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Abstract. Accurate estimates of the probability of extreme
sea levels are pivotal for assessing risk and for designing
coastal defense structures. This probability is typically esti-
mated by modeling observed sea-level records using one of a
few statistical approaches. In this study we comparatively ap-
ply the generalized-extreme-value (GEV) distribution, based
on block maxima (BM) and peaks-over-threshold (POT) for-
mulations, and the recent metastatistical extreme-value dis-
tribution (MEVD) to four long time series of sea-level ob-
servations distributed along European coastlines. A cross-
validation approach, dividing available data into separate cal-
ibration and test sub-samples, is used to compare their per-
formances in high-quantile estimation. To address the limi-
tations posed by the length of the observational time series,
we quantify the estimation uncertainty associated with dif-
ferent calibration sample sizes from 5 to 30 years. We study
extreme values of the coastal water level – the sum of the wa-
ter level setup induced by meteorological forcing and of the
astronomical tide – and we find that the MEVD framework
provides robust quantile estimates, especially when longer
sample sizes of 10–30 years are considered. However, dif-
ferences in performance among the approaches explored are
subtle, and a definitive conclusion on an optimal solution in-
dependent of the return period of interest remains elusive.
Finally, we investigate the influence of end-of-century pro-
jected mean sea levels on the probability of occurrence of
extreme-total-water-level (the sum of the instantaneous wa-
ter level and the increasing mean sea level) frequencies. The
analyses show that increases in the value of total water levels
corresponding to a fixed return period are highly heteroge-
neous across the locations explored.

1 Introduction

The statistical analysis of extreme values of random variables
is of wide conceptual and applicative importance in science
and engineering (Coles, 2001; Beirlant et al., 2004; Castillo
et al., 2005; Finkenstädt and Rootzén, 2004). Modeling
extreme-value probability of occurrence is indeed an active
field of theoretical and applied research in many fields, such
as hydrology and climatology (Katz et al., 2002; Cancelliere,
2017; Mekonnen et al., 2021; Miniussi and Marra, 2021),
ecology (Katz et al., 2005; Rypkema et al., 2019), ocean
wave modeling (Rueda et al., 2016; Benetazzo et al., 2017;
Barbariol et al., 2019), transport engineering (Songchitruksa
and Tarko, 2006), geophysical processes (Pisarenko et al.,
2014a, b; Elvidge and Angling, 2018; Hosseini et al., 2020),
biomedical data analysis (De Zea Bermudez and Mendes,
2012; Chiu et al., 2018), insurance and financial applications
(Embrechts et al., 1997; Chan et al., 2022), and many others.

In particular, the reliable estimation of the occurrence
probability of coastal flooding events of large magnitude is
crucial to environmental hazard evaluation (Coles and Tawn,
2005; Hamdi et al., 2018) and to decision-making and mit-
igation measure design. In fact, coastal flooding hazard has
been increasing on a global scale in recent decades, a trend
expected to continue as a result of climate change (Meehl
et al., 2007; Church et al., 2013; Fortunato et al., 2016).
Several studies highlight that global sea-level rise will con-
tinue accelerating in the 21st century as a consequence of
climate change (Church and White, 2006; Jevrejeva et al.,
2008; Church and White, 2011; Haigh et al., 2014b; Hay
et al., 2015). Additionally, changes in storminess may have
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an important role in modifying the frequency and magni-
tude of water level extremes (Lowe et al., 2010; Menéndez
and Woodworth, 2010; Woodworth et al., 2011). Much of
the current work on extreme-coastal-flooding events is based
on the classical extreme-value theory (EVT) (Fréchet, 1927;
Dalrymple, 1960; Coles, 2001; Woodworth and Blackman,
2002; Hamdi et al., 2014, 2015; and references therein),
which identifies the family of distribution functions known as
generalized-extreme-value (GEV) distribution (Von Mises,
1936) as a general model for the distribution of maxima (or
minima) extracted from fixed time periods of equal length
(“blocks”, most commonly with a length of 1 year). The
GEV, according to its original formulation, arises as a lim-
iting distribution for maxima (or minima, not considered
here) of a sequence of independent and identically distributed
(i.i.d.) random variables. The peaks-over-threshold (POT)
formulation (Balkema and de Haan, 1974; Pickands, 1975)
extends the original GEV derivation by modeling all events
exceeding a high threshold as opposed to considering just
yearly maxima as in the GEV-block maxima formulation
(GEV–BM). The POT approach again recovers the GEV dis-
tribution as the distribution of the annual maxima if two as-
sumptions are valid (Davison and Smith, 1990): (1) the num-
ber of events per year is Poisson-distributed; (2) exceedances
over the threshold come from a generalized Pareto distribu-
tion (GPD). Under these suitable conditions, in the follow-
ing we refer to the POT framework as the POT–GPD formu-
lation. For a brief overview of the theory underlying EVT
and the two main methods based on the GEV distribution
(i.e., BM and POT approaches), the reader can refer to the
“Methods” section or the Supplement. The POT–GPD ap-
proach is often considered to be superior to GEV–BM in
practical applications due to its more efficient use of often
scarce observations. For extreme-sea-level studies in partic-
ular, Coles and Tawn (2005) and Haigh et al. (2010) recog-
nize two weaknesses in the use of the GEV–BM analysis:
(1) sea level is the combination of tide-driven (deterministic)
and storm-driven (stochastic) components (the presence of
a deterministic component is suggested to violate the i.i.d.
assumption required in the GEV–BM derivation); (2) sea-
level data are collected frequently (e.g., hourly), while the
GEV–BM approach only studies annual maxima, with an ex-
tremely inefficient use of the data. The POT framework ex-
ploits more of the available information with respect to the
BM approach (e.g., Coles, 2001; Bernardara et al., 2014).
However, the choice of a suitable threshold to retain a few
above-threshold events per year is a critical step, and the esti-
mation uncertainty significantly depends on threshold selec-
tion (Önöz and Bayazit, 2001; Li et al., 2012; Solari et al.,
2017). The selected threshold value implies a balance be-
tween bias and estimation error variance (Coles, 2001). In
fact, too low a threshold will violate the independence hy-
pothesis of the framework, leading to bias, while too high a
threshold will retain just a few values above the threshold,
leading to high error variance.

More generally, GEV-based approaches, by construction,
discard most of the observations and do not attempt to op-
timize the use of the available information (Volpi et al.,
2019). Furthermore, the traditional extreme-value theory de-
rives the GEV distribution either as the asymptotic distri-
bution when the number of events per block becomes very
large or through the ad hoc GPD–Poisson assumptions un-
derlying the POT approach. Whether these hypotheses do
apply to the case of sea levels is a matter of discussion, but
it seems beneficial to adopt methods that require the least
number of a priori assumptions on the properties of the event
arrival process. As a contribution to overcoming the limi-
tations of the traditional EVT, here we explore the use of
an alternative approach for modeling extreme sea levels, the
metastatistical extreme-value distribution (MEVD). This ap-
proach was introduced by Marani and Ignaccolo (2015) and
has been previously applied to rainfall, flood-frequency anal-
ysis, and hurricane intensities. The MEVD models the distri-
bution of yearly maxima starting from the distribution of “or-
dinary values”, i.e., all the available data, in contrast to just
considering annual maxima or a few values above a thresh-
old. Moreover, the MEVD framework (i) is a non-asymptotic
extreme-value distribution, which does not require the num-
ber of events per year to be large as in the traditional theory,
and (ii) makes no a priori assumptions on the properties of
the event occurrence process. In previous applications, the
MEVD has been shown to significantly reduce estimation
uncertainty compared to traditional approaches, especially
when considering return periods greater than the sample size
used for parameter estimation (Zorzetto et al., 2016; Marra
et al., 2018; Miniussi and Marani, 2020; Miniussi et al.,
2020a, b).

Here we comparatively analyze the performance of GEV-
based approaches and MEVD in high-quantile estimations
with application to extreme sea levels at different observa-
tion sites. The aim is to (1) identify the statistical tool afford-
ing minimal uncertainty in the estimate of extreme sea levels
with assigned probability of exceedance and (2) model and
understand how climate change will affect the extreme-sea-
level occurrence. To achieve these objectives, we analyze se-
lected sea-level time series along the European coastline and
evaluate extreme-sea-level predictive uncertainty by adopt-
ing a cross-validation approach in which calibration and test
samples are kept separate and independent. Subsequently,
we use the optimized estimation method to infer possible
changes in coastal flooding hazard under Intergovernmental
Panel on Climate Change (IPCC) climate change scenario
RCP4.5 and RCP8.5.

The structure of the paper is as follows: Sect. 2 outlines the
sea-level data and the methodology used in this application,
and results are described in Sect. 3, while the conclusions are
given in Sect. 4.
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2 Materials and methods

2.1 Data

The analyses were performed using daily and hourly sea-
level records from four tide gauge stations (see Table 1) dis-
tributed along European coastlines: Venice (Italy), Hornbæk
(Denmark), Marseille (France), and Newlyn (United King-
dom). The study sites span a variety of geographical loca-
tions, coastal morphologies, and storm regimes.

Venice sea-level data (maximum and minimum
daily observations) were obtained from the “Centro
Previsioni e Segnalazioni Maree” of the Venice Mu-
nicipality (https://www.comune.venezia.it/it/content/
centro-previsioni-e-segnalazioni-maree, Città di Venezia,
2020) for the Punta della Salute gauge station. The remain-
ing water level data, all at the hourly scale, were downloaded
from the University of Hawaii Sea Level Center (UHSLC)
repository (http://uhslc.soest.hawaii.edu/data/?rq#uh745a/,
last access: 10 November 2020; Caldwell et al., 2015).

All sea-level datasets span long observational periods: 148
years for Venice, 122 years for Hornbæk, 115 years for Mar-
seille (ca. 19 missing years), and 102 years for Newlyn.

The raw data for all stations were pre-processed to elim-
inate (1) years with less than 6 months of water level ob-
servations and (2) days with less than 24 h of data (for the
case of hourly data). This process yields four “cleaned up”
time series that were subsequently used in the analyses (see
Table 1). Figure 1 shows daily maximum sea levels at the
gauge stations explored after pre-processing.

2.2 Methods

2.2.1 Mean-sea-level removal

The sea-level sequence is highly correlated and is generated
by a non-stationary process due to long-term trends in mean
sea level, the deterministic tidal component, surge seasonal-
ity, and interactions between the tide and surge (Dixon and
Tawn, 1999). Tide–surge interactions may change amplitude
and phase of the surges, mostly in shallow estuarine areas
(Johns and Ali, 1980; Bernier and Thompson, 2007; Zhang
et al., 2010). Therefore, this effect needs to be taken into ac-
count when separating the surge and tide components. How-
ever, here, we do not attempt to separate these contributions;
we only analyze the sum given by the combination of the wa-
ter level setup, induced by meteorological forcing, and the
astronomical tide. Hence, we simply study such sum as the
final result of the nonlinear interactions between individual
components. Under this premise, for a given site and at any
instant of time t , the observed sea level z(t) (after averag-
ing out waves) can be split into three components (Pugh and
Vassie, 1978): mean sea level, m.s.l.(t); astronomically in-

duced tidal level, x(t); and meteorologically induced surge
level, y(t):

z(t)=m.s.l.(t)+ x(t)+ y(t). (1)

The term m.s.l.(t) represents the long-term variations in
water levels and of the elevation datum (i.e., possible land
subsidence or uplift). Local m.s.l.(t) does not change uni-
formly over time, and its calculation is affected by many fac-
tors, such as tidal phases, long-term wind and atmospheric-
pressure patterns, and vertical land motion (subsidence or
uplift). The tidal contribution to the instantaneous sea level,
x(t), caused by the gravitational forces exerted by the moon
and the sun is deterministic in nature and can be predicted
with a good degree of accuracy. This tidal variability oc-
curs with characteristic periodicities between 12 h and 18.61
years (Eliot, 2010; Haigh et al., 2011; Pugh and Woodworth,
2014; Peng et al., 2019; Valle-Levinson et al., 2021). This lat-
ter longest tidal periodicity corresponds to the precession of
the lunar nodal cycle. The storm-surge contribution, y(t), is
the meteorologically induced change in the water level gen-
erated by a combination of factors, such as the magnitude
and direction of the wind, spatial gradients in atmospheric
pressure, storm size, fetch, bathymetry, and storm duration
(Hall and Sobel, 2013).

Two classes of methods are widely used to estimate the
probability of occurrence of extreme sea levels: direct and
indirect methods. Indirect methods model separately the
deterministic and the stochastic components of z(t), fol-
lowed by a convolution to obtain the probability distribu-
tion of their sum. Examples are the joint probability method
(Pugh and Vassie, 1978, 1980), the revised joint probabil-
ity method (Tawn and Vassie, 1989), the exceedance proba-
bility method (Middleton and Thompson, 1986; Hamon and
Middleton, 1989), and the empirical simulation technique
(Scheffner et al., 1996; Goring et al., 2011). Direct meth-
ods, such as the one adopted here, analyze observed values
compounding the astronomical and stochastic storm-surge
component. Direct methods mostly differ based on the anal-
ysis approach adopted, such as the annual maxima method
(Jenkinson, 1955; Gumbel, 1958), the peaks-over-threshold
method (Davison and Smith, 1990), or the r-largest method
(Smith, 1986; Tawn, 1988). Here, we study the distribution
of the sum, h(t), of the contributions from the deterministic
tide and the stochastic surge:

h(t)= z(t)−m.s.l.(t). (2)

From a statistical point of view, this choice is justified by
the fact that the random arrival of storms adds a stochas-
tic surge contribution at unpredictable times, thereby caus-
ing h(t) to be values from a random variable, even though
it contains a deterministic component. The presence of a de-
terministic component of course does imply a strong auto-
correlation in the observed signal, which will be subse-
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Table 1. Information of sea-level data used in this application.

Site name Country
Location (degree, minutes)

Period
Missing Deleted Number

Lat Long years (%) years of years

Venice Italy 45◦25.0’ N 12◦20.0’ E 1872–2019 – – 148

Hornbæk Denmark 56◦06.0’ N 12◦28.0’ E 1891–2012 – 1985 121

Marseille France 43◦16.7’ N 5◦21.2’ E 1885–2018 14.2

1897, 1918,

106
1919, 1928,
1937, 1940,
1998, 2009,

2010

Newlyn
United

50◦06.1’ N 5◦32.5’ W 1915–2016 – 1984, 2010 100
Kingdom

Figure 1. Daily maximum sea levels at different gauge stations explored after pre-processing: Venice (IT), Hornbæk (DK), Marseille (FR),
and Newlyn (UK).

quently filtered out by suitable signal processing described
below.

Here, m.s.l.(t) is computed as the yearly average of daily
levels. The yearly average is chosen rather than the custom-
ary 19-year average that eliminates all tidal periodicities,
however small in amplitude, to better capture the surge con-
tribution that causes the water level to deviate during a storm
with respect to the “current” yearly value of m.s.l.(t). Once
h(t) is computed by removing m.s.l.(t) from recorded levels,
all local maxima of h(t) or water level peaks are identified,
and their values constitute the basis for subsequent analy-

ses of (i) the study of long-term trends of maximum yearly
departures from the average mean sea level (two-tail Mann–
Kendall test; Mann, 1945) and (ii) statistical inference of past
coastal flooding events and their potential future changes.

In the following discussion, we use the terms “total water
level” and “coastal water level” when referring to the quanti-
ties z(t) and h(t), respectively.
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2.2.2 Extreme-value theory

As highlighted by Serinaldi and Kilsby (2014), the EVT
deals with the asymptotic distributional behavior of two
types of data modeled with two well-known approaches,
namely the so-called block maxima (BM) and peaks-over-
threshold (POT) approaches. The first type models the max-
imum values extracted from blocks of fixed length, whereas
the second one models all the exceedances of high thresh-
old. The cornerstones of the EVT are two theorems: the
Fisher–Tippett–Gnedenko theorem (also known as the three-
types theorem; Fisher and Tippett, 1928; Gnedenko, 1943;
Gumbel, 1958) and the Pickands–Balkema–de Haan theo-
rem (also known as the second theorem of EVT; Balkema
and de Haan, 1974; Pickands, 1975).

According to the three type theorem, there are three possi-
ble non-degenerate distribution functions which can arise as
limiting distributions of extremes of random samples: (i) the
Gumbel distribution, or type I; (ii) the Fréchet distribution, or
type II; and (iii) the reverse-Weibull distribution, or type III.
The above three limiting distribution laws can be combined
into a single family of three-parameter distribution known as
the generalized-extreme-value (GEV) distribution given by

G(x;µ,ψ,ξ)= exp{−[1+
ξ

ψ
· (x−µ)]}−1/ξ , (3)

defined in the region for which {x : 1+
ξ

ψ
· (x−µ) > 0}. In

Eq. (3) µ ∈ (−∞,+∞) is a location parameter, ψ > 0 is a
scale parameter, and ξ ∈ (−∞,+∞) is a shape parameter
which controls the nature of the tail distribution (Fréchet type
for ξ > 0, Gumbel type for ξ = 0, and reverse-Weibull type
for ξ < 0).

The second theorem of EVT defines a method to model the
tail of the distribution above a threshold value (Davison and
Smith, 1990). In particular, the theorem states that for a large
enough threshold value, u, the distribution of exceedances of
some high threshold (y =X− u, where X is a sequence of
i.i.d. random variables) is described by a generalized Pareto
distribution (GPD), which has the following cumulative dis-
tribution function:

G(y;σu,ξ)= 1− (1+
ξ

σu
· y)−1/ξ , (4)

defined on {y : y > 0 and (1+ ξ
σu
· y > 0)}, where σu and ξ

are the scale and shape parameters, respectively.
There is a link between these two distributions according to
which, if block maxima have approximate GEV distribution,
then threshold excesses have corresponding approximate dis-
tribution within the generalized Pareto family and vice versa,
and GEV can be obtained from GPD under two appropriate
conditions (i.e., the occurrences are Poisson-distributed, and
excesses over the threshold come from a GPD). The duality
between Eqs. (3) and (4) means that the GPD parameters of

the excesses are uniquely determined by those of the asso-
ciated GEV distribution of block maxima (see, e.g., Coles,
2001). In particular, the shape parameter, ξ , is equal to that
of the corresponding GEV distribution, and the scale parame-
ters of the two distributions are related by σu = σ+ξ ·(u−y).

The interested reader can refer to Coles (2001) for a de-
tailed description of statistical methods for extremes in hy-
drology or Papalexiou and Koutsoyiannis (2013) for a recent
overview of the history of the EVT.

2.2.3 The metastatistical extreme-value distribution

The typical EVT derivation starts from the premise that the
maximum value among n realizations of a random variable
(Mn) is distributed according to the cumulative distribution
function P(Mn ≤ x)=G(x)= F(x;θ)

n (where, as custom-
ary, a capital letter indicates the random variable, and a
lower-case letter indicates a value of the random variable).
This approach assumes that the n values of the random vari-
able of interest are generated by the same distribution, the
“ordinary value” distribution F(x;θ), and are thus indepen-
dent and identically distributed; n is the number of events
in a block, such that G(x) is the cumulative distribution of
the block maxima. The classical EVT assumes either that
the number of events per block is large (asymptotic hypothe-
sis, leading to the GEV–BM formulation) or that the number
of events per block above a high threshold is distributed ac-
cording to a Poisson distribution (POT–GPD formulation).
The recently proposed metastatistical extreme-value distri-
bution (Marani and Ignaccolo, 2015) is a doubly stochastic
approach (Dubey, 1968; Beck and Cohen, 2003) that relaxes
these hypotheses by considering both the parameters (θ ) of
the ordinary value probability distribution and the number of
events per block to be random variables. Hence, the MEVD
cumulative distribution of block maxima (estimated using a
much greater sample than just yearly maxima used in the BM
approach) is then defined as the compound probability:

G(x)=

+∞∑
n=1

∫
�2

F(x;θ)ng(n,θ)dθ , (5)

where g(n,θ) is the joint probability distribution of the num-
ber of events in a block and of the parameter vector (discrete
in N and continuous in 2), and �2 is the population of all
possible parameter values.

For practical applications, the MEVD can be approxi-
mated by substituting the ensemble average in Eq. (5) with
the sample average computed over all the blocks in the time
series, obtaining

G(x)∼=
1
M

M∑
j=1

F(x;θj )
nj , (6)

where M is the number of blocks in the historical record,
F(x;θj ) is the cumulative distribution of ordinary values in
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the j th block, and nj is the number of events in the j th block.
A common choice for the block length is 1 year. Note that
the values of the parameter θj may be estimated on an es-
timation window (EW) with a length that is different from
block length. For example, if the block length is 1 year, it
may be advantageous to estimate parameter values on longer
time slices to ensure, depending on the rate of event occur-
rence, that a reliable estimation of the parameters is possible.
Miniussi and Marani (2020) in applications to daily rainfall
extremes find that, when the number of events per year is
fewer than 20–25, then the optimal EW length may be greater
than 1 year.

It is interesting to note that the POT approach, briefly
described above, can be thought of as a particular case
of MEVD. In fact, Zorzetto et al. (2016) highlight that if
one assumes (i) x to be the excess over a high threshold,
(ii) F(x;θj ) to be a generalized Pareto distribution (with
fixed, deterministic parameters), and (iii) n to be generated
by a Poisson distribution, then the GEV distribution is recov-
ered as a particular case of the MEVD by means of the POT
approach.

MEVD has been applied in several earth-science con-
texts. In rainfall extreme estimates, the ordinary value dis-
tribution is assumed to be Weibull when applied to point
daily rainfall (Marani and Ignaccolo, 2015; Zorzetto et al.,
2016; Schellander et al., 2019; Miniussi and Marani, 2020;
Miniussi et al., 2020b), point sub-daily rainfall (Marra et al.,
2018), and satellite rainfall estimates (Zorzetto and Marani,
2019, 2020). For floods across the United States, Miniussi
et al. (2020a) propose to adopt a gamma distribution for
F(x;θj ). Hosseini et al. (2020) describe Atlantic hurricane
intensities using a generalized Pareto ordinary value distribu-
tion. In all cases the appropriate form for the underlying ordi-
nary value distribution was identified by minimizing the esti-
mation uncertainty within a cross-validation approach, which
is also followed here. In this particular application to extreme
coastal water levels, three candidate probability distributions
for F(x;θj ) in Eq. (6) are tested, i.e., the gamma, Weibull,
and generalized Pareto distributions. Based on the compar-
ative evaluation of the performance of these distributions,
e.g., using diagnostic quantile–quantile scatterplots, the gen-
eralized Pareto distribution emerged as the best model for the
“ordinary” coastal-water-level values.

In the present context, we define as ordinary values
any coastal water elevation (i.e., the maximum water level
reached during a storm event) greater than a site-specific
threshold value. This threshold is chosen to be as small as
possible (differently from the POT approach) to retain as
much of the observational information as possible and will
be dependent on the magnitude of the local tidal range (sea-
level difference between high and low water level over a tidal
cycle) and of storm contributions. Additionally, the thresh-
old is set to be large enough to filter out coastal-water-level
peaks that are likely fully determined by tidal fluctuation in
the absence of any storm contribution. Given the above con-

straints, we also choose the threshold value that minimizes
the estimation error under the MEVD framework.

As suggested by several rainfall applications, ordinary dis-
tribution parameters are here estimated using the probability-
weighted moments (PWMs) method in non-overlapping es-
timation windows of 5 years. In the present application, the
optimal estimation window length was set to 5 years to obtain
a more robust parameter estimation, especially when few val-
ues in each year are available. PWM estimation, introduced
by Greenwood et al. (1979), is widely applied because of
its good performance, particularly in the presence of small
sample sizes, and its reduced estimation bias and sensitivity
to the presence of outliers in the data (Hosking et al., 1985;
Hosking and Wallis, 1987; Hosking, 1990).

2.2.4 Selection of independent events

The GEV-based approaches are fit on either annual peak
maxima (GEV–BM) or on a few water level peaks over a
high threshold (POT–GPD), which can be assumed to be re-
alizations of independent stochastic variables. The MEVD
requires that all ordinary values (coastal-water-level peaks in
this case) within one block may be assumed to be realizations
from independent random variables. This hypothesis, in turn,
requires that observed peaks are filtered to only retain events
that may be considered to be independent, through a declus-
tering process (Coles, 2001; Ferro and Segers, 2003; Beirlant
et al., 2004; Bommier, 2014; Marra et al., 2018). Several cri-
teria have been developed for such processing of the data.
A common criterion sets the minimal time separation, or lag
(τ ), for two events to be considered independent. Intuitively,
high-water-level events separated by a sufficiently long time
period are reasonably caused by distinct storm events. How-
ever, when analyzing the water level with respect to current
mean sea level, a quantity that contains the deterministic tidal
contribution, dependence may be expected to be present also
for large lags. In theory, some dependence is present for lags
up to the longest periodicity in the tidal signal (18.61 years).
In practice, as the dependence in the tidal signal decreases
for increasing lag, one expects that a much shorter threshold
time lag will be sufficient to make sure that only independent
events are considered. The analysis of the correlograms of se-
lected coastal-water-level peaks shows that some correlation
persists also for long time lags and also in the declustered
time series. Even though the strength of this correlation is
relatively small (the autocorrelation function, ACF, is always
less than 0.3), it could impact the ability of the MEVD, which
assumes independence, to capture observed extreme behav-
ior. The declustering process does significantly decrease cor-
relation, as may be seen by comparing Fig. S1 (ACF prior to
declustering) and Fig. S2 (after declustering). Interestingly, it
is seen that the tidal contribution (that generates periodicities
in the ACF) is strongly visible in Venice and Newlyn, while
it is quite small in Hornbæk and Marseille. The underlying
tidally induced correlation becomes more clearly visible after
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declustering also in Hornbæk and Marseille. We note that the
existing literature implementing declustering approaches to
coastal level signals normally focuses on studying the storm-
surge component only. As a result, it uses threshold time lag
values that are smaller than those adopted here because char-
acteristic correlation times of the surge component are signif-
icantly smaller than those associated with the sum given by
the combination of surge and tidal components. For exam-
ple, the independence between two consecutive storm surge
events in southern Europe has been found to be achieved
with a threshold lag of 3 d (Cid et al., 2015). A threshold
separation of 1 d between consecutive events is imposed by
Tebaldi et al. (2012) in their analysis of storm surges along
the US coast. Haigh et al. (2010) adopt a threshold lag of
30 h in the English Channel, while Bernardara et al. (2011)
assume a 72 h independence criterion. After exploring val-
ues between 24 h and several days, we adopt a threshold lag
of 30 d, which yielded the minimum estimation error under
the MEVD approach and is consistent with the main lunar
periodicity. The result of this declustering process is a set of
independent events with magnitudes hk , whose number nj in
year – or block – j is a realization of a random variable as
illustrated in Eqs. (5) and (6).

2.2.5 Cross-validation procedure

Statistical modeling aims to use sample information to infer
the probability distribution of the population from which the
data are extracted. This inference is uncertain due to imper-
fect parameter estimates and to the possible inability of the
chosen distribution to capture the statistical properties of the
underlying population. Although these sources of uncertainty
are inherent in any statistical model, their impact can be min-
imized by a careful choice of the model and by an effective
use of all sources of information (Coles, 2001). In many ap-
plications uncertainty is estimated by means of goodness-of-
fit measures, which quantify how well the distribution com-
pares to the sample on which it was fitted. However, this
procedure does not provide a measure of the predictive un-
certainty encountered when trying to estimate the probabil-
ity of occurrence of the “next” yet unobserved value. In this
study, we evaluate the performance in high-quantile estima-
tion associated with the use of the MEVD and the GEV dis-
tribution by means of a cross-validation (CV) procedure, in
which model predictions of the probability of occurrence are
compared to frequencies from data that were not used in the
estimation of model parameters. This is possible by dividing
observations into two sets of independent data: the estimation
set is the sample from which model parameters are estimated,
and the test set is the sample with which model predictions
are compared.

The procedure can be summarized as follows: (a) we
randomly reshuffle the observational years on record while
keeping all the independent water level peaks in their orig-
inal year to (1) preserve both the ordinary value frequency

distribution in each year and the distribution of the number
of events per year and (2) remove possible non-stationarity
and correlation in the time series; (b) we divide the ob-
servational sample into two independent sub-samples ob-
tained by randomly selecting S years from the original
time series of length M; this sub-sample (in the follow-
ing “calibration sample”) is used for parameter estimation,
while data in the remaining V =M − S years are used
for testing (in the following “validation sample” or “test
sample”); (c) as usual in frequency analysis, we associate
with each observed yearly maximum, xi , an empirical fre-
quency value given by Weibull’s estimator Fi = i/(V + 1),
where i is the rank of xi in the list of yearly maxima
sorted in ascending order, and V =M − S is the sample
size in the validation sub-sample; the return period Tr as-
sociated with each yearly maximum is then simply Tr,i =

1/(1−Fi); (d) we estimate the GEV and MEVD quantiles
using the parameter values estimated in step (b) from the
calibration sub-sample; (e) focusing on the validation sub-
sample, in every realization (for p = 1, . . .,Nr; Nr = 1000
here) and for a fixed mean recurrence time (Tr), we com-
pute the nondimensional error (NDE) between the estimated
and observed quantiles as NDEp(S, Tr)= [h(est, p)(S,Tr)−

h(obs, p)(S,Tr)]/h(obs, p)(S,Tr); (f) we repeat the CV scheme
above Nr times. This procedure is performed for different
calibration sample sizes (S = 5,10,20, and 30 years) to eval-
uate how estimation uncertainty varies with return period and
calibration sample size.

2.2.6 Future total water level projections

Future increases in the frequency of extreme total water lev-
els (i.e., the variable previously referred as z(t)) due to cli-
mate change will have serious impacts on coastal regions.
These impacts will vary temporally and regionally, depend-
ing on (i) the local relative mean-sea-level rise (including
possible subsidence or uplift), (ii) current storm-surge inten-
sity probability distributions, and (iii) changes in the domi-
nant meteorological dynamics. In this particular application
to extreme coastal water levels (i.e., the sum given by the
combination of the water level setup, induced by meteoro-
logical forcing, and the astronomical tide), only the first two
factors are considered.

It is very likely that sea-level rise will continue to acceler-
ate over time, thereby increasing the frequency of extreme-
sea-level events, leading to severe flooding in many low-
lying coastal cities and small islands (Oppenheimer et al.,
2019). Various techniques have been used to study possi-
ble changes in coastal flooding hazard (e.g., McInnes et al.,
2013; Vousdoukas et al., 2016). Several authors have found
that past variations in the frequency of occurrence of ex-
treme sea levels have been primarily determined by changes
in mean sea level (e.g., Zhang et al., 2000; Woodworth and
Blackman, 2004; Lowe et al., 2010; Menéndez and Wood-
worth, 2010; Haigh et al., 2014b; Wahl et al., 2017). This
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implies that effects of variations in storminess (e.g., magni-
tude, trajectories, and frequency) have been small in the ob-
servational record compared to the dominant effects of mean-
sea-level changes (Haigh et al., 2014a). This notion is also
confirmed by our trend analyses of maximum yearly depar-
tures from the average sea level (see Sect. 3.1), which fail to
detect trends in the maximum difference between total sea
level and concurrent mean sea level except at one of the sites
(Venice), where it is smaller (0.7 mm yr−1) than past and pro-
jected rates of sea-level rise (∼ 3.0 and ∼ 8.0 mm yr−1, re-
spectively, by the end of the century, according to the RCP8.5
IPCC scenario).

Based on these elements, here we estimate the probability
of future total water levels along European coastlines by as-
suming that changes in the tidal and storm-surge components
are negligible with respect to changes in mean sea level,
an assumption common to previous approaches (Araújo and
Pugh, 2008; Haigh et al., 2010; Tebaldi et al., 2012).

To assess how the exceedance probabilities of extreme
total water levels might change in the future, the pro-
jections of sea-level rise through 2100 from the IPCC’s
Fifth Assessment Report (AR5) are used. In particular,
we explore an intermediate (RCP4.5) and an extreme sce-
nario (RCP8.5), using CMIP5 model outputs from the “In-
tegrated Climate Data Center” (ICDC) database (Univer-
sity of Hamburg: https://icdc.cen.uni-hamburg.de/en/ar5-slr.
html, Church et al., 2013).

For each tide gauge, our approach can be summarized
as follows: (1) we infer the probability distribution of ex-
treme coastal water levels (annual maxima) from observed
independent events whose intensity (maximum coastal water
level attained, hk) is defined with respect to the concurrent
mean sea level computed on a yearly basis; (2) we estimate
the future probability of extreme total water levels by trans-
lating extreme-level quantile estimates upward according to
location-specific projections of mean sea level in the year
2100 (thereby implicitly assuming subsidence and uplift to
be negligible).

2.2.7 Return period

One of the main objectives of frequency analysis is to cal-
culate the average recurrence interval or return period. It is
a widely used concept in hydrological and geophysical risk
analysis. If a process is stationary, the return period (Tr) of an
event magnitude is defined as the average time elapsing be-
tween two consecutive exceedances of this magnitude. Alter-
natively, it may be said that a magnitude value is expected to
be exceeded, on average, in each return period. If the yearly
maximum magnitude h is exceeded on average once in Tr
years, then its exceedance probability, E(h)= 1−G(h), in a
given year is

E(h)= P [H ≥ h] =
1

Tr(h)
.

Therefore, the return period of the level value h is the in-
verse of the probability of exceedance and can be expressed
as a function of the cumulative distribution, G(h), of annual
maxima, e.g., through the MEVD (Eq. 6):

Tr(h)=
1

E(h)
=

1
1−G(h)

. (7)

Because for a fixed value of mean sea level there is a one-to-
one relation between the value of the sum of the astronomical
and the storm surge contribution, h, and the total water level,
z= h+m.s.l., one can write Gh(h)= P [H > h] = P [H >

z−m.s.l.] = P [Z−m.s.l. > z−m.s.l.] = P [Z > z] =Gz(h)
such that Eq. (7) can be used once the cumulative distribution
is known and for each (time-dependent) value of m.s.l. to
determine the return period of the total water level (at the
time when m.s.l. is evaluated):

Tr(z)=
1

1−Gz(h)
=

1
1−Gh(h)

=
1

1−G(z−m.s.l.)
. (8)

Based on the hypothesis introduced in Sect. 2.2.6 that mean-
sea-level rise is the dominant effect in future coastal flooding,
we assume that the characteristics of the extremes (i.e., the
parameters of the GPDs defining the MEVD) remain valid
in future scenarios. Equation (8) clarifies that the return pe-
riod of a fixed value z decreases as m.s.l. increases, basically
because for higher values of m.s.l. a smaller value of h is
needed to achieve the same total water level z. This decrease
is nonlinear due to the nonlinear form of the right-hand side
in Eq. (8).

3 Results and discussion

3.1 Mann–Kendall trend analysis

We start by computing mean sea level on a yearly basis and
by subtracting it from observed total water level. The first
question that we want to explore is the presence of long-term
trends, unrelated to sea-level rise and associated with other
factors (e.g., human-induced factors, morphological varia-
tions), in the “cleaned up” signal, i.e., the observed measure-
ments without mean sea level. To answer this question, in
this work we focus on the deviation of yearly maxima from
yearly mean sea level and test for the presence of a trend by
the two-tail Mann–Kendall test (Mann, 1945). Figure 2 sum-
marizes results for each location explored. From a first vi-
sual inspection of Fig. 2, the Venice (1872–2019) and Horn-
bæk (1891–2012) time series appear to show an increasing
trend in the deviations of yearly maxima from yearly mean
sea level (blue line) of different magnitudes. In contrast, Mar-
seille sea-level observations (1985–2018) seem to be charac-
terized by a decreasing trend. Finally, the Newlyn historical
record (1915–2016) displays a fairly constant signal with no
noticeable variations. The application of the Mann–Kendall
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test reveals a partly different story. The test rejects the hy-
pothesis of the absence of a trend at the 95 % confidence
level only for the Venice site (p valueVenice

= 0.014). This
result suggests that the increase in the yearly maximum de-
viations from yearly mean sea level may be a direct result of
the local morphological variations in lagoon channels where
the tidal wave propagates (whereby dissipation of the wave
is reduced) and/or land subsidence. In contrast, at the re-
maining locations, the null hypothesis of no trend cannot
be rejected (p valueHornbæk

= 0.352, p valueMarseille
= 0.110,

and p valueNewlyn
= 0.997). The results obtained from these

analyses support the validity of the hypothesis that mean-
sea-level rise is the dominant factor in determining the future
frequency of coastal flooding (see Sect. 2.2.6). For the tests
performed here to compare different extreme-value statisti-
cal models, the possible presence of trends (e.g., in Venice)
is irrelevant since such tests are performed by first reshuf-
fling observed values, thereby eliminating any existing trend,
albeit small.

3.2 Extreme-value analysis

The MEVD formulation requires the choice of an optimal
distribution of ordinary values that can represent the charac-
teristics of the natural phenomenon under analysis. Different
candidate distributions for the F(x;θj ) in Eq. (6) are eval-
uated, and the most suitable distribution is selected on the
basis of the CV procedure comparing the MEVD-estimated
quantiles with the observed ones. As previously introduced in
Sect. 2.2.3, according to different tests, the appropriate distri-
bution to model the ordinary sea-level values is the general-
ized Pareto distribution (GPD). We highlight that the GPD
used in the MEVD framework is obtained by imposing a
small threshold (differently from the high threshold adopted
in the POT–GPD approach) to capture the distribution of
the main body of the probability distribution of the ordinary
events and does not require the event arrival process to be
Poisson (Marani and Zorzetto, 2019).

As mentioned above (Sect. 2.2.4), the independence be-
tween two consecutive coastal-water-level events is guaran-
teed by imposing a minimum time lag. Firstly, we select daily
maxima sea levels from the original record; secondly, we de-
fine as independent events those that are separated by at least
30 d. Subsequently, the samples used for statistical inference
are built as follows: (1) GEV–BM – the yearly maxima are
selected; (2) POT–GPD – as proposed by Coles (2001), the
optimal threshold (u) is determined by studying the stabil-
ity of the GPD shape (ξ ) and modified scale (σ ∗ = σu− ξu)
parameters estimated using a wide range of values of u; us-
ing this method, threshold values of 65 cm (Venice), 50 cm
(Hornbæk), 35 cm (Marseille), and 260 cm (Newlyn) were
identified; (3) MEVD – all the independent coastal-water-
level events above a low threshold are used to fit the probabil-
ity distributions of ordinary values. The optimal threshold to
apply to all the independent events for extrapolating the sam-

ple of ordinary values is chosen by testing different threshold
values and evaluating the goodness of fit of the distribution
using diagnostic graphical plots. According to the selection
criteria described in Sect. 2.2.3, the low thresholds adopted at
the four study sites are 59 cm for Venice, 40 cm for Hornbæk,
25 cm for Marseille, and 250 cm for Newlyn. For every ob-
served site, Table 2 and Fig. S3 display the gradual increase
in the number of independent events (i.e., annual maxima,
exceedances over the threshold, and ordinary values) used
to infer the distributions when moving from GEV–BM and
POT–GPD to MEVD approaches.

Considering the above threshold values, the observed and
estimated distributions of coastal water level are compared
by plotting their quantiles against each other. By compar-
ing measures of in-sample and out-of-sample test predictive
accuracy, the results are presented by means of quantile–
quantile (QQ) plots. The reader can refer to Fig. 3 (or
Figs. S4, S5, S6, S7, and S8 in the Supplement) to com-
pare the results obtained with the MEVD framework (or the
GEV-based approaches – GEV–BM and POT–GPD – vs. the
MEVD formulation) for the four sites analyzed. QQ plots are
obtained as a result of the CV procedure with 1000 random
realizations and sample size: (a) S = 30 years (in-sample
test in the left column), (b) V =M −S years (out-of-sample
test in the right column). The colors represent the density of
points around the 45◦ line (i.e., the line of equality). This
highlights how the estimated quantiles are closely compara-
ble with the observed ones for all the three approaches tested
and for both the sample sizes explored (S and V ). In particu-
lar, if the reader looks at Figs. S4–S8 in the Supplement and
if out-of-sample performance is considered, it is difficult to
quantify which distribution is the best due to a large variabil-
ity in the estimates. Overall, if only the MEVD performance
is investigated, the reader can look to the right column (out-
of-sample test) in Fig. 3, where the results display that the
MEVD formulation performs similarly for all sites analyzed.
In particular, it proves to be a good model for lower and in-
termediate quantiles but shows variability in the estimates for
higher quantiles.

We now focus on evaluating the performance of the three
approaches (GEV–BM, POT–GPD, and MEVD) in high-
quantile estimation. We explore the predictive performance
of the MEVD and GEV distribution as a function of the
NDE (Sect. 2.2.5) computed for the maximum return period,
Tr,max =M − S+ 1, associated with the maximum value in
each test sub-sample that we randomly extract in the CV ap-
proach. The use of the NDE metric allows us to easily char-
acterize and compare model estimation uncertainty associ-
ated with fixed return time of interest and the variation in the
calibration sample size (from 5 to 30 years). The results are
summarized by means of box plots (Fig. 4) and kernel den-
sity estimates computed for a calibration sample size of 30
years (Fig. 5). Table 3 summarizes the main results underly-
ing the chosen evaluation metric. When we focus on the case
of a short sample (5 years), different sites display variable
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Figure 2. Deviation of yearly maxima from yearly mean sea level (blue line) and 19-year running mean (black line) calculated for Venice
(IT), Hornbæk (DK), Marseille (FR), and Newlyn (UK).

Table 2. Total number of independent events and average number
of events per year for all the gauge stations explored.

Site name
Independent events

BM POT MEVD

Venice
Total 148 605 775
no. of events per year 1 4.08 5.23

Hornbæk
Total 121 595 736
no. of events per year 1 4.91 6.08

Marseille
Total 106 275 489
no. of events per year 1 2.57 4.61

Newlyn
Total 100 399 520
no. of events per year 1 3.99 5.20

results: (I) the GEV and MEVD approaches perform simi-
larly for Venice (Fig. 4a) and Hornbæk (Fig. 4b) with similar
interquartile ranges and underestimations of the actual quan-
tile; (II) for the Newlyn gauge station (Fig. 4d) the GEV–BM
distribution yields better results, even though the POT and
MEVD median errors are also close to zero. In contrast, when

we consider longer calibration sample sizes (from 10 to 30
years), the MEVD-based estimates outperform the traditional
approaches for most gauge stations explored: (I) results for
the Venice site confirm the robustness of the MEVD with re-
spect to the GEV distribution especially for calibration sam-
ple size equal to 30 years; in this case, the median error in the
MEVD estimates tends to be closer to zero (−0.004), corre-
sponding to approximately unbiased estimates; (II) the Horn-
bæk station displays similar results to those for Venice, and
the MEVD-based estimates become more reliable when we
consider a calibration sample size greater than 10–20 years;
(III) Newlyn estimation errors show a trade-off between the
BM method and MEVD for calibration sample size equal to
20 and 30 years.

Results for the Marseille site show a peculiar behavior
that requires a specific discussion. In this case, the applica-
tion of the traditional extreme-value theory is advantageous
when compared with the MEVD (Fig. 4c). In order to bet-
ter understand the application to the Marseille site, we per-
formed MEVD parameter estimation using two approaches:
(1) estimation based on non-overlapping calibration samples
of fixed size (5 years as for the other sites); (2) parameter
estimation on data from the whole calibration sample. The
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Figure 3. QQ plots of extreme-coastal-water-level quantiles, computed with the MEVD framework, for the (a) Venice (IT), (b) Hornbæk
(DK), (c, d) Marseille (FR), and (e) Newlyn (UK) sites. The MEVD parameter estimations are based on non-overlapping sub-samples of
fixed size (5 years), while subplots indicated with the letter (d) display the QQ plots obtained with MEVD parameter estimations based
on data from the whole calibration sample size. The plots are obtained as a result of the cross-validation method used to test the global
performance of the models and are estimated for 1000 random realizations and for sample size (1) S = 30 years (in-sample test in the left
column) and (2) V =M−S years (out-of-sample test in the right column). The colors represent the point density around the 45◦ line (dashed
black line) corresponding to the best fit.

comparison of the results from these two setups confirms that
when longer time slices are used for estimating GPD param-
eters (black color in Fig. 4c), the MEVD performance is im-
proved (for example when we consider S = 30 years, MEVD
median[S-yearwindow] = 0.17 vs. MEVD median[5-yearwindow] =

0.35), though it does not yet match the results obtained from
the GEV–BM approach (GEV–BM median error= 0.016).
This can be explained by considering that sea-level peaks
occur in Marseille about once every year on average. In this

case GEV–BM is advantageous because the small number of
events per year does not provide a more numerous calibration
sample with respect to the sample of annual maxima. This re-
sult confirms the conclusion by Miniussi and Marani (2020),
according to which the selection of the estimation window
size for fitting the ordinary value distribution strongly de-
pends on the average number of extreme events per year.

We also provide a comparative analysis between the three
methods to evaluate if the tested extreme-value distributions
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Figure 4. Distribution of the nondimensional error (NDE) for maximum sample return period (Tr) represented by means of box plots at
given gauge stations explored: (a) Venice (IT), (b) Hornbæk (DK), (c) Marseille (FR), (d) Newlyn. In the case of the Marseille (FR) site,
MEVD parameter estimation is based (1) on non-overlapping sub-samples of fixed size (5 years; green color) and (2) on data from the whole
calibration sample (black color).

are representative of the entire range of return times of in-
terest. To achieve this purpose, we evaluate method perfor-
mance also for intermediate Tr values, greater than the cal-
ibration sample size, since for Tr < S the empirical quan-
tiles can be used. We perform this additional analysis for the
Venice, Hornbæk, and Newlyn sites. Figure 6 summarizes
the results obtained by estimating the probability distribution
parameters on 30-year calibration sub-samples. The analyses
suggest that when we focus on the median error associated
with moderate values of the return period, GEV–BM displays
an overall greater robustness (e.g., in the case of Venice and
Hornbæk sites) with respect to POT–GPD and MEVD, which
exhibit greater fluctuations. In particular, results show that
MEVD is a good model for the highest values of the return
period but exhibit a greater absolute value of the estimation
error for smaller Tr. Overall, the results suggest that no sin-
gle approach is clearly superior at all values of Tr due to a
large variability in the estimates. For example, for the Venice
site there is a decrease (in many cases an unbiased estimate)
in the MEVD-NDE values for intermediate Tr (between 85
and 105 years), while for greater Tr values (but smaller than
Tr,max) the error shows an overestimation of the actual quan-
tile with respect to traditional approaches (which exhibit an

underestimation tendency). To be more specific, if Tr > 105
years are considered, MEVD yields error estimates between
0 % and < 10 %, while errors associated with GEV–BM and
POT–GPD lie between 0 % and <−20 %. The Hornbæk site
shows similar results to the Venice site, while Newlyn’s re-
sults exhibit more fluctuations for large Tr values with much
reduced smaller amplitudes and values of the NDE.

3.3 Future projections of extreme total water levels

We next explore how sea-level rise may influence the fre-
quency of extreme total water levels across the sites ana-
lyzed. As described in Sect. 2.2.6, we only evaluate the influ-
ence of an increased mean sea level; i.e., we do not address
possible changes in storm regimes (see, e.g., Tebaldi et al.,
2012).

We use site-specific sea-level projections from IPCC’s
AR5 (Church et al., 2013), which indicate an accelerating
sea-level rise at all four observation sites (for each gauge
station under analysis, the reader can refer to the panels a,
c, e, and g in Fig. 7), with expected water level increases
by the end of the century (RCP8.5) of 48 cm in Venice,
52 cm in Hornbæk, 59 cm in Newlyn, and 54 cm in Mar-
seille. The panels (b), (d), (f), and (h) in Fig. 7 show ob-
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Figure 5. Kernel density estimates for the nondimensional error (NDE) distributions obtained with a calibration sample size (S) of 30 years
and maximum return period (Tr) at given gauge stations explored: (a) Venice (IT), (b) Hornbæk (DK), (c) Marseille (FR), (d) Newlyn (UK).
In the case of the Marseille (FR) site, MEVD parameter estimation is based (1) on non-overlapping sub-samples of fixed size (5 years; green
color) and (2) on data from the whole calibration sample (black color).

Table 3. Results of the evaluation metric obtained for all the gauge stations and for calibration sample sizes (S) equal to 5 and 30 years. In
the case of the Marseille site, text in bold refers to MEVD parameter estimation based on data from the whole calibration sample size.

Site name Variables
S = 5 years S = 30 years

BM POT MEVD BM POT MEVD

Venice
NDE median − 0.160 -0.175 − 0.178 − 0.133 − 0.158 − 0.004
NDE mean − 0.069 − 0.101 − 0.116 − 0.087 − 0.133 0.024
NDE SD 0.366 0.274 0.267 0.156 0.113 0.155

Hornbæk
NDE median − 0.119 − 0.104 − 0.113 − 0.113 − 0.115 0.056
NDE mean − 0.069 − 0.101 − 0.116 − 0.068 − 0.087 0.077
NDE SD 0.366 0.274 0.267 0.113 0.100 0.131

Marseille

NDE median − 0.0003 0.059 0.172 0.016 0.047
0.357
0.172

NDE mean 0.045 0.129 0.262 0.013 0.050
0.374
0.183

NDE SD 0.252 0.350 0.421 0.072 0.115
0.178
0.140

Newlyn
NDE median − 0.010 − 0.030 − 0.033 − 0.003 − 0.032 0.0008
NDE mean 0.003 − 0.022 − 0.026 − 0.002 − 0.031 0.002
NDE SD 0.050 0.042 0.042 0.016 0.014 0.021
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Figure 6. Median of the nondimensional error (NDE) for return period greater than the calibration sample size in test sub-sample for the
GEV–BM, POT–GPD, and MEVD approaches (magenta, blue, and green dots, respectively). The results are obtained for the Venice (IT),
Hornbæk (DK), and Newlyn (UK) sites and by estimating the distribution parameters on 30-year calibration sub-samples.

served (green line) and future (blue and red lines) changes
in the return period associated with maximum water level
events due to sea-level rise. These curves were obtained by
using, in Eq. (8), the MEVD with parameters estimated on
5-year sliding windows. As noted above, changes in return
levels are nonlinear: relative changes are more significant for
smaller extremes than for larger ones. The Tr vs. z curves are
concave downward and display varying slopes depending on
the site explored. When a fixed return period is considered
(e.g., 500 years), the mean-sea-level projections quantify the
expected increase in extreme-total-water-level peaks for that
particular return period. These changes vary heterogeneously
across the different coastal sites explored. By comparing the
percentage changes associated with the two emission scenar-
ios and the two return periods (Table 4), Venice and Mar-
seille are seen to experience the greatest changes in extreme
total water levels (e.g., with reference to Tr = 100 years and
RCP8.5, the variations at the Venice and Marseille sites are
approximately 23 % and 29 %, respectively). All sites display
greater percent changes for the lower 100-year return period
in each scenario; i.e., “less infrequent” extremes will be most
impacted by sea-level changes in the near future.

Changes in sea-level extremes can also be studied by fo-
cusing on changes in the return period of a fixed value of
the total water level. To this end, one can define a sensitivity

measure (SM) as

SM=
1
Tr
·

dTr

dm.s.l.
=−

1
Tr
·

1
[1−G(z−m.s.l.)]2

· f (z−m.s.l.)=−f (z−m.s.l.) · Tr, (9)

which is obtained by derivation of Eq. (8) and where f (z)=
dG
dz is the probability density function associated with G(z).

Equation (9) shows that, at a given site and for a set value of
z, the relative change in return period grows linearly with Tr.
For example, see in Fig. 6b, d, f, and h how, for a given value
of z, changes (horizontal spacing between the curves) are
greater for Tr = 1000 years than for Tr = 500 years. The ex-
pression for SM also tells us that changes in Tr are more sig-
nificant, everything else being equal, for values of z − m.s.l.
near the mode of the distribution, where f (z−m.s.l.) is max-
imum (e.g., compare changes at the Venice or Hornbæk sites
with those at Newlyn for a same initial value of Tr). Finally,
Eq. (9) shows that percentage changes in Tr are highly site-
dependent through the shape of f (z−m.s.l.).

4 Conclusions

The comparative examination of extreme-value distributions
applied to observed sea levels at several sites along European
coasts provides insights into the predictive performance of

Nat. Hazards Earth Syst. Sci., 22, 1109–1128, 2022 https://doi.org/10.5194/nhess-22-1109-2022



M. F. Caruso and M. Marani: Extreme-coastal-water-level estimation and projection 1123

Figure 7. Future total water level projections, with respect to the current mean sea level, in Venice (IT; panels a and b), Hornbæk (DK; panels
c and d), Marseille (FR; panels e and f), and Newlyn (UK; panels g and h). (a, c, e, g) Annual (black line) and future mean sea level until
2100 with RCP4.5 (blue line) and RCP8.5 (red line). Dashed lines represent the 95 % confidence intervals. (b, d, f, h) Return period curves
for extreme total water level. The green curve represents the estimates obtained with the observed record; the blue and red curves represent
the estimates obtained with the projected sea-level rise in the year 2100 with RCP4.5 (blue) and RCP8.5 (red), respectively; the gray dots
indicate the observed annual maxima. The triangle, square, and pentagon highlight the heights of extreme total water levels for a fixed return
period equal to 500 years.

traditional and new approaches. Our analyses confirm some
practical and conceptual advantages of the MEVD with re-
spect to traditional methods. A cross-validation scheme (with
1000 realizations for each site) was used to compare model
performance in high-quantile estimation. The use of two in-
dependent sub-samples (calibration and test sample) allows
the quantification of actual predictive uncertainty.

We find that the MEVD approach provides reliable esti-
mates of high quantiles for almost all the gauge stations ex-
plored, particularly when sufficiently long calibration sample
sizes are considered. Differences in performance between the
MEVD framework and GEV-based approaches are not large,

and a definitive conclusion on an optimal solution indepen-
dent of the return period of interest remains elusive. How-
ever, small differences in the estimation accuracy are rele-
vant for engineering applications when dealing with rare ex-
treme events. If we focus on high-return-period quantile es-
timation, our analyses show that the MEVD approach pro-
vides reliable estimates for almost all the gauge stations ex-
plored. Data from the Marseille gauge station exhibit a be-
havior that deviates from those from other sites, showing an
inferior predictive performance of the MEVD with respect
to GEV-based approaches. We interpret this fact to be linked
to the small average number of sea-level peaks every year:

https://doi.org/10.5194/nhess-22-1109-2022 Nat. Hazards Earth Syst. Sci., 22, 1109–1128, 2022
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Table 4. Results of the percentage changes in total water level (1z)
obtained with the two future scenarios (RCP4.5 and RCP8.5) and
the return periods (100 and 500 years) for the four sites under anal-
ysis.

Tr RCP
1z (%)

Venice Hornbæk Marseille Newlyn

100
4.5 16.75 % 14.22 % 22.62 % 11.29 %
8.5 22.82 % 21.76 % 29.73 % 15.26 %

500
4.5 14.60 % 11.70 % 16.24 % 11.23 %
8.5 19.92 % 18.18 % 21.91 % 15.09 %

the small sample of yearly ordinary events available prevents
the MEVD from adding significant information with respect
to GEV–BM and POT–GPD. Conversely, when we evaluate
method performance for intermediate return period values,
GEV–BM displays an overall greater robustness, and MEVD
exhibits a greater absolute value of the estimation error.

Unfortunately, the size of the available datasets does not
allow us to explore model performance for greater values of
the return period. Future work could investigate if the esti-
mation error can be reduced, with respect to what was found
here, by using different approaches, e.g., by assuming “time-
invariant” parameters in the ordinary distribution, whose es-
timation would thus be performed on the entire calibration
dataset rather than on relatively short sliding windows. Syn-
thetic water level time series may be produced by one of the
several existing numerical models to extend analyses to arbi-
trarily long return periods.

Finally, we explored projections of the frequency of ex-
treme total water levels driven by changes in mean sea level.
The sensitivity of extreme-water-level frequency to sea-level
rise is location-dependent, and we find that, at a given site
and for a set value of the total water level extreme, the rel-
ative change in return time grows linearly with return time
itself.
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