Articles | Volume 22, issue 3
Nat. Hazards Earth Syst. Sci., 22, 1109–1128, 2022
https://doi.org/10.5194/nhess-22-1109-2022
Nat. Hazards Earth Syst. Sci., 22, 1109–1128, 2022
https://doi.org/10.5194/nhess-22-1109-2022
Research article
01 Apr 2022
Research article | 01 Apr 2022

Extreme-coastal-water-level estimation and projection: a comparison of statistical methods

Maria Francesca Caruso and Marco Marani

Related authors

How well does a convection-permitting climate model represent the reverse orographic effect of extreme hourly precipitation?
Eleonora Dallan, Francesco Marra, Giorgia Fosser, Marco Marani, Giuseppe Formetta, Christoph Schär, and Marco Borga
EGUsphere, https://doi.org/10.5194/egusphere-2022-1037,https://doi.org/10.5194/egusphere-2022-1037, 2022
Short summary
Characterizing marshland compressibility by an in-situ loading test: design and set-up of an experiment in the Venice Lagoon
Pietro Teatini, Cristina Da Lio, Luigi Tosi, Alessandro Bergamasco, Stefano Pasqual, Paolo Simonini, Veronica Girardi, Paolo Zorzan, Claudia Zoccarato, Massimiliano Ferronato, Marcella Roner, Marco Marani, Andrea D'Alpaos, Simonetta Cola, and Giuseppe Zambon
Proc. IAHS, 382, 345–351, https://doi.org/10.5194/piahs-382-345-2020,https://doi.org/10.5194/piahs-382-345-2020, 2020
Short summary
ON THE INFLUENCE OF GLOBAL WARMING ON ATLANTIC HURRICANE FREQUENCY
S. R. Hosseini, M. Scaioni, and M. Marani
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 527–532, https://doi.org/10.5194/isprs-archives-XLII-3-527-2018,https://doi.org/10.5194/isprs-archives-XLII-3-527-2018, 2018
On the effectiveness of recession analysis methods for capturing the characteristic storage-discharge relation: An intercomparison study
Xing Chen, Mukesh Kumar, Stefano Basso, and Marco Marani
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-65,https://doi.org/10.5194/hess-2018-65, 2018
Preprint withdrawn

Related subject area

Hydrological Hazards
Interactions between precipitation, evapotranspiration and soil-moisture-based indices to characterize drought with high-resolution remote sensing and land-surface model data
Jaime Gaona, Pere Quintana-Seguí, María José Escorihuela, Aaron Boone, and María Carmen Llasat
Nat. Hazards Earth Syst. Sci., 22, 3461–3485, https://doi.org/10.5194/nhess-22-3461-2022,https://doi.org/10.5194/nhess-22-3461-2022, 2022
Short summary
Rare flood scenarios for a rapidly growing high-mountain city: Pokhara, Nepal
Melanie Fischer, Jana Brettin, Sigrid Roessner, Ariane Walz, Monique Fort, and Oliver Korup
Nat. Hazards Earth Syst. Sci., 22, 3105–3123, https://doi.org/10.5194/nhess-22-3105-2022,https://doi.org/10.5194/nhess-22-3105-2022, 2022
Short summary
Brief communication: Impact forecasting could substantially improve the emergency management of deadly floods: case study July 2021 floods in Germany
Heiko Apel, Sergiy Vorogushyn, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 22, 3005–3014, https://doi.org/10.5194/nhess-22-3005-2022,https://doi.org/10.5194/nhess-22-3005-2022, 2022
Short summary
Brief communication: Western Europe flood in 2021 – mapping agriculture flood exposure from synthetic aperture radar (SAR)
Kang He, Qing Yang, Xinyi Shen, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 22, 2921–2927, https://doi.org/10.5194/nhess-22-2921-2022,https://doi.org/10.5194/nhess-22-2921-2022, 2022
Short summary
Comprehensive space–time hydrometeorological simulations for estimating very rare floods at multiple sites in a large river basin
Daniel Viviroli, Anna E. Sikorska-Senoner, Guillaume Evin, Maria Staudinger, Martina Kauzlaric, Jérémy Chardon, Anne-Catherine Favre, Benoit Hingray, Gilles Nicolet, Damien Raynaud, Jan Seibert, Rolf Weingartner, and Calvin Whealton
Nat. Hazards Earth Syst. Sci., 22, 2891–2920, https://doi.org/10.5194/nhess-22-2891-2022,https://doi.org/10.5194/nhess-22-2891-2022, 2022
Short summary

Cited articles

Araújo, I. B. and Pugh, D. T.: Sea levels at Newlyn, 1915–2005: Analysis of trends for future flooding risks, J. Coastal Res., 24, 203–212, https://doi.org/10.2112/06-0785.1, 2008. a
Balkema, A. A. and de Haan, L.: Residual life time at great age, Ann. Probab., 2, 792–804, https://doi.org/10.1214/aop/1176996548, 1974. a, b
Barbariol, F., Bidlot, J.-R., Cavaleri, L., Sclavo, M., Thomson, J., and Benetazzo, A.: Maximum wave heights from global model reanalysis, Prog. Oceanogr., 175, 139–160, https://doi.org/10.1016/j.pocean.2019.03.009, 2019. a
Beck, C. and Cohen, E. G. D.: Superstatistics, Physica A: Statistical Mechanics and its Applications, 322, 267–275, https://doi.org/10.1016/S0378-4371(03)00019-0, 2003. a
Beirlant, J., Goegebeur, Y., Segers, J. J. J., and Teugels, J.: Statistics of Extremes: Theory and Applications, John Wiley & Sons, Chichester, UK, ISBN 0471976474, 2004. a, b
Download
Short summary
We comparatively evaluate the predictive performance of traditional and new approaches to estimate the probability distributions of extreme coastal water levels. The metastatistical approach maximizes the use of observational information and provides reliable estimates of high quantiles with respect to traditional methods. Leveraging the increased estimation accuracy afforded by this approach, we investigate future changes in the frequency of extreme total water levels.
Altmetrics
Final-revised paper
Preprint