampled to non-overlapping 24 h averages, for a time win-
dow from 18:00 LT of a given day to the following day at
18:00 LT (24 h window in Fig. 4a), which is the nearest to
the publication time of the forecast (17:00 LT).

Besides the 24 h mean, we also trained models consider-
ing as input values the standard deviation, maximum, mini-
mum, range, and differences between subsequent 24 h win-
dows during the exploratory phase. However, we noted that
using these additional features did not improve the overall
accuracy. In addition to the data describing the day of inter-
est, we also extracted values for the last 3 and 7 d (Table C1).
If there were missing values in the pre-processed time series,
we removed these samples.

3.2.2 Profile input features

The simulated snow profiles provide highly detailed infor-
mation on snow stratigraphy as each layer is described by
many parameters and each profile may consist of dozens of
layers. To reduce the complexity of the snow profile output
and to obtain potentially relevant features, we extracted pa-
rameters defined and used in previous studies from the pro-
files at 12:00 LT, which we consider the time representa-
tive of the forecast window (Fig. 4b, Table C2). These pa-
rameters included the skier penetration depth (Pen_depth;
Jamieson and Johnston, 1998) and snow instability variables
such as the critical cut length (ccl; Gaume et al., 2017;
Richter et al., 2019), the natural stability index (Sn38; Föhn,
1987; Jamieson and Johnston, 1998; Monti et al., 2016), the
skier stability index (Sk38; Föhn, 1987; Jamieson and John-
ston, 1998; Monti et al., 2016), and the structural stability
index (SSI; Schweizer et al., 2006). We extracted the mini-
mum of the critical cut length considering all layers below
the penetration depth (min_ccl_pen). We retrieved the insta-
bility metrics for two depths where potentially relevant per-
sistent weak layers existed following the threshold sum ap-
proach adapted for SNOWPACK (Schweizer and Jamieson,
2007; Monti et al., 2014). We located the persistent weak
layer closest to the snow surface but within the uppermost
100 cm of the snowpack (PWL_100 in Fig. 4b) and then
searched for the next one below (PWL in Fig. 4b). For these
two layers, we extracted the parameters related to instabil-
ity (ccl, Sn38, Sk38, SSI). If no persistent weak layers were
found following this approach and to avoid missing values in
the data, we assigned the respective maximum value of ccl,
Sn38, Sk38, and the SSI observed within the entire data set,
indicating the absence of a weak layer.

3.3 Assigning labels to extracted features

We assigned a class label (danger level) to the extracted fea-
tures by linking the data of the respective station with the
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Figure 4. (a) A 7 d time series (March 2020) of two meteorological features: air temperature (measured) and 3 d sum of new snow height
(simulated by SNOWPACK) at the IMIS snow station Baerentaelli, which is located near Davos at 2558 m a.s.l. The blue area delimits an
example of a 24 h time window (random forest, RF, window) from 5 March 2020 at 18:00 LT to 6 March 2020 at 18:00 LT, which is used
to extract the averaged values used as inputs for the random forest algorithm. The avalanche forecast updated on 6 March 2020 at 08:00 LT
is used for labelling the danger rating over the entire RF window. (b) Simulated snow stratigraphy from SNOWPACK at the same station
on 6 March 2020 at 12:00 LT showing hand hardness, snow temperature, and grain type (colours). Hand hardness index F corresponds to
fist, 4F to four fingers, 1F to one finger, P to pencil, and K to knife. Labels of grain types and colours are coded following the international
snow classification (Fierz et al., 2009). The black arrows indicate the two critical weak layers located in the first 100 cm of the snow
surface (PWL_100) and in a deeper layer (PWL), which were detected with the threshold sum approach. The blue arrow indicates the skier
penetration depth (Pen_depth).

forecast for this warning region and RF window (Figs. 2b
and 3b). Thus, each set of features extracted for an individ-
ual IMIS station (Fig. 1) was labelled with the forecast dan-
ger level for the day of interest.

Since avalanche danger depends on slope aspect and el-
evation, the public forecast describes the slope aspects and
elevations where the danger level applies (Fig. 2). Outside
the indicated elevation band and aspects, the danger is lower,
typically by one danger level (SLF, 2020). Therefore, we dis-
carded the data from stations on days when the elevation in-
dicated in the forecast was above the elevation of the station.
If no elevation was indicated, which is normally the case at
1-Low, we included all stations. We did not filter the data for
the forecast slope aspects since the modelled features were
obtained with flat-field SNOWPACK simulations.

To further enhance the data quality, we removed data of
unlikely avalanche situations. Those included data when the
danger level was for 4-High but the 3 d sum of new snow
(HN72_24, Table C1) was less than 30 cm or when the snow
depth was less than 30 cm.

3.4 Splitting the data set

We split our data set into training and test sets correspond-
ing to different winter seasons to ensure that training and test
data were temporally uncorrelated. We defined the test set as
the two most recent winter seasons of 2018/19 and 2019/20
(Fig. 3d). The training set corresponded to the remaining
data, including the seasons from 1997/98 to 2017/18 (21 win-
ters). The size of the test set is 10 % of the total number of
data and will be used for a final, unbiased evaluation of the
model’s generalization.

We optimized the model’s hyperparameters and selected
the best subset of features using 5-fold cross-validation on
the training set, which is an effective method to reduce over-
fitting. Each subset contains data of three to five consecutive
winter seasons with an approximate size of 20 % of the train-
ing data set (N = 230550 in Fig. 3c): 1997/98 to 2002/03
(Fold 1, 19 % of samples), 2003/04 to 2006/07 (Fold 2,
18 % of samples), 2007/08 to 2009/10 (Fold 3, 19 % of sam-
ples), 2010/11 to 2013/14 (Fold 4, 22 % of samples), and
2014/15 to 2017/18 (Fold 5, 22 % of samples). This partition-
ing again ensures that feature selection was not affected by
temporally correlated data. Models were trained and tested
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five times, using as a validation test set each of the defined
folds and as a training set the remaining data. The final score
was averaged over the five trials.

4 Model optimization

We approach the nowcast assessment of the avalanche dan-
ger level as a supervised classification task that involves as-
signing a class label corresponding to the avalanche danger
level to each set of meteorological and simulated snow cover
data from an automatic weather station network located in
Switzerland.

We tested a variety of widely used supervised learning
algorithms, and the best scores were obtained with random
forests (Breiman, 2001), which are among the most state-of-
the-art techniques for classification. Random forests are pow-
erful nonlinear classifiers combining an ensemble of weaker
classifiers, in the form of decision trees. Each tree is grown
on a different bootstrap sample containing randomly drawn
instances with replacement from the training data. Besides
bagging, random forests also employ random feature se-
lection at each node of the decision tree. Each tree pre-
dicts a class membership, which can be transformed into a
probability-like score by computing the frequency at which
a given test data point is classified across all the trees. The
final prediction is obtained by taking a majority vote of the
predictions from all the trees in the forest or, equivalently, by
taking the class maximizing the probability.

Our classification problem is extremely imbalanced; dan-
ger level 4-High (Fig. 3) accounts for only a small fraction of
the whole data set. Imbalanced classification poses a chal-
lenge for predictive modelling as most existing classifica-
tion algorithms such as random forests were designed as-
suming a uniform class distribution of the training set, giv-
ing rise to lower accuracy for minority classes (Chen et al.,
2004). Since danger level 5-Very High is very rarely forecast
(< 0.1 %), we merged it with 4-High. This step reduced the
multi-class classification problem to four classes. We also ex-
plored diverse data sampling techniques (results not shown),
such as down-sampling the majority classes or over-sampling
the minority classes, to balance the training data when fitting
the random forest. However, since none of these methods
showed an improvement in the performance and given the
imbalanced nature of the data, we discarded these strategies.
Hence, we opted for learning from our extremely imbalanced
data set applying cost-sensitive learning. With this approach,
we employed a weighted impurity score to split the nodes
of the trees, where the weight corresponds to the inverse of
the class frequency. This ensures that prevalent classes do
not dominate each split and rare classes also count towards
the impurity score. We used the standard random forest im-
plementation from the scikit-learn library (Pedregosa et al.,
2011).

We trained two random forest models: RF 1 was trained
using the labels from the complete data set of forecast dan-
ger levels (Dforecast, Fig. 3b), while RF 2 was trained with the
much smaller data set of tidy danger levels (Dtidy, Fig. 3b).
We compared their performance on a common test set. Both
models were trained by pooling the data from all IMIS sta-
tions.

4.1 Model selection

We selected the best random forest model by a three-step
cross-validation strategy. For this, we used cross-validation
maximizing the macro-F1 score, which corresponds to the
unweighted mean of F1 scores computed for each class (dan-
ger level), independently. The F1 score is a popular met-
ric for classification, as it balances precision and recall into
their harmonic mean, ranging from 0 (worst) to 1 (best). The
macro-F1 score showed the best performance for both minor-
ity and majority classes. All the metrics used to evaluate the
performance of the models are defined in Appendix B.

In the first step, we selected a set of hyperparameters from
a randomized search, which maximizes the macro-F1 score.
After choosing the first optimum set of hyperparameters, we
selected the 30 best input features by ranking them accord-
ing to the feature importance score given by the random for-
est algorithm, which is the average impurity decrease com-
puted from all decision trees in the forest. In the third step,
we refined the hyperparameters by a dense grid search cen-
tred around the best parameters from the first step but using
the optimum feature set. This strategy shows optimal accu-
racy for all the classes while keeping the model as small as
possible in terms of features. For the previous steps, a 5-fold
cross-validation approach was applied. For each set of hy-
perparameters, in the random grid search and the grid search,
each model was trained and tested five times such that each
time, one of the defined folds (Sect. 3.4) was used as a test
set and the other four folds were part of the training set.
The macro-F1 estimate was averaged over these five trials
for each hyperparameter vector. The final hyperparameters
selected are shown in Table B1.

4.2 Feature selection

We used different approaches to remove unnecessary fea-
tures and select a subset that provides high model accuracy
while reducing the complexity of the model. First, variables
that are strongly correlated were dropped (‖r2

‖ ≥ 0.9). For a
given pair of highly correlated weather features, we removed
the one showing a lower random forest feature importance
score (obtained from the first step described above), which
is shown in Fig. 5a. Feature importance is the average im-
purity decrease computed from all decision trees in the for-
est. In the case of correlation between profile features, we
kept the variables extracted from the uppermost weak layer
that is usually more prone to triggering. A total of 20 highly
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Figure 5. (a) Feature importance ranking scored by random forest classifier (y axis normalized). A description of each feature is provided in
Tables C1 and C2 of Appendix C. The red asterisks denote the final set of features selected to train the models. (b) Box plot of the distribution
of the macro-F1 score (5-fold cross-validation) for the random forest classifier with a varying number of features from 2 to 47.

correlated variables were removed from the initial data set,
leaving 47 features (Tables C1 and C2). The overall per-
formance of the model remained the same after removing
these features. In addition, we manually discarded the snow
temperatures (TS0, TS1, and TS2) measured at 25, 50, and
100 cm above ground (Fig. 5a and Table C1) as their incorpo-
ration into the model requires a larger minimum snow depth
(> 100 cm) for meaningful measurements.

Figure 5a shows that the features with the highest im-
portance were various sums of new snow and drifted snow,
the snowfall rate, the skier penetration depth, the minimum
critical cut length in a layer below the penetration depth,
the relative humidity, the air temperature, and two stability
indices. Hence, the highest-ranked features selected by the
random forest classifier were in line with key contributing
factors used for avalanche danger assessment (Perla, 1970;
Schweizer et al., 2003).

To select the best subset of features, we applied the ap-
proach of recursive feature elimination (RFE) (Guyon et al.,
2002), which is an efficient method to select features by re-
cursively considering smaller sets of them. An important hy-
perparameter for the RFE algorithm is the number of features
to select. To explore this number, we wrapped a random for-
est classifier, which was trained with a variable number of
features. Features were added in descending order from the
most to the least important in the score ranking estimated by
the random forest (Fig. 5a). Figure 5b shows the variation

in the mean of the macro-F1 score with the number of se-
lected features. The performance improves as the number of
features increases until the curve levels off for 20 or more
features. We selected a subset of 30 features (highest macro-
F1 score). The final set of features selected applying RFE are
highlighted with red asterisks in Fig. 5a and are were used
to train the two final models RF 1 and RF 2 (complete and
tidy data sets). Note that the application of RFE, although it
might seem redundant with the internal feature ranking made
by the random forest algorithm, ensures that the growing sub-
set of features provides consistent improvements and the fea-
ture selection is not biased by the way the impurity score is
computed (Strobl et al., 2007).

5 Model evaluation

In the following, we first present key characteristics describ-
ing the overall performance of the RF classifiers (Sect. 5.1).
To explore the temporal variation in their performance, we
analyse the average prediction accuracy on a daily basis con-
sidering the uncertainty related to the forecast danger level
(Sect. 5.2). In Sect. 5.3 and 5.4, we investigate the spatial
performance of the models in different climate regions and
for different elevations. Finally, we assess the performance
for cases when the danger level changes or stays the same
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(Sect. 5.5) and for the case when the danger level of the pre-
vious day is added as an additional input feature (Sect. 5.6).

5.1 Performance of random forest classifiers

We trained two models, RF 1 and RF 2, and tested them
against two different data sets, which contain the winter sea-
sons of 2018/19 and 2019/20 (Fig. 3d). When evaluating the
performance of the models against the test set Dforecast, RF 1
achieved an overall accuracy (number of correctly classified
samples over the total number of samples) of 0.74 and a
macro-F1 score of 0.7 (Table 1a). Even though RF 2 was
trained with only 9 % of the data (Fig. 3c), it reached an al-
most similar overall accuracy of 0.72 and a macro-F1 score
of 0.68 (Table 1b). F1 scores for each class were also fairly
equal for both models (Table 1a and b). However, for the mi-
nority classes of danger levels 1-Low and 4-High, the preci-
sion of RF 1 was higher, whereas a higher proportion of sam-
ples were correctly classified by RF 2 (higher recall). This
result highlights the impact of using better-balanced training
data in RF 2 and less noisy labels.

The performance of the models tested on Dtidy showed
that RF 2 achieved the highest macro-F1 score of 0.75 and
overall accuracy of 0.78 (Table 1d), with very similar val-
ues for RF 1 (accuracy 0.76, macro-F1 score 0.74). The class
breakdown for the two models showed better scores when
tested against Dtidy compared to Dforecast. The performance
increased most notably for danger level 4-High, with the
F1 score reaching 0.64.

The confusion matrices shown in Fig. 6 provide more in-
sight into the performance of both models. The values on the
diagonal clearly dominate. This indicates that the majority
of cases was correctly predicted by the classifiers, as is also
shown in Table 1 (the percentages shown in the diagonal cor-
respond to the recall in Table 1). Furthermore, if predictions
deviated from the ground truth label, the difference was in
most cases one danger level and only rarely two danger lev-
els (< 3 %).

To analyse the model bias in more detail, we defined a
model bias difference 1DL as

1DL = DLRF−DLTrue , (1)

where DLRF is the danger level predicted by the random for-
est model and DLTrue is the ground truth danger level. Table 2
summarizes the percentages of test samples for each model
bias difference.

Compared to Dforecast, RF 1 exhibited a bias towards
higher danger levels (∼ 15 %) rather than lower ones (∼
11 %; Table 2a), while RF 2 showed an inverse trend of de-
viations (Table 2b). Compared with Dtidy, RF 1 showed an
even larger bias towards higher danger levels (Table 2b),
compared to RF 2, which had an almost equal proportion
of predictions which were higher (12 %) or lower (10 %).
Regardless of which of the two models was evaluated, pre-
dictions tended to be higher for 2-Moderate (1DL = 1; be-

tween 20 % and 24 % in Fig. 6) and lower for 3-Considerable
(1DL =−1; between 12 % and 19 % in Fig. 6). As 1-Low
and 4-High are at the lower and upper end of the scale, re-
spectively, wrong predictions can only be too high at 1-Low
and too low at 4-High.

In summary and as can be expected, each model per-
formed better when compared to its respective test set. RF 1
achieved better performance compared to RF 2 when evaluat-
ing them on the Dforecast test set, while RF 2 achieved slightly
higher performance on the Dtidy test set. The performance
of RF 1 improved when tested against the best possible test
data (Dtidy), particularly for the danger level 4-High.

5.2 Daily variations in model performance and the
impact of the ground truth quality on performance
values

In the next step, we compare the predictive performance of
the two random forest models during the two test seasons
by analysing the performance on a daily basis. To this end,
we only consider the predictions using the forecast danger
level (Dforecast) as the number of predictions per day is much
larger than in the tidy data set. Nevertheless, when discussing
the performance of the models, we must also consider the un-
certainty related to this target variable as errors in the ground
truth can significantly impact the performance of the mod-
els. This is particularly important in our case as we rely on
the forecast danger level (Dforecast) as the ground truth label.
To conduct this evaluation, we compare the daily accuracy
of the models with the “accuracy” of the forecast, which we
estimate by comparing the regional forecast to the local now-
cast provided by experienced observers. The comparison of
the forecast with the local nowcasts provides the most mean-
ingful reference point for the evaluation of the models.

To estimate the accuracy of the forecast, we rely on the
local nowcast reported by observers (Sect. 2.3). Thus, we
consider the agreement rate between the forecast danger
level (DLF) and nowcast danger level (DLN) as a proxy
for the accuracy of the forecast (e.g. Jamieson et al., 2008;
Techel and Schweizer, 2017). The agreement rate (Pagree)
for a given day is then the normalized ratio of the number
of cases where nowcast and forecast agree (N(DLF−DLN =

0)) to the number of all forecast–nowcast pairs (N ):

Pagree =
N (DLF−DLN = 0)

N
. (2)

On average, regional forecasts and local nowcasts agreed
75 % of the time (N = 5099). However, considerable vari-
ations in the daily agreement rate can be noted in Fig. 7a,
where the agreement rate is represented by the blue-shaded
area and where the points show the number of observers
that provided an assessment. Considering the 171 dates with
more than 15 assessments, the agreement rate ranged be-
tween 27 % and 100 % (median 77 %, interquartile range
65 %–85 %), suggesting that the accuracy of the forecast is
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Figure 6. Confusion matrices of the two random forest models, RF 1 (trained with Dforecast) and RF 2 (trained with Dtidy), applied to the
test set data of (a) the forecasted danger levels and (b) the tidy danger levels of the winter seasons of 2018/19 and 2019/20.

Table 1. Test set model performance scores of the two final random forest models (RF 1 and RF 2): precision (Prec.), recall (Rec.) and
F1 for each danger level (DL; 2-Moderate and 3-Considerable are denoted as 2-Mod. and 3-Cons., respectively), overall accuracy (Acc.)
and macro-F1 score. (a) Predictions RF 1 vs. Dforecast (ground truth). (b) Predictions RF 2 vs. Dforecast (ground truth). (c) Predictions RF 1
vs. Dtidy (ground truth). (d) Predictions RF 2 vs. Dtidy (ground truth).

Model: ground truth DL Prec. Rec. F1 Support Model: ground truth DL Prec. Rec. F1 Support

(a) RF 1: Dforecast

1-Low 0.84 0.79 0.81 7574

(b) RF 2: Dforecast

1-Low 0.73 0.89 0.81 7574
2-Mod. 0.68 0.66 0.67 9657 2-Mod. 0.71 0.57 0.63 9657
3-Cons. 0.72 0.79 0.75 8020 3-Cons. 0.73 0.74 0.74 8020
4-High 0.63 0.51 0.57 597 4-High 0.51 0.54 0.53 597

Acc. 0.74 25 848 Acc. 0.72 25 848
Macro-F1 0.70 25 848 Macro-F1 0.68 25 848

(c) RF 1: Dtidy

1-Low 0.93 0.78 0.85 1400

(d) RF 2: Dtidy

1-Low 0.87 0.90 0.88 1400
2-Mod. 0.67 0.70 0.68 1316 2-Mod. 0.73 0.67 0.70 1316
3-Cons. 0.73 0.84 0.78 1223 3-Cons. 0.76 0.78 0.77 1223
4-High 0.64 0.65 0.64 133 4-High 0.56 0.71 0.63 133

Acc. 0.76 4072 Acc. 0.78 4072
Macro-F1 0.74 4072 Macro-F1 0.75 4072
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Figure 7. (a) Comparison of the time series of the daily accuracy of the two random forest models, RF 1 (trained with Dforecast) and RF 2
(trained with Dtidy), tested on the winter seasons of 2018/19 (top) and 2019/20 (bottom) for predicting the danger level forecasts. The blue-
shaded area represents the agreement rate, and the points show the number of observers that provided an assessment. The dashed lines show
the six dates (labelled from a to f) selected as exemplary cases (see Appendix D). The date is indicated in the format year-month-day. (b) Box
plots of the distribution of the accuracy of the models, grouped together by the agreement rate. Dots are the individual data points.

lower than the overall model accuracy on about half of the
days.

The daily accuracy of the predictions of the two models,
the overall match between the model outputs and Dforecast as
ground truth, is shown in Fig. 7a. Variations in the daily ac-
curacy of the two models were highly correlated (Pearson
correlation coefficient 0.88). The average difference in the
daily accuracy between the two RF models is 0.07; on 75 %
of the days it was less than 0.1. Overall, the performance of
RF 1 was slightly better than RF 2 as is reflected in the overall
scores (Table 1a and b) and as can be expected when com-
paring with Dforecast because RF 1 was trained with this data
set. The match between predictions and Dforecast is compa-
rably high on about half of the days (RF 1 accuracy > 0.74,
RF 2 accuracy > 0.70) and less than 0.5 on 11 % (RF 1) and
15 % (RF 2) of the days.

Figure 7b summarizes the correlation between the daily
prediction accuracy of the two RF models, evaluated
against Dforecast, and the agreement rate between forecast and
nowcast assessments. Again, we consider only days when at
least 15 observers provided a nowcast assessment. Overall,
the performance of both models decreased with a decreasing
agreement rate. When the agreement was high (Pagree > 0.9,
Fig. 7b) and hence the forecast in many places likely cor-
rect, the performance of RF 1 was particularly good (me-
dian accuracy of 0.8), whereas the accuracy of RF 2 was
slightly lower (median accuracy of 0.79). When the agree-
ment rate was low (Pagree < 0.6, Fig. 7b) and hence the fore-
cast at least in some regions likely wrong, the predictive per-
formance of model RF 2, trained with the tidy danger level
labels, is considerably lower, resulting in a median accuracy
of 0.66. In contrast, RF 1, which was trained with the over-
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Figure 8. Maps showing the average accuracy of (a) RF 1 and (b) RF 2 model predictions for the 73 IMIS stations for which predictions
were available on at least 50 % of the test set (Dforecast) days.

Table 2. Model (M) used for training and ground truth (GT) labels
of the test set, bias (1DL), and the proportion of samples (P ) for
each bias value. Both models are evaluated on the Dforecast test set
(upper part) and Dtidy test set (lower part).

M: GT 1DL P [%] M: GT 1DL P [%]

(a) RF 1: +2 0.1 (b) RF 2: +2 0.1
Dforecast +1 15.1 Dforecast +1 11.4

0 73.7 0 72.0
−1 11.0 −1 15.7
−2 0.2 −2 0.8

(c) RF 1: +2 0.1 (d) RF 2: +2 0.1
Dtidy +1 16.6 Dtidy +1 11.7

0 76.5 0 78.4
−1 6.8 −1 9.7
−2 0.0 −2 0.2

forecast bias present in the Dforecast data, was less impacted
(median∼ 0.7).

To further illustrate the daily performance of the models,
we created two videos (Supplement) with the maps showing
the predictions of each model at each IMIS station together
with the local nowcast assessments and the forecast danger
level. In addition, we also describe the predictions on six se-
lected dates that differed in terms of forecast agreement rate
and model performance (see Appendix D).

5.3 Station-specific model performance

Our objective was to develop a generally applicable classi-
fier for predicting the danger level at all IMIS stations in the
Swiss Alps. In other words, the classifier should show a simi-
lar performance independent of the location of the station. To
explore this, we analysed the station-specific averaged accu-
racy for the entire test set (Dforecast) of both models for the

73 stations for which predictions were available on at least
50 % of the days.

The maps displayed in Fig. 8 show that the station-specific
accuracies ranged between 0.6 and 0.85 (mean accuracy of
0.73) for RF 1 and between 0.5 and 0.87 (mean accuracy of
0.72) for RF 2. Some spatial patterns in the performance of
both models are visible (Fig. 8), indicating that differences
between stations are not random: both models performed
consistently well in the northern and western parts of the
Swiss Alps with the accuracy being above the mean for many
stations, compared to lower accuracy in the eastern part of
the Alps (accuracy < 0.7). RF 1 performed somewhat better
in the southern and central parts of Switzerland and RF 2 in
the northern parts. At stations with lower performance (ac-
curacy < 0.7), we observed that the danger levels 1-Low or
3-Considerable were less frequently forecast in these regions
(proportion of days ∼ 3 % lower) than in the rest of Switzer-
land. As the prediction performance was higher at these dan-
ger levels (Table 1a and b), this may partly explain the geo-
graphical differences in performance.

5.4 Model performance with elevation

Here we address the impact of filtering for elevation, which
we applied for data preparation when defining the training
and test data. We trained the classifiers exclusively with data
from stations which were above the elevation indicated in the
bulletin (Sect. 3.3; see also Fig. 2). To explore whether this
decision was appropriate, we now compare the prediction ac-
curacy of RF 1 as a function of the difference in elevation be-
tween the stations and the elevation indicated in the bulletin:
1elevation = elevation(station)− elevation(forecast).

In the public bulletin, the elevation information is given in
incremental intervals of 200 m in the range between 1400 and
2800 m a.s.l. for dry-snow conditions. To obtain more insight
into the performance of the model in relation to the elevation,
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Figure 9. (a) Frequency of the elevation indicated in the public forecasts with the number of stations that are located above and below
this elevation. The class of none contains the samples for the days when no information was indicated in the bulletin. (b) Heat map of the
proportions of samples (row-wise normalized) for each of the eight elevation classes (1elevation = elevation(station)− elevation(forecast))
versus the range of prediction bias (1DL) of the model RF 1. The total number of samples in each elevation class is denoted with n.

we separated the predictions into those for stations located
above (N = 25848) and below (N = 4847) the elevation in-
dicated in the bulletin (Fig. 9a). Generally, on any given day,
the elevation indicated in the forecast is lower than the eleva-
tion of most stations.

To analyse the model performance in more detail, we de-
fined eight classes of 1elevation. Figure 9b shows the eight
classes and their definitions, each containing the proportion
of samples (row-wise sum) as a function of the model bias
difference defined in Eq. (1). The class “none” contains the
samples for the days when no elevation information was pro-
vided in the bulletin. This class essentially corresponds to
forecasts with danger level 1-Low (99 %). This is the most
accurate class, reaching an accuracy at 1DL = 0 of 79 %,
which is the same as the recall for 1-Low shown in Table 1a.
Overall, the prediction accuracy was highest for stations with
an elevation far above the elevation indicated in the fore-
cast (accuracy 0.73 for 1elevation ≥ 400 m) and lowest for
stations located far below this elevation (accuracy 0.36 for
1elevation ≤−600 m, Fig. 9b). At the same time, the bias in
the predictions, compared to Dforecast, changed from being
slightly positive (ratio of the proportion of predictions higher
to those lower than forecast is 1.6 for 1elevation ≥ 400 m)
to negative (1elevation ≤ 200 m) and to primarily being neg-
ative for stations far below this elevation (ratio of predic-
tions lower to those higher than forecast is 18 for 1elevation ≤

−600 m, Fig. 9b).

5.5 Model performance with respect to increasing or
decreasing hazard

When evaluating the agreement rate of the avalanche fore-
cast with the local nowcasts, Techel and Schweizer (2017)
distinguished between days when the avalanche danger in-
creased and days when it decreased. When the danger in-
creases, changing weather primarily drives the decrease in

snow stability. In contrast, decreasing avalanche danger is
often linked to comparably minor and/or slow changes in
snowpack stability (e.g. Techel et al., 2020b). While these
changes are gradual in nature, these can only be expressed in
a step-like fashion using the five-level danger scale. For the
purpose of this analysis, we followed the approach by Techel
and Schweizer (2017) and split the data set into days when
the danger level increased, stayed the same, or decreased, in
relation to the previous day.

As shown in Table 3a, the accuracy was highest on days
when the forecast danger level stayed the same (0.77), com-
pared to days when the forecast danger increased (accuracy
0.67; support 10 %) or decreased (accuracy 0.59; support
14 %). Considering that Techel and Schweizer (2017) re-
ported the lowest agreement between forecast and nowcast
for days when the forecast increased suggests that we evalu-
ate these cases with danger level labels which were propor-
tionally more often wrong.

5.6 Model performance considering the forecast
danger level from the previous day

The avalanche warning service reviews daily the past fore-
cast in the process of preparing the future forecast (Techel
and Schweizer, 2017). Hence, the past forecast can be seen
as the starting point for the future forecast. Therefore, we
also tested whether the prediction performance changed
when including the forecast danger level from the previous
day’s forecast as an additional feature in the random forest
model (RF 1∗). As shown in Table 3b, not only did the overall
accuracy increase notably from 0.74 (RF 1) to 0.82 (RF 1∗)
but also accuracy increased for all the danger levels individ-
ually. However, when additionally considering the change to
the previous day’s forecast, this comes at the cost of a large
decrease in the performance in situations when the danger
level changed (DL increased for 10 % and decreased for 14 %
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Table 3. Accuracy of RF predictions (proportion of samples – row-wise sum for “Overall” and column-wise sum for the rest) of a RF classifier
tested against Dforecast as a function of changes in the forecast danger level compared to the day before, for cases when the danger level
increased (↗), stayed the same (→), or decreased (↘) for (a) RF 1 and (b) RF 1∗, a model which additionally considers the forecast danger
level of the previous day as an input feature.

(a) RF 1 (b) RF 1∗

Danger level ↗ → ↘ All ↗ → ↘ All

1-Low – 0.83 (32 %) 0.54 (30 %) 0.79 (29 %) – 1 (32 %) 0.17 (29 %) 0.88 (29 %)
2-Moderate 0.57 (21 %) 0.70 (37 %) 0.53 (55 %) 0.66 (38 %) 0.20 (22 %) 0.96 (37 %) 0.21 (55 %) 0.76 (38 %)
3-Considerable 0.74 (65 %) 0.80 (30 %) 0.93 (15 %) 0.79 (31 %) 0.50 (64 %) 0.95 (30 %) 0.86 (15 %) 0.85 (31 %)
4-High 0.48 (14 %) 0.55 (1 %) – 0.51 (2 %) 0.42 (14 %) 0.78 (1 %) – 0.55 (2 %)

Overall 0.67 (10 %) 0.77 (76 %) 0.59 (14 %) 0.74 (100 %) 0.43 (10 %) 0.97 (76 %) 0.29 (14 %) 0.82 (100 %)

of the total samples). For these situations, there is a drop in
accuracy, overall from 0.67 (RF 1) to 0.43 (RF 1∗) when the
danger level increased and from 0.59 (RF 1) to 0.29 (RF 1∗)
when the danger level decreased.

6 Discussion

We first discuss the following key characteristics of the train-
ing data (Sect. 6.1), which may impact both the construction
of the RF classifiers and their performance evaluation:

– the size of the data set in relation to the complexity of
the addressed classification problem;

– the class distribution, with particular attention to minor-
ity classes; and

– the quality of the labels, i.e. the accuracy of the regional
forecasts by human experts.

We also address scale issues – a danger level describing
regional avalanche conditions for a whole day compared to
measurements and SNOWPACK simulation output describ-
ing a specific point in time and space (Sect. 6.2). In Sect. 6.3,
we discuss the performance of the RF classifiers considering
one of our key objectives, namely to develop a model appli-
cable to the entire forecast domain of the Swiss Alps, before
we compare the developed RF classifiers with previously de-
veloped models predicting a regional avalanche danger level
(Sect. 6.4). Finally, we provide an outlook on the operational
pre-testing of the models (Sect. 6.5) and their future applica-
tion for avalanche forecasting (Sect. 6.6).

6.1 Impact of training data and forecast errors on
model performance

6.1.1 Training data volume and class distribution

In general, a large training data set increases the performance
of a machine learning model as it provides more coverage of
the data domain. However, Rodriguez-Galiano et al. (2012)

showed that random forest classifiers have relatively low sen-
sitivity to the reduction in the size of the training data set.
In fact, the large reduction in the number of training data
of RF 2, containing only 10 % of data of RF 1, did not
have a substantial impact on model performance. RF 2 had
similar overall scores when evaluated on the Dforecast test
set (Table 1a and b) and even slightly higher scores on the
Dtidy test set (Table 1c and d) as it was trained with Dtidy.
The dominant classes of danger levels, 2-Moderate and 3-
Considerable, were the most affected ones, showing a de-
crease in accuracy of between 5 % and 8 % (Fig. 6a and b).

Furthermore, RF 2 is trained using a better-balanced train-
ing data set (Fig. 3c). The confusion matrices exhibit an im-
provement of the per class accuracy (Fig. 6), i.e. the recall
percentages of the diagonal matrix, of the minority classes of
danger levels 1-Low and 4-High when using RF 2, reflecting
the positive impact of balancing the training ratio for these
danger levels.

6.1.2 Quality of avalanche forecasts

Even though previous applications of random forests have
demonstrated that they comprise one of the most robust clas-
sification methods tolerating some degree of label noise (e.g.
Pelletier et al., 2017; Frénay and Verleysen, 2013), their per-
formance decreases with a large number of label errors (Maas
et al., 2016). Labelling errors, however, may influence the
model building, which can be particularly relevant for mi-
nority classes such as danger level 4-High. Furthermore, such
errors in the ground truth may also lead to seemingly lower
prediction performance (e.g. Bowler, 2006; Techel, 2020).
Aiming to reduce the impact of wrong class labels, we com-
piled the best possible, presumably more accurate, ground
truth data set (Dtidy), which was used to train RF 2.

To assess the accuracy of the forecast and thus potential
errors in the forecast danger levels (Dforecast), we relied on
nowcast assessments (DLN) by well-trained observers. Al-
though the local nowcasts are also subjective assessments,
they are considered the most reliable data source of dan-
ger levels (Schweizer et al., 2021; Techel and Schweizer,

https://doi.org/10.5194/nhess-22-2031-2022 Nat. Hazards Earth Syst. Sci., 22, 2031–2056, 2022



2046 C. Pérez-Guillén et al.: Data-driven automated predictions of the avalanche danger level for dry-snow conditions

2017). Previous studies estimated the accuracy of the Swiss
avalanche forecasts to be in the range between 75 % and
81 % (this study – see Sect. 5.2; Techel and Schweizer, 2017;
Techel et al., 2020b). Our classifiers reached these values: the
overall prediction accuracies of RF 1 and RF 2 were 74 % and
72 % (compared to Dforecast) and 76 % and 78 % (compared
to Dtidy), respectively (Table 1). Particularly, the accuracy of
the minority class 4-High improved for RF 2 (Fig. 6), em-
phasizing the importance of training and testing against the
best possible data set Dtidy. To compile this data set, quality
checking was particularly important for danger level 4-High
(Sect. 3.1.2 and Appendix A) since the forecast is known
to be comparably often erroneous when this danger level is
forecast (e.g. Techel and Schweizer, 2017; Techel, 2020). In
the future, a new compilation of Dtidy resulting in a larger
data volume may improve the predictive performance.

Considering the predictions on particular days (Fig. D1),
some stations predicted the danger level, which was forecast
in the adjacent warning region. This suggests that occasion-
ally the boundary between areas of different forecast danger
levels could be questionable. Such errors in the spatial de-
lineation of the extent of regions with the same danger level
have also been noted by Techel and Schweizer (2017). They
showed that the agreement rate between the local nowcast as-
sessments and the regional forecast danger level was compa-
rably low in warning regions which were neighbours to warn-
ing regions with a different forecast danger level. Hence,
incorrect boundaries may have further contributed to label
noise.

Similarly, errors in the elevation indicated in the bulletin
may have an impact as we used this forecast elevation to fil-
ter data (Sect. 3.3). The effect of the forecast elevation on the
classifier performance was clearly visible with the accuracy
decreasing for stations below the elevation indicated in the
bulletin, often showing a bias of −1 danger level (Fig. 9).
This result agrees with the assumption that the danger is
lower below the elevation indicated, typically by one dan-
ger level (Winkler et al., 2021). However, the proportion of
correct predictions at stations close to but below the ele-
vation indicated was fairly high (0.64), which may reflect
a more gradual decrease in the danger level with elevation
(Schweizer et al., 2003). This finding suggests that the model
is able to capture elevational gradients of avalanche danger.

6.2 Spatio-temporal scale issues

The temporal and spatial scale of the avalanche forecast and
data used to train the model should be considered when ver-
ifying a forecasting model (McClung, 2000). To match the
temporal scale, we extracted the meteorological and snow-
pack features for the time window closest to the avalanche
forecast. Nevertheless, for avalanche forecasting, “forecast”
data from weather predictions strongly drive the decision-
making process. The RF models, however, were trained us-
ing “nowcast” data (recorded measurements and simulated

data based on these measurements). This may introduce an
additional bias between the danger level predictions of the
model and the public forecast. The use of the morning fore-
cast, whenever it was available as ground truth, reduced this
bias. Nevertheless, a model trained with forecast input data
may improve the performance.

A scale mismatch exists between our target variable and
the model predictions. Whereas the same danger level is usu-
ally issued for a cluster of warning regions, characterized by
a mean size of 7000 km2 (Techel and Schweizer, 2017), the
predictions of the model reflect the local conditions measured
and modelled at an individual IMIS station. Hence, the spa-
tial scale difference can be of more than 2 orders of magni-
tude. Stations located in the same or nearby warning regions
forecast with the same danger level sometimes predict dif-
ferent danger levels (Fig. D1) as avalanche conditions may
vary even at the scale of a warning region (Schweizer et al.,
2003). These local variations are inherent to the characteris-
tics of the station such as elevation, wind exposure, and more.
To overcome the spatial scale issues in future applications,
predictions could be clustered through ensemble forecasting
methods.

6.3 Spatio-temporal variations of the model
performance

Snow stability and hence avalanche danger evolve in time –
driven primarily by changing weather conditions – and vary
in space – depending on the terrain and how meteorological
conditions affect the snowpack at specific locations.

Overall, the two models captured this evolution with an
overall accuracy of more than 72 % (Table 1) or 67 % (RF 1)
when considering only times when the avalanche hazard in-
creased (Table 3a). However, the accuracy of the models var-
ied during the winter season (Fig. 7a), with about 10 %–15 %
of the days exhibiting an accuracy < 0.5 (Sect. 5.1). Here, we
distinguished two cases (Sect. 5.2): first, some days with such
seemingly poor performance could be linked to the forecast
danger level, the target variable used for validation, which
was likely wrong in many areas. These cases were charac-
terized by a low agreement rate, Pagree, between forecast
and nowcast assessments, for instance on 7 February 2019
(Fig. D1a). However, not all the days with a poor model per-
formance correlated with low values of Pagree (Fig. 7b). This
suggests that variations in model performance may also be
due to different avalanche situations and, hence, the ability
of the classifiers to accurately predict them. Even though we
have only qualitatively explored this, we observed that the
predictive performance of both models sometimes decreased
on days when the avalanche problem of “persistent weak lay-
ers” (EAWS, 2021a) was the primary problem.

Second, the performance of the models was lower at sta-
tions located in the eastern part of the Swiss Alps, for in-
stance, in the regions surrounding Davos or St. Moritz (these
are marked in Fig. 8). Since model accuracy varied in situa-
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tions when the danger changed (Table 3), we verified whether
the proportion of cases with a change in the danger level
differed in these regions compared to other areas. However,
changing danger levels were forecast about as often in these
regions as in the rest of Switzerland, with, for instance, an
increase in avalanche danger being forecast on 9 % to 10 %
of the days in Davos and St. Moritz, compared to an overall
mean of 10 % for the remainder of the Swiss Alps (decreas-
ing danger level of 11 % to 12 % in St. Moritz and Davos,
respectively, overall mean 14 %). The model performance
was highest when danger level 1-Low was forecast (Table 1),
which was somewhat less frequently the case in St. Moritz
(24 %) and Davos (26 %) compared to the entire Swiss Alps
(29 %, top of Fig. 3d). Furthermore, we also explored if the
agreement rate between forecast and local assessments, an
indicator for the quality of the danger level labels, was lower
there. While Pagree was about 71 % for Davos, which was
lower than the overall mean of 75 %, the agreement rate was
82 % for St. Moritz. Consequently, none of these effects may
conclusively explain the variations observed. Again a possi-
ble explanation may be related to the snowpack structure in
this part of the Swiss Alps, which is often dominated by the
presence of persistent weak layers (e.g. Techel et al., 2015).
However, this aspect of model performance must be analysed
in more detail and goes beyond the scope of this work.

6.4 Comparison of data-driven approaches for danger
level predictions

Some of the first attempts to automatically predict danger
levels for dry-snow conditions were reported by Schweizer
et al. (1994), who designed a hybrid expert system based on
a training set of about 700 cases using a verified danger level,
correctly classifying 73 % of the cases. Schweizer and Föhn
(1996) also predicted the avalanche danger level for the re-
gion of Davos trained with the same data. The cross-validated
accuracy was 63 %, showing an improvement to 73 % when
adding further snowpack stability data and knowledge in the
form of expert rules to the system.

Schirmer et al. (2009) compared several classical machine
learning methods to predict the avalanche danger. They used
as input measured meteorological and SNOWPACK vari-
ables from the AWS at Weissfluhjoch (WFJ2) station located
above Davos. They reported an accuracy of typically around
55 % to 60 %, which improved to 73 % when the avalanche
danger level of the previous day was an additional input. Al-
though the test set used in this study is not directly compa-
rable with the previous ones, the overall accuracies obtained
with our classifiers are higher (Table 1). Still, the mean ac-
curacy of the predictions at the stations located in the re-
gion of Davos was lower (Fig. 8), showing values of 72 %
(RF 1 model) and 69 % (RF 2 model) for the station WFJ2.
We also observed an important improvement in the overall
performance of the model when adding the danger level of
the previous day (Table 3b). However, the predictions were

mainly driven by the danger level feature and RF 1∗ failed to
predict the situations of increasing or decreasing avalanche
hazard. This model would have limited usefulness in opera-
tional avalanche forecasting since it too strongly favours per-
sistency in avalanche danger.

6.5 Operational testing of the models

During the winter season 2020/21, both RF models were
tested in an operational setting providing a nowcast and a
“24 h forecast” prediction in real time. The model chain con-
sisted of the following steps, of which the first two steps
are equivalent to the operational SNOWPACK model setup
in the Swiss avalanche warning service (Sect. 2.1; Lehn-
ing et al., 1999; Morin et al., 2020): (1) measurements are
transferred from the AWS to a server at SLF once an hour;
(2) based on these data, snow cover simulations are per-
formed with the SNOWPACK model for the location of
the IMIS station and for four virtual slope aspects (“north”,
“east”, “south”, and “west”) every 3 h; (3) the input features
required for the RF models are extracted from the snow cover
simulations; and (4) the danger level predictions are calcu-
lated. In addition, both models were tested in a forecast set-
ting, covering the following 24 h. The forecast snow cover
simulations are driven with the numerical weather prediction
model COSMO-1 (developed by the Consortium for Small-
scale Modeling; https://www.cosmo-model.org/, last access:
31 May 2022) operated by the Swiss Federal Office of Me-
teorology and Climatology (MeteoSwiss), downscaled to the
locations of the AWS. In addition, we also tested individual
predictions for each of the four virtual slope aspects. Prelim-
inary results showed that the overall predictive performance
in forecast and nowcast mode and per aspect was similar. A
detailed analysis of these results in an operational setup will
be presented in a future publication.

6.6 Future operational application of the models

Both models have the potential to be used as decision sup-
port tools for avalanche forecasters. The models can provide
a “second opinion” when assessing the avalanche danger.

Comparing the performance between both models, the
RF 2 model predicted situations with danger level 4-High
accurately more often (Fig. 6), which is particularly relevant
as many large natural avalanches are expected at this dan-
ger level (Schweizer et al., 2021). Hence, accurate forecasts
of danger level 4-High are crucial for local authorities to en-
sure safety in avalanche-prone areas, for instance, by the pre-
ventive closure of roads. On the other hand, the RF 2 model
less accurately predicted the most common avalanche dan-
ger levels: 2-Moderate and 3-Considerable. Overall, RF 2
tended to rather under-forecast the danger compared with
RF 1 (Fig. 6). This may have negative implications for back-
country recreationists, as their avalanche risk increases with
increasing danger level (Winkler et al., 2021). On the other
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hand, the comparison of regional forecasts with local now-
casts (Techel and Schweizer, 2017) showed that experienced
observers usually rated the danger lower than forecast when
they disagreed with the forecast. It is therefore quite possi-
ble that the regional forecast by human experts occasionally
tends to err on the safe side, an effect the models would not
show.

Furthermore, the avalanche danger levels are a strong sim-
plification of avalanche danger, which is a continuous vari-
able. However, the random forest classifiers predict not only
the most likely danger level, which we exclusively explored
in this study, but also the class probabilities for each of the
danger levels. Even though an in-depth analysis of these
probabilities is beyond the scope of this study, we noted that
for most of the misclassifications between two consecutive
danger levels (Fig. D1), the model predictions were usually
uncertain, predicting relatively high probabilities for both
danger levels. In the future, using these probability values
may be beneficial for refining the avalanche forecasts (Techel
et al., 2022). Future work will also focus on predicting the
danger levels for the different slope aspects and above all on
using output of numerical weather prediction models as input
data.

7 Conclusions

We developed two random forest classifiers to predict the
avalanche danger level based on data provided by a network
of automated weather stations in the Swiss Alps (Fig. 1).
The classifiers were trained using measured meteorologi-
cal data and the output of snow cover simulations driven
with these input weather data and danger ratings from pub-
lic forecasts as ground truth. The first classifier RF 1 relied
on the actual danger levels as forecast in the public bul-
letin, Dforecast, which is intrinsically noisy, while the sec-
ond classifier RF 2 was labelled with a subset of quality-
controlled danger levels, Dtidy. Whereas, for the classifier
RF 1, the maximum average accuracy ranged between 74 %
(evaluating on the Dforecast test set) and 76 % (Dtidy test set),
RF 2 showed an accuracy of between 72 % (Dforecast test
set) and 78 % (Dtidy test set). These accuracies were higher
(up to 10 %) than those obtained in earlier attempts of pre-
dicting the danger level. Also, our classifiers had similar
accuracy to the Swiss avalanche forecasts which were esti-
mated by Techel and Schweizer (2017) in the range of 70 %–
85 % with an average value of 76 %. Hence, we developed a
fully data-driven approach to automatically assess avalanche
danger with a performance comparable to the experience-
based avalanche forecasts in Switzerland. Overall, the per-
formance of the RF models decreased with increasing uncer-
tainty related to these forecasts, i.e. a decreasing agreement
rate (Pagree). In addition, the predictions at stations located at
elevations higher than the elevation indicated in the bulletin
were more accurate than the predictions at lower stations,

suggesting, as expected, lower danger at elevations below the
critical elevations. Finally, a single model was applicable to
the different snow climate regions that characterize the Swiss
Alps. Nevertheless, the predictive performance of the mod-
els spatially varied, and in some eastern parts of the Swiss
Alps where the avalanche situation is often characterized by
the presence of persistent weak layers, the overall accuracy
was lower (∼ 70 %). Therefore, future models should better
address this particular avalanche problem by incorporating
improved snow instability information.

Both models have the potential to be used as a supple-
mentary decision support tool for avalanche forecasters in
Switzerland. Operational pre-testing of the models during the
winter season 2020/21 showed promising results for the real
application in operational forecasting. Future work will fo-
cus on exploiting the output probabilities of the random for-
est classifiers and predicting the danger levels for the dif-
ferent slope aspects in addition to using output of numerical
weather prediction models as input data. These future devel-
opments would bring the models even closer to the proce-
dures of operational avalanche forecasting.

Appendix A: Compilation of subset of tidy danger
levels (Dtidy)

In the following, the data and process to obtain the subset of
tidy danger levels, introduced in Sect. 3.1.2, are described.

Several data sources were used:

1. the forecast danger level (Dforecast) relating to dry-snow
conditions, as described in Sect. 3.1.1;

2. nowcast estimates of the danger level (Dnowcast) relat-
ing to dry-snow conditions and reported by experienced
observers after a day in the field (refer to Techel and
Schweizer, 2017, for details regarding nowcast assess-
ments of avalanche danger in Switzerland);

3. avalanche occurrence data, consisting of recordings of
individual avalanches and avalanche summaries, re-
ported by the observer network in Switzerland for the
purpose of avalanche forecasting;

4. “verified” danger levels, as shown in studies exploring
snowpack stability in the region of Davos (eastern Swiss
Alps; see also Fig. 2; Schweizer et al., 2003; Schweizer,
2007) or documenting avalanche activity following two
major storms in 2018 and 2019 using satellite-detected
avalanches (Bühler et al., 2019; Bründl et al., 2019;
Zweifel et al., 2019).

We proceeded in two steps to derive Dtidy.
(1) We combined information provided in the fore-

cast (Dforecast) with assessments of avalanche danger by ob-
servers (Dnowcast). By combining several pieces of informa-
tion indicating the same D value, we expect that it is more
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likely that D represents the avalanche conditions well. This
resulted primarily in a subset of danger levels: 1-Low, 2-
Moderate, and 3-Considerable. We included the following
cases in the tidy subset:

– for cases when a single nowcast estimate was available
and when Dforecast =Dnowcast→Dtidy =Dforecast;

– for cases when several nowcast estimates were available
and when these indicated the same Dnowcast, regardless
of Dforecast→Dtidy =Dnowcast.

Furthermore, we included cases when a verified dan-
ger level was available (Schweizer et al., 2003; Schweizer,
2007). When neither a verified danger level nor a nowcast es-
timate was available but when Dforecast was 1-Low on the day
of interest and also on the day before and after, we included
these cases as sufficiently reliable to represent 1-Low. How-
ever, to reduce auto-correlation in this subset of days with
1-Low, only every fifth day was selected. Furthermore, as
our focus was on dry-snow conditions, we removed all cases
of 1-Low in April, when often a decrease in snow stability
during the day due to melting leads to a wet-snow avalanche
problem.

Beside compiling Dtidy, we also derived a correspond-
ing critical elevation and corresponding aspects for which
Dtidy was valid.

We defined a tidy critical elevation as the mean of the indi-
cated elevations in the forecast or nowcast estimates. As gen-
erally no elevation is provided for 1-Low in the forecast or in
nowcast assessments, we used a fixed elevation of 1500 m
for the months December to February and 2000 m in March.
The latter adjustment was made to ascertain that the danger
referred to dry-snow avalanche conditions rather than wet-
snow or gliding avalanche conditions.

(2) We relied on avalanche occurrence data to obtain a sub-
set of cases which reflect the two higher danger levels of 4-
High and 5-Very High.

To find days with avalanche activity typical of danger
level 4-High, an avalanche activity index (AAI) was cal-
culated for each day and warning region by summing the
number of reported avalanches weighted according to their
size (Schweizer et al., 1998). The respective weights for
avalanche size classes 1 to 4 were 0.01, 0.1, 1, and 10. Be-
cause a mix of individual avalanche recordings and avalanche
summary information was used, the following filters and
weights were applied to calculate the AAI:

– Individual avalanche recordings. Only dry-snow natu-
ral avalanches were considered (weight of 1).

– Avalanche summaries. Only avalanches classified as ei-
ther dry (weight of 1) or a mix of dry and wet (weight
of 0.5), which either had released naturally (weight of
1) or were reported as a mix of natural and other release
types (weight of 0.5), were used.

A day and warning region was considered 4-High when
the following three criteria were fulfilled:

1. At least 1 avalanche was of size 3 or larger.

2. AAI≥ 5. This threshold corresponds to, for example, 5
natural avalanches of size 3, or 40 size-2 avalanches and
1 size-3 avalanche.

3. At least 5 avalanches of size 2 or larger were reported.

Cases which fulfilled these criteria were included, and
Dtidy was set to 4-High if Dforecast was ≥ 3-Considerable.
Cases for which the avalanche activity criteria were ful-
filled but which had a comparably low danger level forecast
(Dforecast = 1-Low or Dforecast = 2-Moderate) were removed
from the subset.

Two situations were verified as 5-Very High for parts of
the Swiss Alps – on 22 January 2018 (Bründl et al., 2019)
and 14 January 2019 (Zweifel et al., 2019). These cases were
included in the data set. If one of the previous criteria already
applied, Dtidy was changed to 5-Very High.

For cases with D ≥ 4-High which did not contain infor-
mation on elevation, we used a rounded mean based on the
cases where this information was available. This resulted in
a critical elevation of 1900 m.

Appendix B: Metrics and model’s hyperparameters

In the following, the performance metrics used in this study
are defined (e.g. Sokolova and Lapalme, 2009). The accuracy
is the fraction of predictions by the model that are correct:

accuracy=
correct predictions
total predictions

. (B1)

Precision (or positive predictive value) describes the fraction
of positive results that are true positives:

precision=
true positive

true positive+ false positive
. (B2)

Recall describes the true positive rate (or sensitivity), i.e. the
percentage of actual positives which are correctly identified:

recall=
true positive

true positive+ false negative
. (B3)

The F1 score is the harmonic mean of precision and recall:

F1= 2 ·
precision · recall

precision+ recall
. (B4)

The macro-F1 score is the unweighted mean of F1 scores
calculated for each class.

The final hyperparameters selected in the optimization
process are shown in Table B1.
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Table B1. Final hyperparameters selected for the optimized models: RF 1 and RF 2. “log2” indicates maximum features are log2 (no. fea-
tures), and “auto” indicates maximum features are

√
(no. features).

Model

Hyperparameter RF 1 RF 2

Number of trees 1000 1000
Maximum depth of the tree 40 50
Maximum number of features log2 auto
Minimum number of samples at a leaf node 6 5
Minimum number of samples for each split 12 10

Appendix C: Definition of features for developing
RF models

Table C1. Meteorological variables used for training the random forest algorithm. The three types of feature are the measured meteoro-
logical variable, modelled meteorological variable by SNOWPACK, and extracted variable. Features can be discarded by recursive feature
elimination (RFE), manually, or because they are highly correlated with another one.

Feature description Feature name Type Selected/discarded

Sensible heat [W m−2] Qs Modelled Selected
Latent heat [W m−2

] Ql Modelled Discarded: RFE
Ground temperature [◦C] TSG Measured Discarded: RFE
Ground heat at soil interface [W m−2

] Qg0 Modelled Selected
Rain energy [W m2

] Qr_mean Modelled Discarded: correlation
Outgoing long-wave radiation [W m−2

] OLWR Modelled Discarded: correlation
Incoming long-wave radiation [W m−2

] ILWR Modelled Selected
Net long-wave radiation [W m−2

] LWR_net Modelled Selected
Reflected short-wave radiation [W m−2

] OSWR Measured Discarded: correlation
Incoming short-wave radiation [W m−2

] ISWR Modelled Selected
Net short-wave radiation [W m−2

] Qw Modelled Selected
Parametrized albedo [–] pAlbedo Modelled Selected
Incoming short wave on the horizontal [W m−2

] ISWR_h Modelled Discarded: correlation
Direct incoming short wave [W m−2

] ISWR_dir Modelled Discarded: correlation
Diffuse incoming short wave [W m−2

] ISWR_diff Modelled Selected
Air temperature [◦C] TA Measured Selected
Surface temperature [◦C] TSS_mod Modelled Selected
Surface temperature [◦C] TSS_meas Measured Discarded: correlation
Bottom temperature [◦C] T_bottom Modelled Discarded: correlation
Relative humidity [–] RH Measured Selected
Wind velocity [m s−1

] VW Measured Selected
Wind velocity drift [m s−1

] VW_drift Measured Selected
Wind direction [◦] DW Measured Discarded: RFE
Solid precipitation rate [kg s−2 h−1

] MS_Snow Modelled Selected
Snow height [cm] HS_mod Modelled Selected
Snow height [cm] HS_meas Measured Discarded: correlation
Hoar size [cm] hoar_size Modelled Discarded: RFE
24 h wind drift [cm] wind_trans24 Modelled Selected
3 d wind drift [cm] wind_trans24_3d Extracted Selected
7 d wind drift [cm] wind_trans24_7d Extracted Selected
24 h height of new snow [cm] HN24 Modelled Selected
3 d sum of daily height of new snow [cm] HN72_24 Modelled Selected
7 d sum of daily height of new snow [cm] HN24_7d Extracted Selected
Snow water equivalent [kg m−2

] SWE Modelled Discarded: correlation
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Table C1. Continued.

Feature description Feature name Type Selected/discarded

Total amount of water [kg m−2
] MS_water Modelled Discarded: RFE

Erosion mass loss [kg m−2
] MS_Wind Modelled Discarded: RFE

Rain rate [kg s−2 h−1
] MS_Rain Modelled Discarded: correlation

Virtual lysimeter [kg s−2 h−1
] MS_SN_Runoff Modelled Discarded: RFE

Sublimation mass [kg m−2
] MS_Sublimation Modelled Discarded: correlation

Evaporated mass [kg m−2
] MS_Evap Modelled Discarded: RFE

Snow temperature at 0.25 m [◦C] TS0 Measured Discarded: manually
Snow temperature at 0.5 m [◦C] TS1 Measured Discarded: manually
Snow temperature at 1 m [◦C] TS2 Measured Discarded: manually
Stability class [–] Sclass2 Modelled Discarded: RFE
Deformation rate stability index [–] Sd Modelled Discarded: RFE
Depth of deformation rate stability index [cm] zSd Modelled Discarded: correlation
Natural stability index [–] Sn Modelled Selected
Depth of natural stability index [cm] zSn Modelled Selected
Sk38 skier stability index [–] Ss Modelled Selected
Depth of Sk38 skier stability index [m] zSs Modelled Selected
Structural stability index [–] S4 Modelled Selected
Depth of structural stability index [cm] zS4 Modelled Discarded: correlation
Stability index 5 [–] S5 Modelled Discarded: RFE
Depth of stability index 5 [cm] zS5 Modelled Discarded: RFE

Table C2. Variables extracted from the simulated profiles used for training the random forest algorithm. Features can be discarded by
recursive feature elimination (RFE) or because they are highly correlated with another one.

Feature description Feature name Type Selected/discarded

Persistent weak layer(s) in the 100 cm from the surface [–] pwl_100 Profile Discarded: correlation
Persistent weak layer(s) at depths between 15 and 100 cm [-] pwl_100_15 Profile Discarded: correlation
Persistent weak layer at bottom [–] base_pwl Profile Discarded: RFE
Structural stability index at weak layer [–] ssi_pwl Profile Discarded: correlation
Structural stability index at surface weak layer [–] ssi_pwl_100 Profile Discarded: correlation
Sk38 skier stability index at weak layer [–] sk38_pwl Profile Discarded: RFE
Sk38 skier stability index at surface weak layer [–] sk38_pwl_100 Profile Discarded: correlation
Natural stability index at weak layer [–] sn38_pwl Profile Discarded: correlation
Natural stability index at surface weak layer [–] sn38_pwl_100 Profile Selected
Critical cut length at weak layer [m] ccl_pwl Profile Discarded: correlation
Critical cut length at surface weak layer [m] ccl_pwl_100 Profile Selected
Min critical cut length at a deeper layer of the penetration depth [m] min_ccl_pen Profile Selected
Skier penetration depth [cm] Pen_depth Profile Selected

Appendix D: Illustrative case studies

Here we provide a detailed description of the daily perfor-
mance of the models on six selected dates that differed in
terms of forecast agreement rate and model performance
(Fig. D1). For simplicity, we only display the predictions of
the model RF 1 (circles), for which we additionally provide
a video in the Supplement. The maps of the predictions of
the model RF 2 for these dates are also available in the Sup-
plement. Also shown in Fig. D1 are the local nowcast assess-
ments for each of these six dates (triangles).

On 7 February 2019 (Fig. D1a; denoted by “a” in Fig. 7a),
danger level 3-Considerable was forecast for most regions.
For this large area, the model predicted 2-Moderate for the
majority of the stations, reaching a poor average daily accu-
racy of 0.3 (0.26 for RF 2). On this day, 27 observers pro-
vided a local assessment of the avalanche danger (Fig. D1a).
A total of 8 assessments confirmed the forecast danger
level 3-Considerable and 15 assessed the situation as 2-
Moderate, suggesting that the forecast was likely too high
in many regions (Pagree = 0.41) and that the model actu-
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Figure D1. Maps of Switzerland showing the danger level of the public forecast for each region; the danger level predictions by the RF 1
model at each IMIS station (coloured circles); and the local nowcast assessments (coloured triangles) reported by observers on six selected
dates – (a) 7 February 2019, (b) 15 March 2019, (c) 19 March 2019, (d) 20 January 2020, (e) 6 March 2020, and (f) 8 April 2020. The
colours represent the danger levels.
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ally performed well. In the remaining regions where the
forecast danger level was 2-Moderate, the observers mostly
confirmed the forecast (1 out of 4 reported 3-Considerable;
Fig. D1a). The following day, the forecast danger level was
lowered to 2-Moderate in almost all regions of the Swiss
Alps.

On 15 March 2019 (Fig. D1b; denoted by “b” in Fig. 7a),
danger levels 3-Considerable and 4-High were mainly fore-
cast. The predictive accuracy on this day was 0.64 (0.62 for
RF 2), considering the local nowcast assessments showed
that the danger level forecast was perceived correctly by
17 out of 23 observers (Pagree = 0.74). A total of 5 observers
confirmed 4-High and 5 rated the danger with 3-Considerable
in the area where the forecast danger level was 4-High. In
the regions with forecast danger level 3-Considerable, 12 ob-
servers confirmed the forecast danger level and 1 reported
2-Moderate (Fig. D1b).

On 19 March 2019 (Fig. D1c; denoted by “c” in Fig. 7a),
danger levels 2-Moderate and 3-Considerable were forecast.
For a rather large proportion of the stations in the area with
2-Moderate, the model predicted one danger level higher,
resulting in an average model accuracy of 0.53. For RF 2,
overall accuracy was considerable higher, namely 0.65. Fig-
ure D1c shows that 79 % of the 24 local assessments on this
day confirmed the forecast danger level: for 2-Moderate in
17 cases and for 3-Considerable in 2 out of 7 cases. This day
seems to represent a typical example when RF 1, trained ex-
clusively with forecast data, tended to predict higher danger
levels than RF 2.

On 20 January 2020 (Fig. D1d; denoted by “d” in Fig. 7a),
there were three areas with danger levels of 1-Low, 2-
Moderate, and 3-Considerable, respectively. The average ac-
curacy of the RF 1 model was 0.49, with many stations pre-
dicting a danger level of 2-Moderate in the area where 1-Low
was forecast. Two local assessments on this day confirmed
1-Low, eight 2-Moderate, and two 3-Considerable, while
four observers in the area where 3-Considerable was fore-
cast rated the danger as 2-Moderate and one observer rated
the area where 2-Moderate was forecast as 1-Low (Fig. D1d).
In summary, this suggests that the forecast danger level was
approximately correct (Pagree = 0.7) but the model predic-
tions tended to be too high, particularly in the area where
1-Low was forecast. The following day, the model predicted
for most of the stations a decrease from 3-Considerable to
2-Moderate, now again in accordance with the forecast. The
performance of RF 2 was better (overall accuracy of 0.61),
showing more accurate predictions in the large area where
danger level 1-Low was forecast (see video in the Supple-
ment).

On 6 March 2020 (Fig. D1e; denoted by “e” in Fig. 7a),
when primarily the danger level 3-Considerable was forecast,
an accuracy of 0.81 was achieved by RF 1 (0.77 for RF 2).
However, the feedback from the observers (Fig. D1e), with
15 out of the 27 local assessments being lower than the fore-
cast danger level, suggests that the forecast danger level was

at least in some regions too high (Pagree = 0.46). Similarly,
the avalanche observations indicated only for one warning
region that level 4-High was appropriate.

Finally, on 8 April 2020 (Fig. D1f; denoted by “f” in
Fig. 7a), the lowest danger level 1-Low was forecast for the
entire area of the Swiss Alps. Both models also predicted
1-Low for all stations, an accuracy of 1. On this day, only
four observers provided local nowcast estimates, all of which
were in accordance with the forecast danger level (Fig. D1f).

Code availability. The code to develop the final models used
in this study is available at https://renkulab.io/gitlab/deapsnow/
predictions_avalanche_danger-level_switzerland (Pérez-Guillén,
2022).

Data availability. The data set of the meteorological and the pro-
file variables extracted from the simulated profiles for each of the
weather stations of the IMIS network in Switzerland and the danger
ratings for dry-snow conditions assigned to the location of the sta-
tion are accessible at https://doi.org/10.16904/envidat.330 (Pérez-
Guillén et al., 2022).

Supplement. For illustration, the evolution of the RF danger level
predictions (circles), the local nowcast assessments (triangles), and
the forecast danger level (Dforecast, Fig. 3d) is shown for the two
test winters in two supplementary videos. Each video shows anima-
tions of the daily maps. Only the predictions for stations above the
elevation indicated in the bulletin are displayed. The warning re-
gions are coloured with the forecast danger level. The colour of the
stations shows the danger level predictions of each random forest
classifier. The number of stations varies with time because predic-
tions at some stations are lacking due to (i) the station being located
below the elevation indicated in the bulletin on a given day, (ii) a
missing value for one of the input features, or (iii) the snow height
being less than the minimum threshold of 30 cm. The danger level
of some warning regions can also be missing for some days be-
cause only a forecast for wet-snow avalanche conditions was issued
in this area. The supplement related to this article is available online
at: https://doi.org/10.5194/nhess-22-2031-2022-supplement.
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