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Introduction

This supplementary material contains two sections: 1) a general overview of the extreme value theory represented both in
the conventional form (block maxima) and in the "threshold" form based on the generalized Pareto distribution (peaks-over-
threshold); 2) complementary figures to the main text.
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T1. Extreme Value Theory

The Extreme Value Theory (EVT) is a statistical technique that provides a theoretical framework to quantify the occurrence
probability of random variables at unusually high (or low) extreme events. The cornerstone of EVT is the three-types theorem
introduced by Fisher and Tippett (1928) and later proved by Gnedenko (1943). This results led Gumbel (1958) to introduce a
statistical methodology for extreme values. The basic idea is to study the statistical behavior of:

Mn =max(X1, . . . ,Xn) (1)

where Xi (for i= 1 . . . ,n) are a sequence of independent and identically distributed (i.i.d.) random variables having a common
distribution function (F ). The distribution function of Mn is given by the nth power of F :

Pr{Mn ≤ x}= Pr{X1 ≤ x,X2 ≤ x, · · · ,Xn ≤ x}
= Pr{X1 ≤ x}Pr{X2 ≤ x}· · ·Pr{Xn ≤ x}
= Fn(x)

The classical EVT focuses on the asymptotic behavior of this distribution. Under certain circumstances, it can be shown that
exist scaling constants an > 0 and bn, that allow to obtain a nondegenerate distribution (H(x), i.e., it is not always either 0 or
1), such that:

P (
Mn− bn
a

n

≤ x) = Fn(anx+ bn)→H(x), as n→∞

The corresponding normalized variable M∗
n = Mn−bn

an
has a limiting distribution that must be one of the three types of extreme

value distributions (Gumbel, Fréchet and Weibull) characterized by different behaviors and shapes of the tail. Von Mises (1936)
proposed a single distribution which combines all three types of asymptotic extreme value distributions into a single family
known as generalized extreme value (GEV) distribution:

H(x;µ,ψ,ξ) = exp{−[1+
ξ

ψ
· (x−µ)]}−1/ξ (2)

where:

1. µ is a location parameter;
2. ψ is a scale parameter;
3. ξ is a shape parameter which controls the type of the tail distribution: 1) ξ→0 defines the light tailed case (Gumbel type

or EV1) characterized by an exponential tail; 2) ξ>0 identifies the heavy tailed case (Fréchet type or EV2) described by
a power law; 3) ξ<0 gives the short tailed case (negative Weibull case or EV3) which has a bounded upper tail.

The EVT identifies the GEV distribution as a general model to describe the distribution of extreme events. The three GEV
parameters can be estimated by using the well-known statistical methods: maximum-likelihood, probability-weighted moments
or Bayesian methods.
In many applications to environmental and hydrology processes, two fundamental approaches are widely used to extreme
value statistics, based on 1) maxima over some fixed time period (block maxima), and 2) exceedances over high threshold
(peaks-over-threshold). The following subsections outline the concepts underlying these methods.

T2. Modeling block maxima

The block maxima (BM) approach consists of dividing the observation sample into a sequence of maximum values extracted
from blocks of fixed time intervals and fitting the GEV distribution (Eq. (2)) to the set of block maxima obtained.
The choice of the suitable block size is a preliminary step, amounting to a trade-off between bias and error variance. In most
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environmental processes is commonly used a block size of one year leading to study the annual maxima time series.
Generally, for practical applications we are interested in estimating the T -years return levels associated with the extreme values.
If the GEV distribution is an appropriate model for block maxima, it is possible to estimate the quantile xT which is the level
expected to be exceeded on average once every 1/T years. The cumulative probability is given by H(xT ) = 1− 1/T and the
estimates of extreme quantiles of the annual maxima distribution are then obtained by inverting the Eq. 2:

xT =

{
µ− σ

ξ · {1− [−ln(1− 1
T )]

−ξ} ξ ̸= 0

µ− σ
ξ · {1− [−ln(1− 1

T )]} ξ = 0

The BM method is commonly used both for its simplicity and also because the annual maxima are undoubtedly independent
variables. Despite its simplicity, the BM method is a wasteful approach because only one value from each block is used with
loss of some important available information.

T3. Peaks-over-threshold

To overcome the limitations of the previous method, an alternative approach is widely used to study the extreme events known
as the peaks-over-threshold (POT, introduced by Balkema and de Haan (1974) and Pickands (1975)). The POT method allows
us to analyze all data exceeding a specific threshold value. The idea under this approach is to set an high threshold u, and to
study all the exceedances of u.
Suppose Xi (for i= 1, . . . ,n) is a sequence of i.i.d. random variables whose distribution function is F and let define the
excesses over u as Yi =Xi−u conditioned on Xi > u, the cumulative distribution of exceedances is defined by:

Pr{Yi ≤ y}= Pr{Xi ≤ u+ y|Xi > u}= Fu(u) =
F (u+ y)−F (u)

1−F (u)

Pickands (1975) established the connection between EVT and the generalized Pareto distribution (GPD). He showed that a
GPD approximation is possible if the distribution of the Xi satisfies Pr{Mn ≤ z} ≈G(z), where Mn and G(z) are given
respectively by Eq. (1) and Eq. (2). Moreover, for very large threshold u, the distribution function of the exceedances (Yi =
Xi−u) can be approximated by the generalized Pareto family:

H(y;σu, ξ) = 1− (1+
ξ

σu
· y)(−1/ξ)

a) defined on {y : y > 0 and (1+ ξ/σu · y)> 0}, where σu = σ+ ξ(u−µ);
b) with two parameters: scale (σ) and shape (ξ).

This result implies that, if block maxima have approximate distribution G, then threshold excesses have a corresponding
approximate distribution within the generalized Pareto family. In this case, the parameters of the GPD of threshold exceedances
are determined by those of the associated GEV distribution of block maxima. In particular, the shape parameter (ξ) is equal to
that of the corresponding GEV distribution and is invariant to block size (n) while σu is unaffected by changes in u and σ. As
it happens for the GEV distribution, the shape parameter is dominant in determining the behavior of the GPD tail:

1. ξ > 0 the distribution has no upper limit (equivalent to Pareto distribution) and the tail distribution function satisfies
1−H(y)∼ cy(−1/ξ) with c > 0, i.e. the polynomial distribution;

2. ξ < 0 the distribution of excesses has an upper endpoint at ωF = σu/(|ξ|);

3. ξ = 0 the distribution is unbounded. This case is interpreted as ξ→0 i.e. the exponential distribution with mean σ.

Fixed a threshold u, the number of exceedances is assumed to be a random variable itself and it is modeled with Poisson distri-
bution leading to the so called Poisson-GPD model. According to this model, if we assume the number of yearly exceedances

3



to have a Poisson distribution (with mean λ) and all the exceedances to be independent realizations and GPD distributed, the
probability that the annual maximum of the process is less than a certain value x is:

Pr{max1≤i≤NYi ≤ x}=H(x−u;λ,ξ,σ) = exp{−λ[1+ ξ

σ
· (x−u)]}−1/ξ =

= Pr{N = 0}+
+∞∑
n=1

Pr{N = n,Y1 ≤ x, ·,Yn ≤ x}=

= e−λ+

+∞∑
n=1

λn · e−λ

n
· {1− (1+

ξ

σu
· (x−u))(−1/ξ)}n =

= exp{−λ[1+ ξ

σ
· (x−u)]}−1/ξ

This property suggests that the probability distribution of the annual maxima of a GPD-Poisson model is the same as the GEV
distribution (see Eq. (2)). The GEV and GPD models are consistent with one another if ξGEV = ξGPD, σ = ψ+ ξ(u−µ) and
λ= [1+ ξ

ψ · (u−µ)]−1/ξ.

The POT method allows us to estimate the GEV parameters based on a greater number of events, whereas the traditional
fitting methods considering only the annual maxima with consequent distortion in the shape of the tail. However, the optimal
threshold selection requires particular attention in order to satisfy the two hypothesis underlying the method: 1) the number
of events/year is Poisson-distributed; 2) exceedances over the threshold come from a Generalized Pareto Distribution (GPD).
Threshold choice involves a trade-off between variance, which increases with higher thresholds due to the smaller number of
excesses, and bias, which arise when the threshold is too low.
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Figure S1. Correlogram plots for daily maxima coastal water levels for the Venice (IT), Hornbæk (DK), Marseille (FR) and Newlyn (UK)
sites.
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Figure S2. Correlogram plots for independent daily maxima coastal water levels with threshold lag of 30 days for the Venice (IT), Hornbæk
(DK), Marseille (FR) and Newlyn (UK) sites.
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Figure S3. Independent coastal water levels (gray line) for the Venice (IT), Hornbæk (DK), Marseille (FR) and Newlyn (UK) sites, and
events on which the three approaches are fitted: (a) magenta dots show the annual maxima used for the GEV-BM method, (b) blue dots
represent the exceedances over a threshold in the case of the POT-GPD approach, and (c) green dots display the ordinary values for the
MEVD framework.
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Figure S4. VENICE (IT) - QQ plots of extreme-coastal-water-level quantiles computed for the GEV-based approaches (BM and POT) and
MEVD for the Venice station. The plots are obtained as a result of the cross-validation method used to test the global performance of the
models and are estimated for 1,000 random realizations and for sample size: a) S = 30 years (in-sample test in the left column); b) V =M−S
years (out-of-sample test in the right column). The colors represent the point density around the 45° line (dashed black line) corresponding
to the best fit.

8



Figure S5. HORNBÆK (DK) - QQ plots of extreme-coastal-water-level quantiles computed for the GEV-based approaches (BM and POT)
and MEVD for the Hornbæk station. The plots are obtained as a result of the cross-validation method used to test the global performance
of the models and are estimated for 1,000 random realizations and for sample size: a) S = 30 years (in-sample test in the left column); b)
V =M −S years (out-of-sample test in the right column). The colors represent the point density around the 45° line (dashed black line)
corresponding to the best fit.
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Figure S6. MARSEILLE (FR) - QQ plots of extreme-coastal-water-level quantiles computed for the GEV-based approaches (BM and
POT) and MEVD (with parameter estimation on non-overlapping sub-samples of fixed size (5 years)) for the Marseille station. The plots are
obtained as a result of the cross-validation method used to test the global performance of the models and are estimated for 1,000 random
realizations and for sample size: a) S = 30 years (in-sample test on the left column); b) V =M −S years (out-of-sample test on the right
column). The colours represent the point density around the 45° line (dashed black line) corresponding to the best fit.
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Figure S7. MARSEILLE (FR) - QQ plots of extreme-coastal-water-level quantiles computed for the GEV-based approaches (BM and POT)
and MEVD (with parameter estimation on data from the whole calibration sample) for the Marseille station. The plots are obtained as a result
of the cross-validation method used to test the global performance of the models and are estimated for 1,000 random realizations and for
sample size: a) S = 30 years (in-sample test in the left column); b) V =M −S years (out-of-sample test in the right column). The colours
represent the point density around the 45° line (dashed black line) corresponding to the best fit.
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Figure S8. NEWLYN (UK) - QQ plots of extreme-coastal-water-level quantiles computed for the GEV-based approaches (BM and POT)
and MEVD for the Newlyn station. The plots are obtained as a result of the cross-validation method used to test the global performance
of the models and are estimated for 1,000 random realizations and for sample size: a) S = 30 years (in-sample test in the left column); b)
V =M −S years (out-of-sample test in the right column). The colors represent the point density around the 45° line (dashed black line)
corresponding to the best fit.
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