Articles | Volume 21, issue 3
https://doi.org/10.5194/nhess-21-941-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-941-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Attribution of the Australian bushfire risk to anthropogenic climate change
Geert Jan van Oldenborgh
CORRESPONDING AUTHOR
Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Folmer Krikken
Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Sophie Lewis
School of Science, University of New South Wales, Canberra, ACT, Australia
Nicholas J. Leach
Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, UK
Flavio Lehner
Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, USA
Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, USA
Institute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland
Kate R. Saunders
Delft Institute of Applied Mathematics, Delft University of Technology, Delft, the Netherlands
Michiel van Weele
Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Karsten Haustein
Environmental Change Institute, University of Oxford, Oxford, UK
Environmental Change Institute, University of Oxford, Oxford, UK
Oxford e-Research Centre, University of Oxford, Oxford, UK
David Wallom
Oxford e-Research Centre, University of Oxford, Oxford, UK
Sarah Sparrow
Oxford e-Research Centre, University of Oxford, Oxford, UK
Julie Arrighi
Red Cross Red Crescent Climate Centre, the Hague, the Netherlands
Global Disaster Preparedness Center, Washington, DC, USA
Roop K. Singh
Red Cross Red Crescent Climate Centre, the Hague, the Netherlands
Maarten K. van Aalst
Red Cross Red Crescent Climate Centre, the Hague, the Netherlands
Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, the Netherlands
International Research Institute for Climate and Society, Columbia University, New York, USA
Sjoukje Y. Philip
Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Robert Vautard
Institut Pierre-Simon Laplace, Gif-sur-Yvette, France
Friederike E. L. Otto
Environmental Change Institute, University of Oxford, Oxford, UK
Related authors
Folmer Krikken, Flavio Lehner, Karsten Haustein, Igor Drobyshev, and Geert Jan van Oldenborgh
Nat. Hazards Earth Syst. Sci., 21, 2169–2179, https://doi.org/10.5194/nhess-21-2169-2021, https://doi.org/10.5194/nhess-21-2169-2021, 2021
Short summary
Short summary
In this study, we analyse the role of climate change in the forest fires that raged through large parts of Sweden in the summer of 2018 from a meteorological perspective. This is done by studying observationally constrained data and multiple climate models. We find a small reduced probability of such events, based on reanalyses, but a small increased probability due to global warming up to now and a more robust increase in the risk for such events in the future, based on climate models.
Sarah F. Kew, Sjoukje Y. Philip, Mathias Hauser, Mike Hobbins, Niko Wanders, Geert Jan van Oldenborgh, Karin van der Wiel, Ted I. E. Veldkamp, Joyce Kimutai, Chris Funk, and Friederike E. L. Otto
Earth Syst. Dynam., 12, 17–35, https://doi.org/10.5194/esd-12-17-2021, https://doi.org/10.5194/esd-12-17-2021, 2021
Short summary
Short summary
Motivated by the possible influence of rising temperatures, this study synthesises results from observations and climate models to explore trends (1900–2018) in eastern African (EA) drought measures. However, no discernible trends are found in annual soil moisture or precipitation. Positive trends in potential evaporation indicate that for irrigated regions more water is now required to counteract increased evaporation. Precipitation deficit is, however, the most useful indicator of EA drought.
Sjoukje Philip, Sarah Kew, Geert Jan van Oldenborgh, Friederike Otto, Robert Vautard, Karin van der Wiel, Andrew King, Fraser Lott, Julie Arrighi, Roop Singh, and Maarten van Aalst
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 177–203, https://doi.org/10.5194/ascmo-6-177-2020, https://doi.org/10.5194/ascmo-6-177-2020, 2020
Short summary
Short summary
Event attribution studies can now be performed at short notice. We document a protocol developed by the World Weather Attribution group. It includes choices of which events to analyse, the event definition, observational analysis, model evaluation, multi-model multi-method attribution, hazard synthesis, vulnerability and exposure analysis, and communication procedures. The protocol will be useful for future event attribution studies and as a basis for an operational attribution service.
Robert Vautard, Geert Jan van Oldenborgh, Friederike E. L. Otto, Pascal Yiou, Hylke de Vries, Erik van Meijgaard, Andrew Stepek, Jean-Michel Soubeyroux, Sjoukje Philip, Sarah F. Kew, Cecilia Costella, Roop Singh, and Claudia Tebaldi
Earth Syst. Dynam., 10, 271–286, https://doi.org/10.5194/esd-10-271-2019, https://doi.org/10.5194/esd-10-271-2019, 2019
Short summary
Short summary
The effect of human activities on the probability of winter wind storms like the ones that occurred in Western Europe in January 2018 is analysed using multiple model ensembles. Despite a significant probability decline in observations, we find no significant change in probabilities due to human influence on climate so far. However, such extreme events are likely to be slightly more frequent in the future. The observed decrease in storminess is likely to be due to increasing roughness.
Sjoukje Philip, Sarah Sparrow, Sarah F. Kew, Karin van der Wiel, Niko Wanders, Roop Singh, Ahmadul Hassan, Khaled Mohammed, Hammad Javid, Karsten Haustein, Friederike E. L. Otto, Feyera Hirpa, Ruksana H. Rimi, A. K. M. Saiful Islam, David C. H. Wallom, and Geert Jan van Oldenborgh
Hydrol. Earth Syst. Sci., 23, 1409–1429, https://doi.org/10.5194/hess-23-1409-2019, https://doi.org/10.5194/hess-23-1409-2019, 2019
Short summary
Short summary
In August 2017 Bangladesh faced one of its worst river flooding events in recent history. For the large Brahmaputra basin, using precipitation alone as a proxy for flooding might not be appropriate. In this paper we explicitly test this assumption by performing an attribution of both precipitation and discharge as a flooding-related measure to climate change. We find the change in risk to be of similar order of magnitude (between 1 and 2) for both the meteorological and hydrological approach.
Geert Jan van Oldenborgh, Sjoukje Philip, Sarah Kew, Michiel van Weele, Peter Uhe, Friederike Otto, Roop Singh, Indrani Pai, Heidi Cullen, and Krishna AchutaRao
Nat. Hazards Earth Syst. Sci., 18, 365–381, https://doi.org/10.5194/nhess-18-365-2018, https://doi.org/10.5194/nhess-18-365-2018, 2018
Short summary
Short summary
On 19 May 2016 a temperature of 51.0 °C in Phalodi (northwest India) set a new Indian record. In 2015 a very lethal heat wave had occurred in the southeast. We find that in India the trend in extreme temperatures due to greenhouse gases is largely cancelled by increasing air pollution and irrigation. The health impacts of heat waves do increase due to higher humidity and air pollution. This implies that we expect heat waves to become much hotter as soon as air pollution is brought under control.
Karin van der Wiel, Sarah B. Kapnick, Geert Jan van Oldenborgh, Kirien Whan, Sjoukje Philip, Gabriel A. Vecchi, Roop K. Singh, Julie Arrighi, and Heidi Cullen
Hydrol. Earth Syst. Sci., 21, 897–921, https://doi.org/10.5194/hess-21-897-2017, https://doi.org/10.5194/hess-21-897-2017, 2017
Short summary
Short summary
During August 2016, heavy precipitation led to devastating floods in south Louisiana, USA. Here, we analyze the climatological statistics of the precipitation event, as defined by its 3-day total over 12–14 August. Using observational data and high-resolution global coupled model experiments, we find for a comparable event on the central US Gulf Coast an average return period of about 30 years and the odds being increased by at least 1.4 since 1900 due to anthropogenic climate change.
Sebastian Sippel, Jakob Zscheischler, Martin Heimann, Holger Lange, Miguel D. Mahecha, Geert Jan van Oldenborgh, Friederike E. L. Otto, and Markus Reichstein
Hydrol. Earth Syst. Sci., 21, 441–458, https://doi.org/10.5194/hess-21-441-2017, https://doi.org/10.5194/hess-21-441-2017, 2017
Short summary
Short summary
The paper re-investigates the question whether observed precipitation extremes and annual totals have been increasing in the world's dry regions over the last 60 years. Despite recently postulated increasing trends, we demonstrate that large uncertainties prevail due to (1) the choice of dryness definition and (2) statistical data processing. In fact, we find only minor (and only some significant) increases if (1) dryness is based on aridity and (2) statistical artefacts are accounted for.
Geert Jan van Oldenborgh, Sjoukje Philip, Emma Aalbers, Robert Vautard, Friederike Otto, Karsten Haustein, Florence Habets, Roop Singh, and Heidi Cullen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-308, https://doi.org/10.5194/hess-2016-308, 2016
Manuscript not accepted for further review
Short summary
Short summary
Extreme rain caused flooding in France and Germany at the end of May 2016. After such an event the question is always posed to what extent it can be attributed to anthropogenic climate change. Using observations and five model ensembles we give a first answer. For the 3-day precipitation extremes over the Seine and Loire basins that caused the flooding all methods agree that the probability has increased by a factor of about two. For 1-day precipitation extremes in Germany the methods disagree.
G. J. van Oldenborgh, F. E. L. Otto, K. Haustein, and H. Cullen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-13197-2015, https://doi.org/10.5194/hessd-12-13197-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
On 4–6 December 2015, the storm 'Desmond' caused very heavy rainfall in northern England and Scotland, which led to widespread flooding. We provide an initial assessment of the influence of anthropogenic climate change on the likelihood of precipitation events like this. We use three independent methods of extreme event attribution based on observations and two climate models. All methods agree that the effect of climate change is positive, making events like this about 40% (5–80%) more likely.
J. M. Eden, G. J. van Oldenborgh, E. Hawkins, and E. B. Suckling
Geosci. Model Dev., 8, 3947–3973, https://doi.org/10.5194/gmd-8-3947-2015, https://doi.org/10.5194/gmd-8-3947-2015, 2015
Short summary
Short summary
Our paper reports on a simple regression-based system for producing probabilistic forecasts of seasonal climate. We discuss the physical motivation behind the statistical relationships underpinning our empirical model and provide a validation of hindcasts produced for the last half century. The generation of probabilistic forecasts on a global scale along with the use of the long-term trend as a source of skill constitutes a novel approach to empirical forecasting of seasonal climate.
Nicola Maher, Adam S. Phillips, Clara Deser, Robert C. Jnglin Wills, Flavio Lehner, John Fasullo, Julie M. Caron, Lukas Brunner, and Urs Beyerle
EGUsphere, https://doi.org/10.5194/egusphere-2024-3684, https://doi.org/10.5194/egusphere-2024-3684, 2024
Short summary
Short summary
We present a new multi-model large ensemble archive (MMLEAv2) and introduce the newly updated Climate Variability Diagnostics Package version 6 (CVDPv6), which is designed specifically for use with large ensembles. For highly variable quantities, we demonstrate that a model might evaluate poorly or favourably compared to the single realisation of the world that the observations represent, highlighting the need for large ensembles for model evaluation.
Yona Silvy, Thomas L. Frölicher, Jens Terhaar, Fortunat Joos, Friedrich A. Burger, Fabrice Lacroix, Myles Allen, Raffaele Bernardello, Laurent Bopp, Victor Brovkin, Jonathan R. Buzan, Patricia Cadule, Martin Dix, John Dunne, Pierre Friedlingstein, Goran Georgievski, Tomohiro Hajima, Stuart Jenkins, Michio Kawamiya, Nancy Y. Kiang, Vladimir Lapin, Donghyun Lee, Paul Lerner, Nadine Mengis, Estela A. Monteiro, David Paynter, Glen P. Peters, Anastasia Romanou, Jörg Schwinger, Sarah Sparrow, Eric Stofferahn, Jerry Tjiputra, Etienne Tourigny, and Tilo Ziehn
Earth Syst. Dynam., 15, 1591–1628, https://doi.org/10.5194/esd-15-1591-2024, https://doi.org/10.5194/esd-15-1591-2024, 2024
Short summary
Short summary
The adaptive emission reduction approach is applied with Earth system models to generate temperature stabilization simulations. These simulations provide compatible emission pathways and budgets for a given warming level, uncovering uncertainty ranges previously missing in the Coupled Model Intercomparison Project scenarios. These target-based emission-driven simulations offer a more coherent assessment across models for studying both the carbon cycle and its impacts under climate stabilization.
Chris Smith, Donald P. Cummins, Hege-Beate Fredriksen, Zebedee Nicholls, Malte Meinshausen, Myles Allen, Stuart Jenkins, Nicholas Leach, Camilla Mathison, and Antti-Ilari Partanen
Geosci. Model Dev., 17, 8569–8592, https://doi.org/10.5194/gmd-17-8569-2024, https://doi.org/10.5194/gmd-17-8569-2024, 2024
Short summary
Short summary
Climate projections are only useful if the underlying models that produce them are well calibrated and can reproduce observed climate change. We formalise a software package that calibrates the open-source FaIR simple climate model to full-complexity Earth system models. Observations, including historical warming, and assessments of key climate variables such as that of climate sensitivity are used to constrain the model output.
Friederike E. L. Otto, Clair Barnes, Sjoukje Philip, Sarah Kew, Geert Jan van Oldenborgh, and Robert Vautard
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 159–171, https://doi.org/10.5194/ascmo-10-159-2024, https://doi.org/10.5194/ascmo-10-159-2024, 2024
Short summary
Short summary
To assess the role of climate change in individual weather events, different lines of evidence need to be combined in order to draw robust conclusions about whether observed changes can be attributed to anthropogenic climate change. Here we present a transparent method, developed over 8 years, to combine such lines of evidence in a single framework and draw conclusions about the overarching role of human-induced climate change in individual weather events.
Mengyao Liu, Ronald van der A, Michiel van Weele, Lotte Bryan, Henk Eskes, Pepijn Veefkind, Yongxue Liu, Xiaojuan Lin, Jos de Laat, and Jieying Ding
Atmos. Meas. Tech., 17, 5261–5277, https://doi.org/10.5194/amt-17-5261-2024, https://doi.org/10.5194/amt-17-5261-2024, 2024
Short summary
Short summary
A new divergence method was developed and applied to estimate methane emissions from TROPOMI observations over the Middle East, where it is typically challenging for a satellite to measure methane due to its complicated orography and surface albedo. Our results show the potential of TROPOMI to quantify methane emissions from various sources rather than big emitters from space after objectively excluding the artifacts in the retrieval.
Adam Emmer, Oscar Vilca, Cesar Salazar Checa, Sihan Li, Simon Cook, Elena Pummer, Jan Hrebrina, and Wilfried Haeberli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2316, https://doi.org/10.5194/egusphere-2024-2316, 2024
Short summary
Short summary
We report in detail the most recent large landslide-triggered glacial lake outburst flood (GLOF) in the Peruvian Andes (the 2023 Rasac GLOF), analyze its preconditions, consequences, and the role of changing climate. Our study contibutes to understanding GLOF occurrence patterns in space and time and corroborates increasing frequency of such events in changing mountains.
Sebastian Sippel, Clair Barnes, Camille Cadiou, Erich Fischer, Sarah Kew, Marlene Kretschmer, Sjoukje Philip, Theodore G. Shepherd, Jitendra Singh, Robert Vautard, and Pascal Yiou
Weather Clim. Dynam., 5, 943–957, https://doi.org/10.5194/wcd-5-943-2024, https://doi.org/10.5194/wcd-5-943-2024, 2024
Short summary
Short summary
Winter temperatures in central Europe have increased. But cold winters can still cause problems for energy systems, infrastructure, or human health. Here we tested whether a record-cold winter, such as the one observed in 1963 over central Europe, could still occur despite climate change. The answer is yes: it is possible, but it is very unlikely. Our results rely on climate model simulations and statistical rare event analysis. In conclusion, society must be prepared for such cold winters.
Davide Faranda, Gabriele Messori, Erika Coppola, Tommaso Alberti, Mathieu Vrac, Flavio Pons, Pascal Yiou, Marion Saint Lu, Andreia N. S. Hisi, Patrick Brockmann, Stavros Dafis, Gianmarco Mengaldo, and Robert Vautard
Weather Clim. Dynam., 5, 959–983, https://doi.org/10.5194/wcd-5-959-2024, https://doi.org/10.5194/wcd-5-959-2024, 2024
Short summary
Short summary
We introduce ClimaMeter, a tool offering real-time insights into extreme-weather events. Our tool unveils how climate change and natural variability affect these events, affecting communities worldwide. Our research equips policymakers and the public with essential knowledge, fostering informed decisions and enhancing climate resilience. We analysed two distinct events, showcasing ClimaMeter's global relevance.
Alex Dunant, Tom R. Robinson, Alexander Logan Densmore, Nick J. Rosser, Ragindra Man Rajbhandari, Mark Kincey, Sihan Li, Prem Raj Awasthi, Max Van Wyk de Vries, Ramesh Guragain, Erin Harvey, and Simon Dadson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1374, https://doi.org/10.5194/egusphere-2024-1374, 2024
Short summary
Short summary
Our study introduces a new method using hypergraph theory to assess risks from interconnected natural hazards. Traditional models often overlook how these hazards can interact and worsen each other's effects. By applying our method to the 2015 Nepal earthquake, we successfully demonstrated its ability to predict broad damage patterns, despite slightly overestimating impacts. Being able to anticipate the effects of complex, interconnected hazards is critical for disaster preparedness.
Andrés Yarce Botero, Michiel van Weele, Arjo Segers, Pier Siebesma, and Henk Eskes
Geosci. Model Dev., 17, 3765–3781, https://doi.org/10.5194/gmd-17-3765-2024, https://doi.org/10.5194/gmd-17-3765-2024, 2024
Short summary
Short summary
HARMONIE WINS50 reanalysis data with 0.025° × 0.025° resolution from 2019 to 2021 were coupled with the LOTOS-EUROS Chemical Transport Model. HARMONIE and ECMWF meteorology configurations against Cabauw observations (52.0° N, 4.9° W) were evaluated as simulated NO2 concentrations with ground-level sensors. Differences in crucial meteorological input parameters (boundary layer height, vertical diffusion coefficient) between the hydrostatic and non-hydrostatic models were analysed.
Vikki Thompson, Sjoukje Y. Philip, Izidine Pinto, and Sarah F. Kew
EGUsphere, https://doi.org/10.5194/egusphere-2024-1136, https://doi.org/10.5194/egusphere-2024-1136, 2024
Short summary
Short summary
In October 2023 Storm Babet brought flooding and strong winds to the UK. We show that similar events are more likely when the North Atlantic sea surface temperatures are higher. The North Atlantic exhibits multidecadal variability impacting the sea surface temperatures. This suggests that trends in storms similar to Babet are driven by multidecadal variability more than climate change. Increasing our knowledge of the causes of extreme weather can allow us to prepare and adapt for future changes.
Maximillian Van Wyk de Vries, Sihan Li, Katherine Arrell, Jeevan Baniya, Dipak Basnet, Gopi K. Basyal, Nyima Dorjee Bhotia, Alexander L. Densmore, Tek Bahadur Dong, Alexandre Dunant, Erin L. Harvey, Ganesh K. Jimee, Mark E. Kincey, Katie Oven, Sarmila Paudyal, Dammar Singh Pujara, Anuradha Puri, Ram Shrestha, Nick J. Rosser, and Simon J. Dadson
EGUsphere, https://doi.org/10.5194/egusphere-2024-397, https://doi.org/10.5194/egusphere-2024-397, 2024
Preprint archived
Short summary
Short summary
This study focuses on understanding soil moisture, a key factor for evaluating hillslope stability and landsliding. In Nepal, where landslides are common, we used a computer model to better understand how rapidly soil dries out after the monsoon season. We calibrated the model using field data and found that, by adjusting soil properties, we could predict moisture levels more accurately. This helps understand where landslides might occur, even where direct measurements are not possible.
Ankur Dixit, Sandeep Sahany, Flavio Lehner, and Saroj Kanta Mishra
EGUsphere, https://doi.org/10.5194/egusphere-2024-587, https://doi.org/10.5194/egusphere-2024-587, 2024
Preprint archived
Short summary
Short summary
This study calibrates WRF-Hydro in a Himalayan basin, finding precipitation choice significantly influences results over parameter sets. Study highlights the importance of tailored calibration strategies and parameter sensitivity analyses for accurate streamflow predictions in Himalayan basins, crucial for effective water resource management.
Rosa Pietroiusti, Inne Vanderkelen, Friederike E. L. Otto, Clair Barnes, Lucy Temple, Mary Akurut, Philippe Bally, Nicole P. M. van Lipzig, and Wim Thiery
Earth Syst. Dynam., 15, 225–264, https://doi.org/10.5194/esd-15-225-2024, https://doi.org/10.5194/esd-15-225-2024, 2024
Short summary
Short summary
Heavy rainfall in eastern Africa between late 2019 and mid 2020 caused devastating floods and landslides and drove the levels of Lake Victoria to a record-breaking maximum in May 2020. In this study, we characterize the spatial extent and impacts of the floods in the Lake Victoria basin and investigate how human-induced climate change influenced the probability and intensity of the record-breaking lake levels and flooding by applying a multi-model extreme event attribution methodology.
Maximillian Van Wyk de Vries, Alexandre Dunant, Amy L. Johnson, Erin L. Harvey, Sihan Li, Katherine Arrell, Jeevan Baniya, Dipak Basnet, Gopi K. Basyal, Nyima Dorjee Bhotia, Simon J. Dadson, Alexander L. Densmore, Tek Bahadur Dong, Mark E. Kincey, Katie Oven, Anuradha Puri, and Nick J. Rosser
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-40, https://doi.org/10.5194/nhess-2024-40, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
Mapping exposure to landslides is necessary to mitigate risk and reduce vulnerability. In this study, we show that there is a poor correlation between building damage and deaths from landslides- such that the deadliest landslides do not always destroy the most buildings and vice versa. This has important implications for our management on landslide risk.
Dominik L. Schumacher, Mariam Zachariah, Friederike Otto, Clair Barnes, Sjoukje Philip, Sarah Kew, Maja Vahlberg, Roop Singh, Dorothy Heinrich, Julie Arrighi, Maarten van Aalst, Mathias Hauser, Martin Hirschi, Verena Bessenbacher, Lukas Gudmundsson, Hiroko K. Beaudoing, Matthew Rodell, Sihan Li, Wenchang Yang, Gabriel A. Vecchi, Luke J. Harrington, Flavio Lehner, Gianpaolo Balsamo, and Sonia I. Seneviratne
Earth Syst. Dynam., 15, 131–154, https://doi.org/10.5194/esd-15-131-2024, https://doi.org/10.5194/esd-15-131-2024, 2024
Short summary
Short summary
The 2022 summer was accompanied by widespread soil moisture deficits, including an unprecedented drought in Europe. Combining several observation-based estimates and models, we find that such an event has become at least 5 and 20 times more likely due to human-induced climate change in western Europe and the northern extratropics, respectively. Strong regional warming fuels soil desiccation; hence, projections indicate even more potent future droughts as we progress towards a 2 °C warmer world.
Mari R. Tye, Ming Ge, Jadwiga H. Richter, Ethan D. Gutmann, Allyson Rugg, Cindy L. Bruyère, Sue Ellen Haupt, Flavio Lehner, Rachel McCrary, Andrew J. Newman, and Andrew Wood
EGUsphere, https://doi.org/10.5194/egusphere-2023-2326, https://doi.org/10.5194/egusphere-2023-2326, 2023
Short summary
Short summary
There is a perceived mismatch between the spatial scales that global climate models can produce data and that needed for water management decisions. However, poor communication of specific metrics relevant to local decisions is also a problem. We identified a potential set of water use decision metrics to assess their credibility in the Community Earth System Model v2 (CESM2). CESM2 can reliably reproduce many of these metrics and shows potential to support long-range water resource decisions.
Elena Xoplaki, Florian Ellsäßer, Jens Grieger, Katrin M. Nissen, Joaquim Pinto, Markus Augenstein, Ting-Chen Chen, Hendrik Feldmann, Petra Friederichs, Daniel Gliksman, Laura Goulier, Karsten Haustein, Jens Heinke, Lisa Jach, Florian Knutzen, Stefan Kollet, Jürg Luterbacher, Niklas Luther, Susanna Mohr, Christoph Mudersbach, Christoph Müller, Efi Rousi, Felix Simon, Laura Suarez-Gutierrez, Svenja Szemkus, Sara M. Vallejo-Bernal, Odysseas Vlachopoulos, and Frederik Wolf
EGUsphere, https://doi.org/10.5194/egusphere-2023-1460, https://doi.org/10.5194/egusphere-2023-1460, 2023
Short summary
Short summary
Europe is regularly affected by compound events and natural hazards that occur simultaneously or with a temporal lag and are connected with disproportional impacts. Within the interdisciplinary project climXtreme (https://climxtreme.net/) we investigate the interplay of these events, their characteristics and changes, intensity, frequency and uncertainties in the past, present and future, as well as the associated impacts on different socio-economic sectors in Germany and Central Europe.
Florian Knutzen, Paul Averbeck, Caterina Barrasso, Laurens M. Bouwer, Barry Gardiner, José M. Grünzweig, Sabine Hänel, Karsten Haustein, Marius Rohde Johannessen, Stefan Kollet, Joni-Pekka Pietikaeinen, Karolina Pietras-Couffignal, Joaquim G. Pinto, Diana Rechid, Efi Rousi, Ana Russo, Laura Suarez-Gutierrez, Julian Wendler, Elena Xoplaki, and Daniel Gliksman
EGUsphere, https://doi.org/10.5194/egusphere-2023-1463, https://doi.org/10.5194/egusphere-2023-1463, 2023
Short summary
Short summary
With a team of 20 authors from different countries, we tried to compile the impacts of drought and heat on European forests in the period 2018–2022. This is a research approach that transcends subject and country borders.
Daniel Gliksman, Paul Averbeck, Nico Becker, Barry Gardiner, Valeri Goldberg, Jens Grieger, Dörthe Handorf, Karsten Haustein, Alexia Karwat, Florian Knutzen, Hilke S. Lentink, Rike Lorenz, Deborah Niermann, Joaquim G. Pinto, Ronald Queck, Astrid Ziemann, and Christian L. E. Franzke
Nat. Hazards Earth Syst. Sci., 23, 2171–2201, https://doi.org/10.5194/nhess-23-2171-2023, https://doi.org/10.5194/nhess-23-2171-2023, 2023
Short summary
Short summary
Wind and storms are a major natural hazard and can cause severe economic damage and cost human lives. Hence, it is important to gauge the potential impact of using indices, which potentially enable us to estimate likely impacts of storms or other wind events. Here, we review basic aspects of wind and storm generation and provide an extensive overview of wind impacts and available indices. This is also important to better prepare for future climate change and corresponding changes to winds.
Efi Rousi, Andreas H. Fink, Lauren S. Andersen, Florian N. Becker, Goratz Beobide-Arsuaga, Marcus Breil, Giacomo Cozzi, Jens Heinke, Lisa Jach, Deborah Niermann, Dragan Petrovic, Andy Richling, Johannes Riebold, Stella Steidl, Laura Suarez-Gutierrez, Jordis S. Tradowsky, Dim Coumou, André Düsterhus, Florian Ellsäßer, Georgios Fragkoulidis, Daniel Gliksman, Dörthe Handorf, Karsten Haustein, Kai Kornhuber, Harald Kunstmann, Joaquim G. Pinto, Kirsten Warrach-Sagi, and Elena Xoplaki
Nat. Hazards Earth Syst. Sci., 23, 1699–1718, https://doi.org/10.5194/nhess-23-1699-2023, https://doi.org/10.5194/nhess-23-1699-2023, 2023
Short summary
Short summary
The objective of this study was to perform a comprehensive, multi-faceted analysis of the 2018 extreme summer in terms of heat and drought in central and northern Europe, with a particular focus on Germany. A combination of favorable large-scale conditions and locally dry soils were related with the intensity and persistence of the events. We also showed that such extremes have become more likely due to anthropogenic climate change and might occur almost every year under +2 °C of global warming.
Robert Vautard, Geert Jan van Oldenborgh, Rémy Bonnet, Sihan Li, Yoann Robin, Sarah Kew, Sjoukje Philip, Jean-Michel Soubeyroux, Brigitte Dubuisson, Nicolas Viovy, Markus Reichstein, Friederike Otto, and Iñaki Garcia de Cortazar-Atauri
Nat. Hazards Earth Syst. Sci., 23, 1045–1058, https://doi.org/10.5194/nhess-23-1045-2023, https://doi.org/10.5194/nhess-23-1045-2023, 2023
Short summary
Short summary
A deep frost occurred in early April 2021, inducing severe damages in grapevine and fruit trees in France. We found that such extreme frosts occurring after the start of the growing season such as those of April 2021 are currently about 2°C colder [0.5 °C to 3.3 °C] in observations than in preindustrial climate. This observed intensification of growing-period frosts is attributable, at least in part, to human-caused climate change, making the 2021 event 50 % more likely [10 %–110 %].
Sjoukje Y. Philip, Sarah F. Kew, Geert Jan van Oldenborgh, Faron S. Anslow, Sonia I. Seneviratne, Robert Vautard, Dim Coumou, Kristie L. Ebi, Julie Arrighi, Roop Singh, Maarten van Aalst, Carolina Pereira Marghidan, Michael Wehner, Wenchang Yang, Sihan Li, Dominik L. Schumacher, Mathias Hauser, Rémy Bonnet, Linh N. Luu, Flavio Lehner, Nathan Gillett, Jordis S. Tradowsky, Gabriel A. Vecchi, Chris Rodell, Roland B. Stull, Rosie Howard, and Friederike E. L. Otto
Earth Syst. Dynam., 13, 1689–1713, https://doi.org/10.5194/esd-13-1689-2022, https://doi.org/10.5194/esd-13-1689-2022, 2022
Short summary
Short summary
In June 2021, the Pacific Northwest of the US and Canada saw record temperatures far exceeding those previously observed. This attribution study found such a severe heat wave would have been virtually impossible without human-induced climate change. Assuming no nonlinear interactions, such events have become at least 150 times more common, are about 2 °C hotter and will become even more common as warming continues. Therefore, adaptation and mitigation are urgently needed to prepare society.
Ruksana H. Rimi, Karsten Haustein, Emily J. Barbour, Sarah N. Sparrow, Sihan Li, David C. H. Wallom, and Myles R. Allen
Hydrol. Earth Syst. Sci., 26, 5737–5756, https://doi.org/10.5194/hess-26-5737-2022, https://doi.org/10.5194/hess-26-5737-2022, 2022
Short summary
Short summary
Extreme rainfall events are major concerns in Bangladesh. Heavy downpours can cause flash floods and damage nearly harvestable crops in pre-monsoon season. While in monsoon season, the impacts can range from widespread agricultural loss, huge property damage, to loss of lives and livelihoods. This paper assesses the role of anthropogenic climate change drivers in changing risks of extreme rainfall events during pre-monsoon and monsoon seasons at local sub-regional-scale within Bangladesh.
Kathrin Wehrli, Fei Luo, Mathias Hauser, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, Dim Coumou, Wilhelm May, Philippe Le Sager, Frank Selten, Olivia Martius, Robert Vautard, and Sonia I. Seneviratne
Earth Syst. Dynam., 13, 1167–1196, https://doi.org/10.5194/esd-13-1167-2022, https://doi.org/10.5194/esd-13-1167-2022, 2022
Short summary
Short summary
The ExtremeX experiment was designed to unravel the contribution of processes leading to the occurrence of recent weather and climate extremes. Global climate simulations are carried out with three models. The results show that in constrained experiments, temperature anomalies during heatwaves are well represented, although climatological model biases remain. Further, a substantial contribution of both atmospheric circulation and soil moisture to heat extremes is identified.
Daniel M. Gilford, Andrew Pershing, Benjamin H. Strauss, Karsten Haustein, and Friederike E. L. Otto
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 135–154, https://doi.org/10.5194/ascmo-8-135-2022, https://doi.org/10.5194/ascmo-8-135-2022, 2022
Short summary
Short summary
We developed a framework to produce global real-time estimates of how human-caused climate change affects the likelihood of daily weather events. A multi-method approach provides ensemble attribution estimates accompanied by confidence intervals, creating new opportunities for climate change communication. Methodological efficiency permits daily analysis using forecasts or observations. Applications with daily maximum temperature highlight the framework's capacity on daily and global scales.
Linh N. Luu, Robert Vautard, Pascal Yiou, and Jean-Michel Soubeyroux
Earth Syst. Dynam., 13, 687–702, https://doi.org/10.5194/esd-13-687-2022, https://doi.org/10.5194/esd-13-687-2022, 2022
Short summary
Short summary
This study downscales climate information from EURO-CORDEX (approx. 12 km) output to a higher horizontal resolution (approx. 3 km) for the south of France. We also propose a matrix of different indices to evaluate the high-resolution precipitation output. We find that a higher resolution reproduces more realistic extreme precipitation events at both daily and sub-daily timescales. Our results and approach are promising to apply to other Mediterranean regions and climate impact studies.
Jean-Eudes Petit, Jean-Charles Dupont, Olivier Favez, Valérie Gros, Yunjiang Zhang, Jean Sciare, Leila Simon, François Truong, Nicolas Bonnaire, Tanguy Amodeo, Robert Vautard, and Martial Haeffelin
Atmos. Chem. Phys., 21, 17167–17183, https://doi.org/10.5194/acp-21-17167-2021, https://doi.org/10.5194/acp-21-17167-2021, 2021
Short summary
Short summary
The COVID-19 outbreak led to lockdowns at national scales in spring 2020. Large cuts in emissions occurred, but the quantitative assessment of their role from observations is hindered by weather and interannual variability. That is why we developed an innovative methodology in order to best characterize the impact of lockdown on atmospheric chemistry. We find that a local decrease in traffic-related pollutants triggered a decrease of secondary aerosols and an increase in ozone.
Christina Heinze-Deml, Sebastian Sippel, Angeline G. Pendergrass, Flavio Lehner, and Nicolai Meinshausen
Geosci. Model Dev., 14, 4977–4999, https://doi.org/10.5194/gmd-14-4977-2021, https://doi.org/10.5194/gmd-14-4977-2021, 2021
Short summary
Short summary
Quantifying dynamical and thermodynamical components of regional precipitation change is a key challenge in climate science. We introduce a novel statistical model (Latent Linear Adjustment Autoencoder) that combines the flexibility of deep neural networks with the robustness advantages of linear regression. The method enables estimation of the contribution of a coarse-scale atmospheric circulation proxy to daily precipitation at high resolution and in a spatially coherent manner.
Folmer Krikken, Flavio Lehner, Karsten Haustein, Igor Drobyshev, and Geert Jan van Oldenborgh
Nat. Hazards Earth Syst. Sci., 21, 2169–2179, https://doi.org/10.5194/nhess-21-2169-2021, https://doi.org/10.5194/nhess-21-2169-2021, 2021
Short summary
Short summary
In this study, we analyse the role of climate change in the forest fires that raged through large parts of Sweden in the summer of 2018 from a meteorological perspective. This is done by studying observationally constrained data and multiple climate models. We find a small reduced probability of such events, based on reanalyses, but a small increased probability due to global warming up to now and a more robust increase in the risk for such events in the future, based on climate models.
Sarah Sparrow, Andrew Bowery, Glenn D. Carver, Marcus O. Köhler, Pirkka Ollinaho, Florian Pappenberger, David Wallom, and Antje Weisheimer
Geosci. Model Dev., 14, 3473–3486, https://doi.org/10.5194/gmd-14-3473-2021, https://doi.org/10.5194/gmd-14-3473-2021, 2021
Short summary
Short summary
This paper describes how the research version of the European Centre for Medium-Range Weather Forecasts’ Integrated Forecast System is combined with climateprediction.net’s public volunteer computing resource to develop OpenIFS@home. Thousands of volunteer personal computers simulated slightly different realizations of Tropical Cyclone Karl to demonstrate the performance of the large-ensemble forecast. OpenIFS@Home offers researchers a new tool to study weather forecasts and related questions.
Nicholas J. Leach, Stuart Jenkins, Zebedee Nicholls, Christopher J. Smith, John Lynch, Michelle Cain, Tristram Walsh, Bill Wu, Junichi Tsutsui, and Myles R. Allen
Geosci. Model Dev., 14, 3007–3036, https://doi.org/10.5194/gmd-14-3007-2021, https://doi.org/10.5194/gmd-14-3007-2021, 2021
Short summary
Short summary
This paper presents an update of the FaIR simple climate model, which can estimate the impact of anthropogenic greenhouse gas and aerosol emissions on the global climate. This update aims to significantly increase the structural simplicity of the model, making it more understandable and transparent. This simplicity allows it to be implemented in a wide range of environments, including Excel. We suggest that it could be used widely in academia, corporate research, and education.
Wannan Wang, Ronald van der A, Jieying Ding, Michiel van Weele, and Tianhai Cheng
Atmos. Chem. Phys., 21, 7253–7269, https://doi.org/10.5194/acp-21-7253-2021, https://doi.org/10.5194/acp-21-7253-2021, 2021
Short summary
Short summary
We developed a method to determine the type of photochemical regime of ozone formation by using only satellite observations of formaldehyde and nitrogen dioxide as well as ozone measurements on the ground. It was found that many cities in China, because of their high level of air pollution, are in the so-called VOC-limited photochemical regime. This means that the current reductions of nitrogen dioxide resulted in higher levels of photochemical smog in these cities.
Sarah F. Kew, Sjoukje Y. Philip, Mathias Hauser, Mike Hobbins, Niko Wanders, Geert Jan van Oldenborgh, Karin van der Wiel, Ted I. E. Veldkamp, Joyce Kimutai, Chris Funk, and Friederike E. L. Otto
Earth Syst. Dynam., 12, 17–35, https://doi.org/10.5194/esd-12-17-2021, https://doi.org/10.5194/esd-12-17-2021, 2021
Short summary
Short summary
Motivated by the possible influence of rising temperatures, this study synthesises results from observations and climate models to explore trends (1900–2018) in eastern African (EA) drought measures. However, no discernible trends are found in annual soil moisture or precipitation. Positive trends in potential evaporation indicate that for irrigated regions more water is now required to counteract increased evaporation. Precipitation deficit is, however, the most useful indicator of EA drought.
Carley E. Iles, Robert Vautard, Jane Strachan, Sylvie Joussaume, Bernd R. Eggen, and Chris D. Hewitt
Geosci. Model Dev., 13, 5583–5607, https://doi.org/10.5194/gmd-13-5583-2020, https://doi.org/10.5194/gmd-13-5583-2020, 2020
Short summary
Short summary
We investigate how increased resolution affects the simulation of European climate extremes for global and regional climate models to inform modelling strategies. Precipitation extremes become heavier with higher resolution, especially over mountains, wind extremes become somewhat stronger, and for temperature extremes warm biases are reduced over mountains. Differences with resolution for the global model appear to come from downscaling effects rather than improved large-scale circulation.
Marie-Estelle Demory, Ségolène Berthou, Jesús Fernández, Silje L. Sørland, Roman Brogli, Malcolm J. Roberts, Urs Beyerle, Jon Seddon, Rein Haarsma, Christoph Schär, Erasmo Buonomo, Ole B. Christensen, James M. Ciarlo ̀, Rowan Fealy, Grigory Nikulin, Daniele Peano, Dian Putrasahan, Christopher D. Roberts, Retish Senan, Christian Steger, Claas Teichmann, and Robert Vautard
Geosci. Model Dev., 13, 5485–5506, https://doi.org/10.5194/gmd-13-5485-2020, https://doi.org/10.5194/gmd-13-5485-2020, 2020
Short summary
Short summary
Now that global climate models (GCMs) can run at similar resolutions to regional climate models (RCMs), one may wonder whether GCMs and RCMs provide similar regional climate information. We perform an evaluation for daily precipitation distribution in PRIMAVERA GCMs (25–50 km resolution) and CORDEX RCMs (12–50 km resolution) over Europe. We show that PRIMAVERA and CORDEX simulate similar distributions. Considering both datasets at such a resolution results in large benefits for impact studies.
Sjoukje Philip, Sarah Kew, Geert Jan van Oldenborgh, Friederike Otto, Robert Vautard, Karin van der Wiel, Andrew King, Fraser Lott, Julie Arrighi, Roop Singh, and Maarten van Aalst
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 177–203, https://doi.org/10.5194/ascmo-6-177-2020, https://doi.org/10.5194/ascmo-6-177-2020, 2020
Short summary
Short summary
Event attribution studies can now be performed at short notice. We document a protocol developed by the World Weather Attribution group. It includes choices of which events to analyse, the event definition, observational analysis, model evaluation, multi-model multi-method attribution, hazard synthesis, vulnerability and exposure analysis, and communication procedures. The protocol will be useful for future event attribution studies and as a basis for an operational attribution service.
Zebedee R. J. Nicholls, Malte Meinshausen, Jared Lewis, Robert Gieseke, Dietmar Dommenget, Kalyn Dorheim, Chen-Shuo Fan, Jan S. Fuglestvedt, Thomas Gasser, Ulrich Golüke, Philip Goodwin, Corinne Hartin, Austin P. Hope, Elmar Kriegler, Nicholas J. Leach, Davide Marchegiani, Laura A. McBride, Yann Quilcaille, Joeri Rogelj, Ross J. Salawitch, Bjørn H. Samset, Marit Sandstad, Alexey N. Shiklomanov, Ragnhild B. Skeie, Christopher J. Smith, Steve Smith, Katsumasa Tanaka, Junichi Tsutsui, and Zhiang Xie
Geosci. Model Dev., 13, 5175–5190, https://doi.org/10.5194/gmd-13-5175-2020, https://doi.org/10.5194/gmd-13-5175-2020, 2020
Short summary
Short summary
Computational limits mean that we cannot run our most comprehensive climate models for all applications of interest. In such cases, reduced complexity models (RCMs) are used. Here, researchers working on 15 different models present the first systematic community effort to evaluate and compare RCMs: the Reduced Complexity Model Intercomparison Project (RCMIP). Our research ensures that users of RCMs can more easily evaluate the strengths, weaknesses and limitations of their tools.
Rein Haarsma, Mario Acosta, Rena Bakhshi, Pierre-Antoine Bretonnière, Louis-Philippe Caron, Miguel Castrillo, Susanna Corti, Paolo Davini, Eleftheria Exarchou, Federico Fabiano, Uwe Fladrich, Ramon Fuentes Franco, Javier García-Serrano, Jost von Hardenberg, Torben Koenigk, Xavier Levine, Virna Loana Meccia, Twan van Noije, Gijs van den Oord, Froila M. Palmeiro, Mario Rodrigo, Yohan Ruprich-Robert, Philippe Le Sager, Etienne Tourigny, Shiyu Wang, Michiel van Weele, and Klaus Wyser
Geosci. Model Dev., 13, 3507–3527, https://doi.org/10.5194/gmd-13-3507-2020, https://doi.org/10.5194/gmd-13-3507-2020, 2020
Short summary
Short summary
HighResMIP is an international coordinated CMIP6 effort to investigate the improvement in climate modeling caused by an increase in horizontal resolution. This paper describes EC-Earth3P-(HR), which has been developed for HighResMIP. First analyses reveal that increasing resolution does improve certain aspects of the simulated climate but that many other biases still continue, possibly related to phenomena that are still not yet resolved and need to be parameterized.
Flavio Lehner, Clara Deser, Nicola Maher, Jochem Marotzke, Erich M. Fischer, Lukas Brunner, Reto Knutti, and Ed Hawkins
Earth Syst. Dynam., 11, 491–508, https://doi.org/10.5194/esd-11-491-2020, https://doi.org/10.5194/esd-11-491-2020, 2020
Short summary
Short summary
Projections of climate change are uncertain because climate models are imperfect, future greenhouse gases emissions are unknown and climate is to some extent chaotic. To partition and understand these sources of uncertainty and make the best use of climate projections, large ensembles with multiple climate models are needed. Such ensembles now exist in a public data archive. We provide several novel applications focused on global and regional temperature and precipitation projections.
Nicholas James Leach, Zebedee Nicholls, Stuart Jenkins, Christopher J. Smith, John Lynch, Michelle Cain, Bill Wu, Junichi Tsutsui, and Myles R. Allen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-379, https://doi.org/10.5194/gmd-2019-379, 2020
Revised manuscript not accepted
Short summary
Short summary
GIR is a simple climate model designed to make exploration of the impact of greenhouse gas and aerosol emissions on the climate easy and understandable for its users. It uses an intuitive input and output structure, and the model is itself a set of only six equations. This lends the model to applications such as teaching, or as a lowest common denominator model between groups in large-scale climate assessments. It could also be used to investigate more complex models through emulation.
Sophie C. Lewis, Sarah E. Perkins-Kirkpatrick, and Andrew D. King
Adv. Stat. Clim. Meteorol. Oceanogr., 5, 133–146, https://doi.org/10.5194/ascmo-5-133-2019, https://doi.org/10.5194/ascmo-5-133-2019, 2019
Short summary
Short summary
Extreme temperature and precipitation events in Australia have caused significant socio-economic and environmental impacts. Determining the factors contributing to these extremes is an active area of research. This paper describes a set of studies that have examined the causes of extreme climate events in recent years in Australia. Ideally, this review will be useful for the application of these extreme event attribution approaches to climate and weather extremes occurring elsewhere.
Sihan Li, David E. Rupp, Linnia Hawkins, Philip W. Mote, Doug McNeall, Sarah N. Sparrow, David C. H. Wallom, Richard A. Betts, and Justin J. Wettstein
Geosci. Model Dev., 12, 3017–3043, https://doi.org/10.5194/gmd-12-3017-2019, https://doi.org/10.5194/gmd-12-3017-2019, 2019
Short summary
Short summary
Understanding the unfolding challenges of climate change relies on climate models, many of which have regional biases larger than the expected climate signal over the next half-century. This work shows the potential for improving climate model simulations through a multiphased parameter refinement approach. Regional warm biases are substantially reduced, suggesting this iterative approach is one path to improving climate models and simulations of present and future climate.
Robert Vautard, Geert Jan van Oldenborgh, Friederike E. L. Otto, Pascal Yiou, Hylke de Vries, Erik van Meijgaard, Andrew Stepek, Jean-Michel Soubeyroux, Sjoukje Philip, Sarah F. Kew, Cecilia Costella, Roop Singh, and Claudia Tebaldi
Earth Syst. Dynam., 10, 271–286, https://doi.org/10.5194/esd-10-271-2019, https://doi.org/10.5194/esd-10-271-2019, 2019
Short summary
Short summary
The effect of human activities on the probability of winter wind storms like the ones that occurred in Western Europe in January 2018 is analysed using multiple model ensembles. Despite a significant probability decline in observations, we find no significant change in probabilities due to human influence on climate so far. However, such extreme events are likely to be slightly more frequent in the future. The observed decrease in storminess is likely to be due to increasing roughness.
Sjoukje Philip, Sarah Sparrow, Sarah F. Kew, Karin van der Wiel, Niko Wanders, Roop Singh, Ahmadul Hassan, Khaled Mohammed, Hammad Javid, Karsten Haustein, Friederike E. L. Otto, Feyera Hirpa, Ruksana H. Rimi, A. K. M. Saiful Islam, David C. H. Wallom, and Geert Jan van Oldenborgh
Hydrol. Earth Syst. Sci., 23, 1409–1429, https://doi.org/10.5194/hess-23-1409-2019, https://doi.org/10.5194/hess-23-1409-2019, 2019
Short summary
Short summary
In August 2017 Bangladesh faced one of its worst river flooding events in recent history. For the large Brahmaputra basin, using precipitation alone as a proxy for flooding might not be appropriate. In this paper we explicitly test this assumption by performing an attribution of both precipitation and discharge as a flooding-related measure to climate change. We find the change in risk to be of similar order of magnitude (between 1 and 2) for both the meteorological and hydrological approach.
Christoph C. Raible, Martina Messmer, Flavio Lehner, Thomas F. Stocker, and Richard Blender
Clim. Past, 14, 1499–1514, https://doi.org/10.5194/cp-14-1499-2018, https://doi.org/10.5194/cp-14-1499-2018, 2018
Short summary
Short summary
Extratropical cyclones in winter and their characteristics are investigated in depth for the Atlantic European region from 850 to 2100 CE. During the Common Era, cyclone characteristics show pronounced variations mainly caused by internal variability of the coupled climate system. When anthropogenic forcing becomes dominant, a strong increase of extreme cyclone-related precipitation is found due to thermodynamics, though dynamical processes can play an important role during the last millennium.
Christopher J. Smith, Piers M. Forster, Myles Allen, Nicholas Leach, Richard J. Millar, Giovanni A. Passerello, and Leighton A. Regayre
Geosci. Model Dev., 11, 2273–2297, https://doi.org/10.5194/gmd-11-2273-2018, https://doi.org/10.5194/gmd-11-2273-2018, 2018
Short summary
Short summary
FAIR v1.3 is a simple Python-based climate model emulator. It takes emissions of greenhouse gases and aerosol and ozone precursors to calculate radiative forcing and temperature change. It includes a simple representation of carbon cycle feedbacks due to temperature and accumulated carbon uptake. Large ensembles can be run with minimal computational expense for any user-specified emissions pathway. We produce such an ensemble using the RCP emissions datasets.
Erik Kjellström, Grigory Nikulin, Gustav Strandberg, Ole Bøssing Christensen, Daniela Jacob, Klaus Keuler, Geert Lenderink, Erik van Meijgaard, Christoph Schär, Samuel Somot, Silje Lund Sørland, Claas Teichmann, and Robert Vautard
Earth Syst. Dynam., 9, 459–478, https://doi.org/10.5194/esd-9-459-2018, https://doi.org/10.5194/esd-9-459-2018, 2018
Short summary
Short summary
Based on high-resolution regional climate models we investigate European climate change at 1.5 and 2 °C of global warming compared to pre-industrial levels. Considerable near-surface warming exceeding that of the global mean is found for most of Europe, already at the lower 1.5 °C of warming level. Changes in precipitation and near-surface wind speed are identified. The 1.5 °C of warming level shows significantly less change compared to the 2 °C level, indicating the importance of mitigation.
Didin Agustian Permadi, Nguyen Thi Kim Oanh, and Robert Vautard
Atmos. Chem. Phys., 18, 3321–3334, https://doi.org/10.5194/acp-18-3321-2018, https://doi.org/10.5194/acp-18-3321-2018, 2018
Short summary
Short summary
This research quantified impacts resulted in the future (2030) from emission reduction measures for Southeast Asia (SEA) countries. Emission scenarios were developed based on current policies in Indonesia and Thailand. Impacts were quantified in terms of the avoided number of premature death and reduction in radiative forcing resulted from the emission reduction measures.
Didin Agustian Permadi, Nguyen Thi Kim Oanh, and Robert Vautard
Atmos. Chem. Phys., 18, 2725–2747, https://doi.org/10.5194/acp-18-2725-2018, https://doi.org/10.5194/acp-18-2725-2018, 2018
Short summary
Short summary
This research quantified the emissions of toxic air pollutants and climate forcing agents from Southeast Asia in 2007. The emission results were used for model simulation of particulate matter air quality. The model outputs were reasonably comparable to available ground level measurement data for both meteorology and air quality. The aerosol optical depth (AOD) for total aerosol and for black carbon alone was calculated and compared to satellite AOD.
Benoit P. Guillod, Richard G. Jones, Simon J. Dadson, Gemma Coxon, Gianbattista Bussi, James Freer, Alison L. Kay, Neil R. Massey, Sarah N. Sparrow, David C. H. Wallom, Myles R. Allen, and Jim W. Hall
Hydrol. Earth Syst. Sci., 22, 611–634, https://doi.org/10.5194/hess-22-611-2018, https://doi.org/10.5194/hess-22-611-2018, 2018
Short summary
Short summary
Assessing the potential impacts of extreme events such as drought and flood requires large datasets of such events, especially when looking at the most severe and rare events. Using a state-of-the-art climate modelling infrastructure that is simulating large numbers of weather time series on volunteers' computers, we generate such a large dataset for the United Kingdom. The dataset covers the recent past (1900–2006) as well as two future time periods (2030s and 2080s).
Geert Jan van Oldenborgh, Sjoukje Philip, Sarah Kew, Michiel van Weele, Peter Uhe, Friederike Otto, Roop Singh, Indrani Pai, Heidi Cullen, and Krishna AchutaRao
Nat. Hazards Earth Syst. Sci., 18, 365–381, https://doi.org/10.5194/nhess-18-365-2018, https://doi.org/10.5194/nhess-18-365-2018, 2018
Short summary
Short summary
On 19 May 2016 a temperature of 51.0 °C in Phalodi (northwest India) set a new Indian record. In 2015 a very lethal heat wave had occurred in the southeast. We find that in India the trend in extreme temperatures due to greenhouse gases is largely cancelled by increasing air pollution and irrigation. The health impacts of heat waves do increase due to higher humidity and air pollution. This implies that we expect heat waves to become much hotter as soon as air pollution is brought under control.
PAGES Hydro2k Consortium
Clim. Past, 13, 1851–1900, https://doi.org/10.5194/cp-13-1851-2017, https://doi.org/10.5194/cp-13-1851-2017, 2017
Short summary
Short summary
Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited due to a paucity of modern instrumental observations. We review how proxy records of past climate and climate model simulations can be used in tandem to understand hydroclimate variability over the last 2000 years and how these tools can also inform risk assessments of future hydroclimatic extremes.
Katja Frieler, Stefan Lange, Franziska Piontek, Christopher P. O. Reyer, Jacob Schewe, Lila Warszawski, Fang Zhao, Louise Chini, Sebastien Denvil, Kerry Emanuel, Tobias Geiger, Kate Halladay, George Hurtt, Matthias Mengel, Daisuke Murakami, Sebastian Ostberg, Alexander Popp, Riccardo Riva, Miodrag Stevanovic, Tatsuo Suzuki, Jan Volkholz, Eleanor Burke, Philippe Ciais, Kristie Ebi, Tyler D. Eddy, Joshua Elliott, Eric Galbraith, Simon N. Gosling, Fred Hattermann, Thomas Hickler, Jochen Hinkel, Christian Hof, Veronika Huber, Jonas Jägermeyr, Valentina Krysanova, Rafael Marcé, Hannes Müller Schmied, Ioanna Mouratiadou, Don Pierson, Derek P. Tittensor, Robert Vautard, Michelle van Vliet, Matthias F. Biber, Richard A. Betts, Benjamin Leon Bodirsky, Delphine Deryng, Steve Frolking, Chris D. Jones, Heike K. Lotze, Hermann Lotze-Campen, Ritvik Sahajpal, Kirsten Thonicke, Hanqin Tian, and Yoshiki Yamagata
Geosci. Model Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, https://doi.org/10.5194/gmd-10-4321-2017, 2017
Short summary
Short summary
This paper describes the simulation scenario design for the next phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is designed to facilitate a contribution to the scientific basis for the IPCC Special Report on the impacts of 1.5 °C global warming. ISIMIP brings together over 80 climate-impact models, covering impacts on hydrology, biomes, forests, heat-related mortality, permafrost, tropical cyclones, fisheries, agiculture, energy, and coastal infrastructure.
Benjamin M. Sanderson, Yangyang Xu, Claudia Tebaldi, Michael Wehner, Brian O'Neill, Alexandra Jahn, Angeline G. Pendergrass, Flavio Lehner, Warren G. Strand, Lei Lin, Reto Knutti, and Jean Francois Lamarque
Earth Syst. Dynam., 8, 827–847, https://doi.org/10.5194/esd-8-827-2017, https://doi.org/10.5194/esd-8-827-2017, 2017
Short summary
Short summary
We present the results of a set of climate simulations designed to simulate futures in which the Earth's temperature is stabilized at the levels referred to in the 2015 Paris Agreement. We consider the necessary future emissions reductions and the aspects of extreme weather which differ significantly between the 2 and 1.5 °C climate in the simulations.
Erin Coughlan de Perez, Elisabeth Stephens, Konstantinos Bischiniotis, Maarten van Aalst, Bart van den Hurk, Simon Mason, Hannah Nissan, and Florian Pappenberger
Hydrol. Earth Syst. Sci., 21, 4517–4524, https://doi.org/10.5194/hess-21-4517-2017, https://doi.org/10.5194/hess-21-4517-2017, 2017
Short summary
Short summary
Disaster managers would like to use seasonal forecasts to anticipate flooding months in advance. However, current seasonal forecasts give information on rainfall instead of flooding. Here, we find that the number of extreme events, rather than total rainfall, is most related to flooding in different regions of Africa. We recommend several forecast adjustments and research opportunities that would improve flood information at the seasonal timescale in different regions.
Augustin Colette, Camilla Andersson, Astrid Manders, Kathleen Mar, Mihaela Mircea, Maria-Teresa Pay, Valentin Raffort, Svetlana Tsyro, Cornelius Cuvelier, Mario Adani, Bertrand Bessagnet, Robert Bergström, Gino Briganti, Tim Butler, Andrea Cappelletti, Florian Couvidat, Massimo D'Isidoro, Thierno Doumbia, Hilde Fagerli, Claire Granier, Chris Heyes, Zig Klimont, Narendra Ojha, Noelia Otero, Martijn Schaap, Katarina Sindelarova, Annemiek I. Stegehuis, Yelva Roustan, Robert Vautard, Erik van Meijgaard, Marta Garcia Vivanco, and Peter Wind
Geosci. Model Dev., 10, 3255–3276, https://doi.org/10.5194/gmd-10-3255-2017, https://doi.org/10.5194/gmd-10-3255-2017, 2017
Short summary
Short summary
The EURODELTA-Trends numerical experiment has been designed to assess the capability of chemistry-transport models to capture the evolution of surface air quality over the 1990–2010 period in Europe. It also includes sensitivity experiments in order to analyse the relative contribution of (i) emission changes, (ii) meteorological variability, and (iii) boundary conditions to air quality trends. The article is a detailed presentation of the experiment design and participating models.
Benoit P. Guillod, Richard G. Jones, Andy Bowery, Karsten Haustein, Neil R. Massey, Daniel M. Mitchell, Friederike E. L. Otto, Sarah N. Sparrow, Peter Uhe, David C. H. Wallom, Simon Wilson, and Myles R. Allen
Geosci. Model Dev., 10, 1849–1872, https://doi.org/10.5194/gmd-10-1849-2017, https://doi.org/10.5194/gmd-10-1849-2017, 2017
Short summary
Short summary
The weather@home climate modelling system uses the computing power of volunteers around the world to generate a very large number of climate model simulations. This is particularly useful when investigating extreme weather events, notably for the attribution of these events to anthropogenic climate change. A new version of weather@home is presented and evaluated, which includes an improved representation of the land surface and increased horizontal resolution over Europe.
Pascal Yiou, Aglaé Jézéquel, Philippe Naveau, Frederike E. L. Otto, Robert Vautard, and Mathieu Vrac
Adv. Stat. Clim. Meteorol. Oceanogr., 3, 17–31, https://doi.org/10.5194/ascmo-3-17-2017, https://doi.org/10.5194/ascmo-3-17-2017, 2017
Short summary
Short summary
The attribution of classes of extreme events, such as heavy precipitation or heatwaves, relies on the estimate of small probabilities (with and without climate change). Such events are connected to the large-scale atmospheric circulation. This paper links such probabilities with properties of the atmospheric circulation by using a Bayesian decomposition. We test this decomposition on a case of extreme precipitation in the UK, in January 2014.
Diego Montes, Juan A. Añel, Tomás F. Pena, Peter Uhe, and David C. H. Wallom
Geosci. Model Dev., 10, 811–826, https://doi.org/10.5194/gmd-10-811-2017, https://doi.org/10.5194/gmd-10-811-2017, 2017
Short summary
Short summary
This paper discusses the how the combination of cloud and volunteer computing can be a feasible solution to address large, complex, and expensive computing problems such as climate modelling.
Karin van der Wiel, Sarah B. Kapnick, Geert Jan van Oldenborgh, Kirien Whan, Sjoukje Philip, Gabriel A. Vecchi, Roop K. Singh, Julie Arrighi, and Heidi Cullen
Hydrol. Earth Syst. Sci., 21, 897–921, https://doi.org/10.5194/hess-21-897-2017, https://doi.org/10.5194/hess-21-897-2017, 2017
Short summary
Short summary
During August 2016, heavy precipitation led to devastating floods in south Louisiana, USA. Here, we analyze the climatological statistics of the precipitation event, as defined by its 3-day total over 12–14 August. Using observational data and high-resolution global coupled model experiments, we find for a comparable event on the central US Gulf Coast an average return period of about 30 years and the odds being increased by at least 1.4 since 1900 due to anthropogenic climate change.
Daniel Mitchell, Krishna AchutaRao, Myles Allen, Ingo Bethke, Urs Beyerle, Andrew Ciavarella, Piers M. Forster, Jan Fuglestvedt, Nathan Gillett, Karsten Haustein, William Ingram, Trond Iversen, Viatcheslav Kharin, Nicholas Klingaman, Neil Massey, Erich Fischer, Carl-Friedrich Schleussner, John Scinocca, Øyvind Seland, Hideo Shiogama, Emily Shuckburgh, Sarah Sparrow, Dáithí Stone, Peter Uhe, David Wallom, Michael Wehner, and Rashyd Zaaboul
Geosci. Model Dev., 10, 571–583, https://doi.org/10.5194/gmd-10-571-2017, https://doi.org/10.5194/gmd-10-571-2017, 2017
Short summary
Short summary
This paper provides an experimental design to assess impacts of a world that is 1.5 °C warmer than at pre-industrial levels. The design is a new way to approach impacts from the climate community, and aims to answer questions related to the recent Paris Agreement. In particular the paper provides a method for studying extreme events under relatively high mitigation scenarios.
Sebastian Sippel, Jakob Zscheischler, Martin Heimann, Holger Lange, Miguel D. Mahecha, Geert Jan van Oldenborgh, Friederike E. L. Otto, and Markus Reichstein
Hydrol. Earth Syst. Sci., 21, 441–458, https://doi.org/10.5194/hess-21-441-2017, https://doi.org/10.5194/hess-21-441-2017, 2017
Short summary
Short summary
The paper re-investigates the question whether observed precipitation extremes and annual totals have been increasing in the world's dry regions over the last 60 years. Despite recently postulated increasing trends, we demonstrate that large uncertainties prevail due to (1) the choice of dryness definition and (2) statistical data processing. In fact, we find only minor (and only some significant) increases if (1) dryness is based on aridity and (2) statistical artefacts are accounted for.
Chantal Camenisch, Kathrin M. Keller, Melanie Salvisberg, Benjamin Amann, Martin Bauch, Sandro Blumer, Rudolf Brázdil, Stefan Brönnimann, Ulf Büntgen, Bruce M. S. Campbell, Laura Fernández-Donado, Dominik Fleitmann, Rüdiger Glaser, Fidel González-Rouco, Martin Grosjean, Richard C. Hoffmann, Heli Huhtamaa, Fortunat Joos, Andrea Kiss, Oldřich Kotyza, Flavio Lehner, Jürg Luterbacher, Nicolas Maughan, Raphael Neukom, Theresa Novy, Kathleen Pribyl, Christoph C. Raible, Dirk Riemann, Maximilian Schuh, Philip Slavin, Johannes P. Werner, and Oliver Wetter
Clim. Past, 12, 2107–2126, https://doi.org/10.5194/cp-12-2107-2016, https://doi.org/10.5194/cp-12-2107-2016, 2016
Short summary
Short summary
Throughout the last millennium, several cold periods occurred which affected humanity. Here, we investigate an exceptionally cold decade during the 15th century. The cold conditions challenged the food production and led to increasing food prices and a famine in parts of Europe. In contrast to periods such as the “Year Without Summer” after the eruption of Tambora, these extreme climatic conditions seem to have occurred by chance and in relation to the internal variability of the climate system.
Mitchell T. Black, David J. Karoly, Suzanne M. Rosier, Sam M. Dean, Andrew D. King, Neil R. Massey, Sarah N. Sparrow, Andy Bowery, David Wallom, Richard G. Jones, Friederike E. L. Otto, and Myles R. Allen
Geosci. Model Dev., 9, 3161–3176, https://doi.org/10.5194/gmd-9-3161-2016, https://doi.org/10.5194/gmd-9-3161-2016, 2016
Short summary
Short summary
This study presents a citizen science computing project, known as weather@home Australia–New Zealand, which runs climate models on thousands of home computers. By harnessing the power of volunteers' computers, this project is capable of simulating extreme weather events over Australia and New Zealand under different climate scenarios.
Erin Coughlan de Perez, Bart van den Hurk, Maarten K. van Aalst, Irene Amuron, Deus Bamanya, Tristan Hauser, Brenden Jongma, Ana Lopez, Simon Mason, Janot Mendler de Suarez, Florian Pappenberger, Alexandra Rueth, Elisabeth Stephens, Pablo Suarez, Jurjen Wagemaker, and Ervin Zsoter
Hydrol. Earth Syst. Sci., 20, 3549–3560, https://doi.org/10.5194/hess-20-3549-2016, https://doi.org/10.5194/hess-20-3549-2016, 2016
Short summary
Short summary
Many flood disaster impacts could be avoided by preventative action; however, early action is not guaranteed. This article demonstrates the design of a new system of forecast-based financing, which automatically triggers action when a flood forecast arrives, before a potential disaster. We establish "action triggers" for northern Uganda based on a global flood forecasting system, verifying these forecasts and assessing the uncertainties inherent in setting a trigger in a data-scarce location.
Geert Jan van Oldenborgh, Sjoukje Philip, Emma Aalbers, Robert Vautard, Friederike Otto, Karsten Haustein, Florence Habets, Roop Singh, and Heidi Cullen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-308, https://doi.org/10.5194/hess-2016-308, 2016
Manuscript not accepted for further review
Short summary
Short summary
Extreme rain caused flooding in France and Germany at the end of May 2016. After such an event the question is always posed to what extent it can be attributed to anthropogenic climate change. Using observations and five model ensembles we give a first answer. For the 3-day precipitation extremes over the Seine and Loire basins that caused the flooding all methods agree that the probability has increased by a factor of about two. For 1-day precipitation extremes in Germany the methods disagree.
Li Liu, Fabien Solmon, Robert Vautard, Lynda Hamaoui-Laguel, Csaba Zsolt Torma, and Filippo Giorgi
Biogeosciences, 13, 2769–2786, https://doi.org/10.5194/bg-13-2769-2016, https://doi.org/10.5194/bg-13-2769-2016, 2016
Short summary
Short summary
To study the distribution of airborne ragweed pollen in changing environments and associated health risks over Europe, we introduce an approach with explicit treatment of pollen ripening, release and dispersion due to environmental drivers in an online modelling framework where climate is integrated with dispersion and vegetation production. From a simulated pollen season and concentration pattern health risks are evaluated through calculation of exposure time above health-relevant threshold levels.
Konstantinos Markakis, Myrto Valari, Magnuz Engardt, Gwendoline Lacressonniere, Robert Vautard, and Camilla Andersson
Atmos. Chem. Phys., 16, 1877–1894, https://doi.org/10.5194/acp-16-1877-2016, https://doi.org/10.5194/acp-16-1877-2016, 2016
Short summary
Short summary
The overall climate benefit at both cities and pollutants is −2 to −10 % depending on metric. Over the city of Paris local mitigation of NOx emissions increases future ozone due to titration inhibition. Climate is the most influential factor for maximum ozone in Paris, which is particularly interesting from a health impact perspective. Over urban areas with major regional contribution (e.g. Stockholm) the bias due to coarse emission inventory may lead to policy misclassification.
S. Sippel, F. E. L. Otto, M. Forkel, M. R. Allen, B. P. Guillod, M. Heimann, M. Reichstein, S. I. Seneviratne, K. Thonicke, and M. D. Mahecha
Earth Syst. Dynam., 7, 71–88, https://doi.org/10.5194/esd-7-71-2016, https://doi.org/10.5194/esd-7-71-2016, 2016
Short summary
Short summary
We introduce a novel technique to bias correct climate model output for impact simulations that preserves its physical consistency and multivariate structure. The methodology considerably improves the representation of extremes in climatic variables relative to conventional bias correction strategies. Illustrative simulations of biosphere–atmosphere carbon and water fluxes with a biosphere model (LPJmL) show that the novel technique can be usefully applied to drive climate impact models.
G. J. van Oldenborgh, F. E. L. Otto, K. Haustein, and H. Cullen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-13197-2015, https://doi.org/10.5194/hessd-12-13197-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
On 4–6 December 2015, the storm 'Desmond' caused very heavy rainfall in northern England and Scotland, which led to widespread flooding. We provide an initial assessment of the influence of anthropogenic climate change on the likelihood of precipitation events like this. We use three independent methods of extreme event attribution based on observations and two climate models. All methods agree that the effect of climate change is positive, making events like this about 40% (5–80%) more likely.
J. M. Eden, G. J. van Oldenborgh, E. Hawkins, and E. B. Suckling
Geosci. Model Dev., 8, 3947–3973, https://doi.org/10.5194/gmd-8-3947-2015, https://doi.org/10.5194/gmd-8-3947-2015, 2015
Short summary
Short summary
Our paper reports on a simple regression-based system for producing probabilistic forecasts of seasonal climate. We discuss the physical motivation behind the statistical relationships underpinning our empirical model and provide a validation of hindcasts produced for the last half century. The generation of probabilistic forecasts on a global scale along with the use of the long-term trend as a source of skill constitutes a novel approach to empirical forecasting of seasonal climate.
S. C. Lewis and A. N. LeGrande
Clim. Past, 11, 1347–1360, https://doi.org/10.5194/cp-11-1347-2015, https://doi.org/10.5194/cp-11-1347-2015, 2015
A. I. Stegehuis, R. Vautard, P. Ciais, A. J. Teuling, D. G. Miralles, and M. Wild
Geosci. Model Dev., 8, 2285–2298, https://doi.org/10.5194/gmd-8-2285-2015, https://doi.org/10.5194/gmd-8-2285-2015, 2015
Short summary
Short summary
Many climate models have difficulties in properly reproducing climate extremes such as heat wave conditions. We use a regional climate model with different atmospheric physics schemes to simulate the heat wave events of 2003 in western Europe and 2010 in Russia. The five best-performing and diverse physics scheme combinations may be used in the future to perform heat wave analysis and to investigate the impact of climate change in summer in Europe.
E. Coughlan de Perez, B. van den Hurk, M. K. van Aalst, B. Jongman, T. Klose, and P. Suarez
Nat. Hazards Earth Syst. Sci., 15, 895–904, https://doi.org/10.5194/nhess-15-895-2015, https://doi.org/10.5194/nhess-15-895-2015, 2015
Short summary
Short summary
How can we use weather or climate forecasts to avoid disasters? This article offers a framework for determining when it is "worth" taking action to try to avoid a potential disaster. Considering forecast probabilities, actions, and funding constraints, we propose a novel forecast-based financing system that would automatically trigger action based on forecasts of increased risks.
E. Katragkou, M. García-Díez, R. Vautard, S. Sobolowski, P. Zanis, G. Alexandri, R. M. Cardoso, A. Colette, J. Fernandez, A. Gobiet, K. Goergen, T. Karacostas, S. Knist, S. Mayer, P. M. M. Soares, I. Pytharoulis, I. Tegoulias, A. Tsikerdekis, and D. Jacob
Geosci. Model Dev., 8, 603–618, https://doi.org/10.5194/gmd-8-603-2015, https://doi.org/10.5194/gmd-8-603-2015, 2015
K. Haustein, R. Washington, J. King, G. Wiggs, D. S. G. Thomas, F. D. Eckardt, R. G. Bryant, and L. Menut
Geosci. Model Dev., 8, 341–362, https://doi.org/10.5194/gmd-8-341-2015, https://doi.org/10.5194/gmd-8-341-2015, 2015
Short summary
Short summary
In this paper, the performance of three commonly used dust emissions schemes is investigated using a box model environment and observational data obtained in Botswana (Sua Pan). The results suggest that all schemes fail to reproduce the observed horizontal dust flux properly. They overestimate its magnitude by several orders of magnitude. The key parameter for this mismatch is the surface crusting which limits the availability of erosive material, even at higher wind speeds.
K. Markakis, M. Valari, A. Colette, O. Sanchez, O. Perrussel, C. Honore, R. Vautard, Z. Klimont, and S. Rao
Atmos. Chem. Phys., 14, 7323–7340, https://doi.org/10.5194/acp-14-7323-2014, https://doi.org/10.5194/acp-14-7323-2014, 2014
S. Kotlarski, K. Keuler, O. B. Christensen, A. Colette, M. Déqué, A. Gobiet, K. Goergen, D. Jacob, D. Lüthi, E. van Meijgaard, G. Nikulin, C. Schär, C. Teichmann, R. Vautard, K. Warrach-Sagi, and V. Wulfmeyer
Geosci. Model Dev., 7, 1297–1333, https://doi.org/10.5194/gmd-7-1297-2014, https://doi.org/10.5194/gmd-7-1297-2014, 2014
L. Menut, R. Vautard, A. Colette, D. Khvorostyanov, A. Potier, L. Hamaoui-Laguel, N. Viovy, and M. Thibaudon
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-10891-2014, https://doi.org/10.5194/acpd-14-10891-2014, 2014
Revised manuscript not accepted
P. Yiou, M. Boichu, R. Vautard, M. Vrac, S. Jourdain, E. Garnier, F. Fluteau, and L. Menut
Clim. Past, 10, 797–809, https://doi.org/10.5194/cp-10-797-2014, https://doi.org/10.5194/cp-10-797-2014, 2014
A. Colette, B. Bessagnet, R. Vautard, S. Szopa, S. Rao, S. Schucht, Z. Klimont, L. Menut, G. Clain, F. Meleux, G. Curci, and L. Rouïl
Atmos. Chem. Phys., 13, 7451–7471, https://doi.org/10.5194/acp-13-7451-2013, https://doi.org/10.5194/acp-13-7451-2013, 2013
E. Solazzo, R. Bianconi, G. Pirovano, M. D. Moran, R. Vautard, C. Hogrefe, K. W. Appel, V. Matthias, P. Grossi, B. Bessagnet, J. Brandt, C. Chemel, J. H. Christensen, R. Forkel, X. V. Francis, A. B. Hansen, S. McKeen, U. Nopmongcol, M. Prank, K. N. Sartelet, A. Segers, J. D. Silver, G. Yarwood, J. Werhahn, J. Zhang, S. T. Rao, and S. Galmarini
Geosci. Model Dev., 6, 791–818, https://doi.org/10.5194/gmd-6-791-2013, https://doi.org/10.5194/gmd-6-791-2013, 2013
Related subject area
Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Statistical calibration of probabilistic medium-range Fire Weather Index forecasts in Europe
Glide-snow avalanches: a mechanical, threshold-based release area model
Improving fire severity prediction in south-eastern Australia using vegetation-specific information
Review article: A scoping review of human factors in avalanche decision-making
How hard do avalanche practitioners tap during snow stability tests?
A large-scale validation of snowpack simulations in support of avalanche forecasting focusing on critical layers
A glacial lake outburst flood risk assessment for the Phochhu river basin, Bhutan
Modelling Current and Future Forest Fire Susceptibility in north-east Germany
AutoATES v2.0: Automated Avalanche Terrain Exposure Scale mapping
Modelling the vulnerability of urban settings to wildland–urban interface fires in Chile
Modeling of indoor 222Rn in data-scarce regions: an interactive dashboard approach for Bogotá, Colombia
A quantitative module of avalanche hazard—comparing forecaster assessments of storm and persistent slab avalanche problems with information derived from distributed snowpack simulations
The effect of propagation saw test geometries on critical cut length
A regional early warning for slushflow hazard
A new approach for drought index adjustment to clay-shrinkage-induced subsidence over France: advantages of the interactive leaf area index
Automated Avalanche Terrain Exposure Scale (ATES) mapping – local validation and optimization in western Canada
An Efficient Method to Simulate Wildfire Propagation Using Irregular Grids
Improving the fire weather index system for peatlands using peat-specific hydrological input data
Brief communication: The Lahaina Fire disaster – how models can be used to understand and predict wildfires
Prediction of natural dry-snow avalanche activity using physics-based snowpack simulations
Early warning system for ice collapses and river blockages in the Sedongpu Valley, southeastern Tibetan Plateau
Fire risk modeling: an integrated and data-driven approach applied to Sicily
Avalanche size estimation and avalanche outline determination by experts: reliability and implications for practice
Fluid conduits and shallow-reservoir structure defined by geoelectrical tomography at the Nirano Salse (Italy)
Estimating the effects of meteorology and land cover on fire growth in Peru using a novel difference equation model
Review article: Snow and ice avalanches in high mountain Asia – scientific, local and indigenous knowledge
Reduced-order digital twin and latent data assimilation for global wildfire prediction
A user perspective on the avalanche danger scale – insights from North America
Characterizing the rate of spread of large wildfires in emerging fire environments of northwestern Europe using Visible Infrared Imaging Radiometer Suite active fire data
Evaluation of low-cost Raspberry Pi sensors for structure-from-motion reconstructions of glacier calving fronts
Temporal evolution of crack propagation characteristics in a weak snowpack layer: conditions of crack arrest and sustained propagation
A data-driven model for Fennoscandian wildfire danger
Equivalent hazard magnitude scale
Statistical modelling of air quality impacts from individual forest fires in New South Wales, Australia
Drivers of extreme burnt area in Portugal: fire weather and vegetation
Coupling wildfire spread simulations and connectivity analysis for hazard assessment: a case study in Serra da Cabreira, Portugal
Glacial lake outburst flood hazard under current and future conditions: worst-case scenarios in a transboundary Himalayan basin
What weather variables are important for wet and slab avalanches under a changing climate in a low-altitude mountain range in Czechia?
Modelling ignition probability for human- and lightning-caused wildfires in Victoria, Australia
Automated snow avalanche release area delineation in data-sparse, remote, and forested regions
The 2017 Split wildfire in Croatia: evolution and the role of meteorological conditions
Progress and challenges in glacial lake outburst flood research (2017–2021): a research community perspective
Global assessment and mapping of ecological vulnerability to wildfires
The impact of terrain model source and resolution on snow avalanche modeling
Travel and terrain advice statements in public avalanche bulletins: a quantitative analysis of who uses this information, what makes it useful, and how it can be improved for users
Data-driven automated predictions of the avalanche danger level for dry-snow conditions in Switzerland
On the correlation between a sub-level qualifier refining the danger level with observations and models relating to the contributing factors of avalanche danger
Automated avalanche hazard indication mapping on a statewide scale
Forecasting the regional fire radiative power for regularly ignited vegetation fires
Environmental factors affecting wildfire-burned areas in southeastern France, 1970–2019
Stephanie Bohlmann and Marko Laine
Nat. Hazards Earth Syst. Sci., 24, 4225–4235, https://doi.org/10.5194/nhess-24-4225-2024, https://doi.org/10.5194/nhess-24-4225-2024, 2024
Short summary
Short summary
Probabilistic ensemble forecasts of the Canadian Forest Fire Weather Index (FWI) can be used to estimate the possible wildfire risk but require post-processing to provide accurate and reliable predictions. This article presents a calibration method using non-homogeneous Gaussian regression to statistically post-process FWI forecasts up to 15 d. Calibration improves the forecast especially at short lead times and in regions with high fire risk.
Amelie Fees, Alec van Herwijnen, Michael Lombardo, Jürg Schweizer, and Peter Lehmann
Nat. Hazards Earth Syst. Sci., 24, 3387–3400, https://doi.org/10.5194/nhess-24-3387-2024, https://doi.org/10.5194/nhess-24-3387-2024, 2024
Short summary
Short summary
Glide-snow avalanches release at the ground–snow interface, and their release process is poorly understood. To investigate the influence of spatial variability (snowpack and basal friction) on avalanche release, we developed a 3D, mechanical, threshold-based model that reproduces an observed release area distribution. A sensitivity analysis showed that the distribution was mostly influenced by the basal friction uniformity, while the variations in snowpack properties had little influence.
Kang He, Xinyi Shen, Cory Merow, Efthymios Nikolopoulos, Rachael V. Gallagher, Feifei Yang, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 3337–3355, https://doi.org/10.5194/nhess-24-3337-2024, https://doi.org/10.5194/nhess-24-3337-2024, 2024
Short summary
Short summary
A framework combining a fire severity classification with a regression model to predict an indicator of fire severity derived from Landsat imagery (difference normalized burning ratio, dNBR) is proposed. The results show that the proposed predictive technique is capable of providing robust fire severity prediction information, which can be used for forecasting seasonal fire severity and, subsequently, impacts on biodiversity and ecosystems under projected future climate conditions.
Audun Hetland, Rebecca Anne Hetland, Tarjei Tveito Skille, and Andrea Mannberg
EGUsphere, https://doi.org/10.5194/egusphere-2024-1628, https://doi.org/10.5194/egusphere-2024-1628, 2024
Short summary
Short summary
Research on human factor in avalanche decision making has become increasingly popular the past two decades. The studies span across a wide range of disciplines and is published in a variety of journals. To provide an overview of the literature this study provide a systematic scooping review of human factor in avalanche decision making. 70 papers fulfilled the search criteria. We extracted data and sorted the papers according to their main theme.
Håvard B. Toft, Samuel V. Verplanck, and Markus Landrø
Nat. Hazards Earth Syst. Sci., 24, 2757–2772, https://doi.org/10.5194/nhess-24-2757-2024, https://doi.org/10.5194/nhess-24-2757-2024, 2024
Short summary
Short summary
This study investigates inconsistencies in impact force as part of extended column tests (ECTs). We measured force-time curves from 286 practitioners in Scandinavia, Central Europe, and North America. The results show a large variability in peak forces and loading rates across wrist, elbow, and shoulder taps, challenging the ECT's reliability.
Florian Herla, Pascal Haegeli, Simon Horton, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 24, 2727–2756, https://doi.org/10.5194/nhess-24-2727-2024, https://doi.org/10.5194/nhess-24-2727-2024, 2024
Short summary
Short summary
Snowpack simulations are increasingly employed by avalanche warning services to inform about critical avalanche layers buried in the snowpack. However, validity concerns limit their operational value. We present methods that enable meaningful comparisons between snowpack simulations and regional assessments of avalanche forecasters to quantify the performance of the Canadian weather and snowpack model chain to represent thin critical avalanche layers on a large scale and in real time.
Tandin Wangchuk and Ryota Tsubaki
Nat. Hazards Earth Syst. Sci., 24, 2523–2540, https://doi.org/10.5194/nhess-24-2523-2024, https://doi.org/10.5194/nhess-24-2523-2024, 2024
Short summary
Short summary
A glacial lake outburst flood (GLOF) is a natural hazard in which water from a glacier-fed lake is swiftly discharged, causing serious harm to life, infrastructure, and communities. We used numerical models to predict the potential consequences of a GLOF originating from the Thorthomi glacial lake in Bhutan. We found that if a GLOF occurs, the lake could release massive flood water within 4 h, posing a considerable risk. Study findings help to mitigate the impacts of future GLOFs.
Katharina Heike Horn, Stenka Vulova, Hanyu Li, and Birgit Kleinschmit
EGUsphere, https://doi.org/10.5194/egusphere-2024-1380, https://doi.org/10.5194/egusphere-2024-1380, 2024
Short summary
Short summary
In this study we applied Random Forest machine learning algorithm to model current and future forest fire susceptibility (FFS) in north-east Germany using anthropogenic, climatic, topographic, soil, and vegetation variables. Model accuracy ranged between 69 % to 71 % showing a moderately high model reliability for predicting FFS. The model results underline the importance of anthropogenic and vegetation parameters for FFS. This study will support regional forest fire prevention and management.
Håvard B. Toft, John Sykes, Andrew Schauer, Jordy Hendrikx, and Audun Hetland
Nat. Hazards Earth Syst. Sci., 24, 1779–1793, https://doi.org/10.5194/nhess-24-1779-2024, https://doi.org/10.5194/nhess-24-1779-2024, 2024
Short summary
Short summary
Manual Avalanche Terrain Exposure Scale (ATES) mapping is time-consuming and inefficient for large-scale applications. The updated algorithm for automated ATES mapping overcomes previous limitations by including forest density data, improving the avalanche runout estimations in low-angle runout zones, accounting for overhead exposure and open-source software. Results show that the latest version has significantly improved its performance.
Paula Aguirre, Jorge León, Constanza González-Mathiesen, Randy Román, Manuela Penas, and Alonso Ogueda
Nat. Hazards Earth Syst. Sci., 24, 1521–1537, https://doi.org/10.5194/nhess-24-1521-2024, https://doi.org/10.5194/nhess-24-1521-2024, 2024
Short summary
Short summary
Wildfires pose a significant risk to property located in the wildland–urban interface (WUI). To assess and mitigate this risk, we need to understand which characteristics of buildings and building arrangements make them more prone to damage. We used a combination of data collection and analysis methods to study the vulnerability of dwellings in the WUI for case studies in Chile and concluded that the spatial arrangement of houses has a substantial impact on their vulnerability to wildfires.
Martín Domínguez Durán, María Angélica Sandoval Garzón, and Carme Huguet
Nat. Hazards Earth Syst. Sci., 24, 1319–1339, https://doi.org/10.5194/nhess-24-1319-2024, https://doi.org/10.5194/nhess-24-1319-2024, 2024
Short summary
Short summary
In this study we created a cost-effective alternative to bridge the baseline information gap on indoor radon (a highly carcinogenic gas) in regions where measurements are scarce. We model indoor radon concentrations to understand its spatial distribution and the potential influential factors. We evaluated the performance of this alternative using a small number of measurements taken in Bogotá, Colombia. Our results show that this alternative could help in the making of future studies and policy.
Florian Herla, Pascal Haegeli, Simon Horton, and Patrick Mair
EGUsphere, https://doi.org/10.5194/egusphere-2024-871, https://doi.org/10.5194/egusphere-2024-871, 2024
Short summary
Short summary
We present a spatial framework for extracting information about avalanche problems from detailed snowpack simulations and compare the numerical results against operational assessments from avalanche forecasters. Despite good aggreement in seasonal summary statistics, a comparison of daily assessments revealed considerable differences while it remained unclear which data source represented reality best. We discuss how snowpack simulations can add value to the forecasting process.
Bastian Bergfeld, Karl W. Birkeland, Valentin Adam, Philipp L. Rosendahl, and Alec van Herwijnen
EGUsphere, https://doi.org/10.5194/egusphere-2024-690, https://doi.org/10.5194/egusphere-2024-690, 2024
Short summary
Short summary
To release a slab avalanche, a crack in a weak snow layer beneath a cohesive slab has to propagate. Information on that is essential for assessing avalanche risk. In the field, information can be gathered with the Propagation Saw Test (PST). However, there are different standards on how to cut the PST. In this study, we experimentally investigate the effect of these different column geometries and provide models to correct for imprecise field test geometry effects on the critical cut length.
Monica Sund, Heidi A. Grønsten, and Siv Å. Seljesæter
Nat. Hazards Earth Syst. Sci., 24, 1185–1201, https://doi.org/10.5194/nhess-24-1185-2024, https://doi.org/10.5194/nhess-24-1185-2024, 2024
Short summary
Short summary
Slushflows are rapid mass movements of water-saturated snow released in gently sloping terrain (< 30°), often unexpectedly. Early warning is crucial to prevent casualties and damage to infrastructure. A regional early warning for slushflow hazard was established in Norway in 2013–2014 and has been operational since. We present a methodology using the ratio between water supply and snow depth by snow type to assess slushflow hazard. This approach is useful for other areas with slushflow hazard.
Sophie Barthelemy, Bertrand Bonan, Jean-Christophe Calvet, Gilles Grandjean, David Moncoulon, Dorothée Kapsambelis, and Séverine Bernardie
Nat. Hazards Earth Syst. Sci., 24, 999–1016, https://doi.org/10.5194/nhess-24-999-2024, https://doi.org/10.5194/nhess-24-999-2024, 2024
Short summary
Short summary
This work presents a drought index specifically adapted to subsidence, a seasonal phenomenon of soil shrinkage that occurs frequently in France and damages buildings. The index is computed from land surface model simulations and evaluated by a rank correlation test with insurance data. With its optimal configuration, the index is able to identify years of both zero and significant loss.
John Sykes, Håvard Toft, Pascal Haegeli, and Grant Statham
Nat. Hazards Earth Syst. Sci., 24, 947–971, https://doi.org/10.5194/nhess-24-947-2024, https://doi.org/10.5194/nhess-24-947-2024, 2024
Short summary
Short summary
The research validates and optimizes an automated approach for creating classified snow avalanche terrain maps using open-source geospatial modeling tools. Validation is based on avalanche-expert-based maps for two study areas. Our results show that automated maps have an overall accuracy equivalent to the average accuracy of three human maps. Automated mapping requires a fraction of the time and cost of traditional methods and opens the door for large-scale mapping of mountainous terrain.
Conor Hackett, Rafael de Andrade Moral, Gourav Mishra, Tim McCarthy, and Charles Markham
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-27, https://doi.org/10.5194/nhess-2024-27, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
This paper reviews existing wildfire propagation models and a comparison of different grid types including random grids to simulate wildfires. This paper finds that irregular grids simulate wildfires more efficiently than continuous models while still retaining a reasonable level of similarity. It also shows that irregular grids tend to retain greater similarity to continuous models than regular grids at the cost of slightly longer computational times.
Jonas Mortelmans, Anne Felsberg, Gabriëlle J. M. De Lannoy, Sander Veraverbeke, Robert D. Field, Niels Andela, and Michel Bechtold
Nat. Hazards Earth Syst. Sci., 24, 445–464, https://doi.org/10.5194/nhess-24-445-2024, https://doi.org/10.5194/nhess-24-445-2024, 2024
Short summary
Short summary
With global warming increasing the frequency and intensity of wildfires in the boreal region, accurate risk assessments are becoming more crucial than ever before. The Canadian Fire Weather Index (FWI) is a renowned system, yet its effectiveness in peatlands, where hydrology plays a key role, is limited. By incorporating groundwater data from numerical models and satellite observations, our modified FWI improves the accuracy of fire danger predictions, especially over summer.
Timothy W. Juliano, Fernando Szasdi-Bardales, Neil P. Lareau, Kasra Shamsaei, Branko Kosović, Negar Elhami-Khorasani, Eric P. James, and Hamed Ebrahimian
Nat. Hazards Earth Syst. Sci., 24, 47–52, https://doi.org/10.5194/nhess-24-47-2024, https://doi.org/10.5194/nhess-24-47-2024, 2024
Short summary
Short summary
Following the destructive Lahaina Fire in Hawaii, our team has modeled the wind and fire spread processes to understand the drivers of this devastating event. The simulation results show that extreme winds with high variability, a fire ignition close to the community, and construction characteristics led to continued fire spread in multiple directions. Our results suggest that available modeling capabilities can provide vital information to guide decision-making during wildfire events.
Stephanie Mayer, Frank Techel, Jürg Schweizer, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 23, 3445–3465, https://doi.org/10.5194/nhess-23-3445-2023, https://doi.org/10.5194/nhess-23-3445-2023, 2023
Short summary
Short summary
We present statistical models to estimate the probability for natural dry-snow avalanche release and avalanche size based on the simulated layering of the snowpack. The benefit of these models is demonstrated in comparison with benchmark models based on the amount of new snow. From the validation with data sets of quality-controlled avalanche observations and danger levels, we conclude that these models may be valuable tools to support forecasting natural dry-snow avalanche activity.
Wei Yang, Zhongyan Wang, Baosheng An, Yingying Chen, Chuanxi Zhao, Chenhui Li, Yongjie Wang, Weicai Wang, Jiule Li, Guangjian Wu, Lin Bai, Fan Zhang, and Tandong Yao
Nat. Hazards Earth Syst. Sci., 23, 3015–3029, https://doi.org/10.5194/nhess-23-3015-2023, https://doi.org/10.5194/nhess-23-3015-2023, 2023
Short summary
Short summary
We present the structure and performance of the early warning system (EWS) for glacier collapse and river blockages in the southeastern Tibetan Plateau. The EWS warned of three collapse–river blockage chain events and seven small-scale events. The volume and location of the collapses and the percentage of ice content influenced the velocities of debris flows. Such a study is helpful for understanding the mechanism of glacier hazards and for establishing similar EWSs in other high-risk regions.
Alba Marquez Torres, Giovanni Signorello, Sudeshna Kumar, Greta Adamo, Ferdinando Villa, and Stefano Balbi
Nat. Hazards Earth Syst. Sci., 23, 2937–2959, https://doi.org/10.5194/nhess-23-2937-2023, https://doi.org/10.5194/nhess-23-2937-2023, 2023
Short summary
Short summary
Only by mapping fire risks can we manage forest and prevent fires under current and future climate conditions. We present a fire risk map based on k.LAB, artificial-intelligence-powered and open-source software integrating multidisciplinary knowledge in near real time. Through an easy-to-use web application, we model the hazard with 84 % accuracy for Sicily, a representative Mediterranean region. Fire risk analysis reveals 45 % of vulnerable areas face a high probability of danger in 2050.
Elisabeth D. Hafner, Frank Techel, Rodrigo Caye Daudt, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 23, 2895–2914, https://doi.org/10.5194/nhess-23-2895-2023, https://doi.org/10.5194/nhess-23-2895-2023, 2023
Short summary
Short summary
Oftentimes when objective measurements are not possible, human estimates are used instead. In our study, we investigate the reproducibility of human judgement for size estimates, the mappings of avalanches from oblique photographs and remotely sensed imagery. The variability that we found in those estimates is worth considering as it may influence results and should be kept in mind for several applications.
Gerardo Romano, Marco Antonellini, Domenico Patella, Agata Siniscalchi, Andrea Tallarico, Simona Tripaldi, and Antonello Piombo
Nat. Hazards Earth Syst. Sci., 23, 2719–2735, https://doi.org/10.5194/nhess-23-2719-2023, https://doi.org/10.5194/nhess-23-2719-2023, 2023
Short summary
Short summary
The Nirano Salse (northern Apennines, Italy) is characterized by several active mud vents and hosts thousands of visitors every year. New resistivity models describe the area down to 250 m, improving our geostructural knowledge of the area and giving useful indications for a better understanding of mud volcano dynamics and for the better planning of safer tourist access to the area.
Harry Podschwit, William Jolly, Ernesto Alvarado, Andrea Markos, Satyam Verma, Sebastian Barreto-Rivera, Catherine Tobón-Cruz, and Blanca Ponce-Vigo
Nat. Hazards Earth Syst. Sci., 23, 2607–2624, https://doi.org/10.5194/nhess-23-2607-2023, https://doi.org/10.5194/nhess-23-2607-2023, 2023
Short summary
Short summary
We developed a model of fire spread that assumes that fire spreads in all directions at a constant speed and is extinguished at a constant rate. The model was fitted to 1003 fires in Peru between 2001 and 2020 using satellite burned area data from the GlobFire project. We fitted statistical models that predicted the spread and extinguish rates based on weather and land cover variables and found that these variables were good predictors of the spread and extinguish rates.
Anushilan Acharya, Jakob F. Steiner, Khwaja Momin Walizada, Salar Ali, Zakir Hussain Zakir, Arnaud Caiserman, and Teiji Watanabe
Nat. Hazards Earth Syst. Sci., 23, 2569–2592, https://doi.org/10.5194/nhess-23-2569-2023, https://doi.org/10.5194/nhess-23-2569-2023, 2023
Short summary
Short summary
All accessible snow and ice avalanches together with previous scientific research, local knowledge, and existing or previously active adaptation and mitigation solutions were investigated in the high mountain Asia (HMA) region to have a detailed overview of the state of knowledge and identify gaps. A comprehensive avalanche database from 1972–2022 is generated, including 681 individual events. The database provides a basis for the forecasting of avalanche hazards in different parts of HMA.
Caili Zhong, Sibo Cheng, Matthew Kasoar, and Rossella Arcucci
Nat. Hazards Earth Syst. Sci., 23, 1755–1768, https://doi.org/10.5194/nhess-23-1755-2023, https://doi.org/10.5194/nhess-23-1755-2023, 2023
Short summary
Short summary
This paper introduces a digital twin fire model using machine learning techniques to improve the efficiency of global wildfire predictions. The proposed model also manages to efficiently adjust the prediction results thanks to data assimilation techniques. The proposed digital twin runs 500 times faster than the current state-of-the-art physics-based model.
Abby Morgan, Pascal Haegeli, Henry Finn, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 23, 1719–1742, https://doi.org/10.5194/nhess-23-1719-2023, https://doi.org/10.5194/nhess-23-1719-2023, 2023
Short summary
Short summary
The avalanche danger scale is a critical component for communicating the severity of avalanche hazard conditions to the public. We examine how backcountry recreationists in North America understand and use the danger scale for planning trips into the backcountry. Our results provide an important user perspective on the strengths and weaknesses of the existing scale and highlight opportunities for future improvements.
Adrián Cardíl, Victor M. Tapia, Santiago Monedero, Tomás Quiñones, Kerryn Little, Cathelijne R. Stoof, Joaquín Ramirez, and Sergio de-Miguel
Nat. Hazards Earth Syst. Sci., 23, 361–373, https://doi.org/10.5194/nhess-23-361-2023, https://doi.org/10.5194/nhess-23-361-2023, 2023
Short summary
Short summary
This study aims to unravel large-fire behavior in northwest Europe, a temperate region with a projected increase in wildfire risk. We propose a new method to identify wildfire rate of spread from satellites because it is important to know periods of elevated fire risk for suppression methods and land management. Results indicate that there is a peak in the area burned and rate of spread in the months of March and April, and there are significant differences for forest-type land covers.
Liam S. Taylor, Duncan J. Quincey, and Mark W. Smith
Nat. Hazards Earth Syst. Sci., 23, 329–341, https://doi.org/10.5194/nhess-23-329-2023, https://doi.org/10.5194/nhess-23-329-2023, 2023
Short summary
Short summary
Hazards from glaciers are becoming more likely as the climate warms, which poses a threat to communities living beneath them. We have developed a new camera system which can capture regular, high-quality 3D models to monitor small changes in glaciers which could be indicative of a future hazard. This system is far cheaper than more typical camera sensors yet produces very similar quality data. We suggest that deploying these cameras near glaciers could assist in warning communities of hazards.
Bastian Bergfeld, Alec van Herwijnen, Grégoire Bobillier, Philipp L. Rosendahl, Philipp Weißgraeber, Valentin Adam, Jürg Dual, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 23, 293–315, https://doi.org/10.5194/nhess-23-293-2023, https://doi.org/10.5194/nhess-23-293-2023, 2023
Short summary
Short summary
For a slab avalanche to release, the snowpack must facilitate crack propagation over large distances. Field measurements on crack propagation at this scale are very scarce. We performed a series of experiments, up to 10 m long, over a period of 10 weeks. Beside the temporal evolution of the mechanical properties of the snowpack, we found that crack speeds were highest for tests resulting in full propagation. Based on these findings, an index for self-sustained crack propagation is proposed.
Sigrid Jørgensen Bakke, Niko Wanders, Karin van der Wiel, and Lena Merete Tallaksen
Nat. Hazards Earth Syst. Sci., 23, 65–89, https://doi.org/10.5194/nhess-23-65-2023, https://doi.org/10.5194/nhess-23-65-2023, 2023
Short summary
Short summary
In this study, we developed a machine learning model to identify dominant controls of wildfire in Fennoscandia and produce monthly fire danger probability maps. The dominant control was shallow-soil water anomaly, followed by air temperature and deep soil water. The model proved skilful with a similar performance as the existing Canadian Forest Fire Weather Index (FWI). We highlight the benefit of using data-driven models jointly with other fire models to improve fire monitoring and prediction.
Yi Victor Wang and Antonia Sebastian
Nat. Hazards Earth Syst. Sci., 22, 4103–4118, https://doi.org/10.5194/nhess-22-4103-2022, https://doi.org/10.5194/nhess-22-4103-2022, 2022
Short summary
Short summary
In this article, we propose an equivalent hazard magnitude scale and a method to evaluate and compare the strengths of natural hazard events across different hazard types, including earthquakes, tsunamis, floods, droughts, forest fires, tornadoes, cold waves, heat waves, and tropical cyclones. With our method, we determine that both the February 2021 North American cold wave event and Hurricane Harvey in 2017 were equivalent to a magnitude 7.5 earthquake in hazard strength.
Michael A. Storey and Owen F. Price
Nat. Hazards Earth Syst. Sci., 22, 4039–4062, https://doi.org/10.5194/nhess-22-4039-2022, https://doi.org/10.5194/nhess-22-4039-2022, 2022
Short summary
Short summary
Models are needed to understand and predict pollutant output from forest fires so fire agencies can reduce smoke-related risks to human health. We modelled air quality (PM2.5) based on fire area and weather variables. We found fire area and boundary layer height were influential on predictions, with distance, temperature, wind speed and relative humidity also important. The models predicted reasonably accurately in comparison to other existing methods but would benefit from further development.
Tomás Calheiros, Akli Benali, Mário Pereira, João Silva, and João Nunes
Nat. Hazards Earth Syst. Sci., 22, 4019–4037, https://doi.org/10.5194/nhess-22-4019-2022, https://doi.org/10.5194/nhess-22-4019-2022, 2022
Short summary
Short summary
Fire weather indices are used to assess the effect of weather on wildfires. Fire weather risk was computed and combined with large wildfires in Portugal. Results revealed the influence of vegetation cover: municipalities with a prevalence of shrublands, located in eastern parts, burnt under less extreme conditions than those with higher forested areas, situated in coastal regions. These findings are a novelty for fire science in Portugal and should be considered for fire management.
Ana C. L. Sá, Bruno Aparicio, Akli Benali, Chiara Bruni, Michele Salis, Fábio Silva, Martinho Marta-Almeida, Susana Pereira, Alfredo Rocha, and José Pereira
Nat. Hazards Earth Syst. Sci., 22, 3917–3938, https://doi.org/10.5194/nhess-22-3917-2022, https://doi.org/10.5194/nhess-22-3917-2022, 2022
Short summary
Short summary
Assessing landscape wildfire connectivity supported by wildfire spread simulations can improve fire hazard assessment and fuel management plans. Weather severity determines the degree of fuel patch connectivity and thus the potential to spread large and intense wildfires. Mapping highly connected patches in the landscape highlights patch candidates for prior fuel treatments, which ultimately will contribute to creating fire-resilient Mediterranean landscapes.
Simon K. Allen, Ashim Sattar, Owen King, Guoqing Zhang, Atanu Bhattacharya, Tandong Yao, and Tobias Bolch
Nat. Hazards Earth Syst. Sci., 22, 3765–3785, https://doi.org/10.5194/nhess-22-3765-2022, https://doi.org/10.5194/nhess-22-3765-2022, 2022
Short summary
Short summary
This study demonstrates how the threat of a very large outburst from a future lake can be feasibly assessed alongside that from current lakes to inform disaster risk management within a transboundary basin between Tibet and Nepal. Results show that engineering measures and early warning systems would need to be coupled with effective land use zoning and programmes to strengthen local response capacities in order to effectively reduce the risk associated with current and future outburst events.
Markéta Součková, Roman Juras, Kryštof Dytrt, Vojtěch Moravec, Johanna Ruth Blöcher, and Martin Hanel
Nat. Hazards Earth Syst. Sci., 22, 3501–3525, https://doi.org/10.5194/nhess-22-3501-2022, https://doi.org/10.5194/nhess-22-3501-2022, 2022
Short summary
Short summary
Avalanches are natural hazards that threaten people and infrastructure. With climate change, avalanche activity is changing. We analysed the change in frequency and size of avalanches in the Krkonoše Mountains, Czechia, and detected important variables with machine learning tools from 1979–2020. Wet avalanches in February and March have increased, and slab avalanches have decreased and become smaller. The identified variables and their threshold levels may help in avalanche decision-making.
Annalie Dorph, Erica Marshall, Kate A. Parkins, and Trent D. Penman
Nat. Hazards Earth Syst. Sci., 22, 3487–3499, https://doi.org/10.5194/nhess-22-3487-2022, https://doi.org/10.5194/nhess-22-3487-2022, 2022
Short summary
Short summary
Wildfire spatial patterns are determined by fire ignition sources and vegetation fuel moisture. Fire ignitions can be mediated by humans (owing to proximity to human infrastructure) or caused by lightning (owing to fuel moisture, average annual rainfall and local weather). When moisture in dead vegetation is below 20 % the probability of a wildfire increases. The results of this research enable accurate spatial mapping of ignition probability to aid fire suppression efforts and future research.
John Sykes, Pascal Haegeli, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 22, 3247–3270, https://doi.org/10.5194/nhess-22-3247-2022, https://doi.org/10.5194/nhess-22-3247-2022, 2022
Short summary
Short summary
Automated snow avalanche terrain mapping provides an efficient method for large-scale assessment of avalanche hazards, which informs risk management decisions for transportation and recreation. This research reduces the cost of developing avalanche terrain maps by using satellite imagery and open-source software as well as improving performance in forested terrain. The research relies on local expertise to evaluate accuracy, so the methods are broadly applicable in mountainous regions worldwide.
Ivana Čavlina Tomašević, Kevin K. W. Cheung, Višnjica Vučetić, Paul Fox-Hughes, Kristian Horvath, Maja Telišman Prtenjak, Paul J. Beggs, Barbara Malečić, and Velimir Milić
Nat. Hazards Earth Syst. Sci., 22, 3143–3165, https://doi.org/10.5194/nhess-22-3143-2022, https://doi.org/10.5194/nhess-22-3143-2022, 2022
Short summary
Short summary
One of the most severe and impactful urban wildfire events in Croatian history has been reconstructed and analyzed. The study identified some important meteorological influences related to the event: the synoptic conditions of the Azores anticyclone, cold front, and upper-level shortwave trough all led to the highest fire weather index in 2017. A low-level jet, locally known as bura wind that can be explained by hydraulic jump theory, was the dynamic trigger of the event.
Adam Emmer, Simon K. Allen, Mark Carey, Holger Frey, Christian Huggel, Oliver Korup, Martin Mergili, Ashim Sattar, Georg Veh, Thomas Y. Chen, Simon J. Cook, Mariana Correas-Gonzalez, Soumik Das, Alejandro Diaz Moreno, Fabian Drenkhan, Melanie Fischer, Walter W. Immerzeel, Eñaut Izagirre, Ramesh Chandra Joshi, Ioannis Kougkoulos, Riamsara Kuyakanon Knapp, Dongfeng Li, Ulfat Majeed, Stephanie Matti, Holly Moulton, Faezeh Nick, Valentine Piroton, Irfan Rashid, Masoom Reza, Anderson Ribeiro de Figueiredo, Christian Riveros, Finu Shrestha, Milan Shrestha, Jakob Steiner, Noah Walker-Crawford, Joanne L. Wood, and Jacob C. Yde
Nat. Hazards Earth Syst. Sci., 22, 3041–3061, https://doi.org/10.5194/nhess-22-3041-2022, https://doi.org/10.5194/nhess-22-3041-2022, 2022
Short summary
Short summary
Glacial lake outburst floods (GLOFs) have attracted increased research attention recently. In this work, we review GLOF research papers published between 2017 and 2021 and complement the analysis with research community insights gained from the 2021 GLOF conference we organized. The transdisciplinary character of the conference together with broad geographical coverage allowed us to identify progress, trends and challenges in GLOF research and outline future research needs and directions.
Fátima Arrogante-Funes, Inmaculada Aguado, and Emilio Chuvieco
Nat. Hazards Earth Syst. Sci., 22, 2981–3003, https://doi.org/10.5194/nhess-22-2981-2022, https://doi.org/10.5194/nhess-22-2981-2022, 2022
Short summary
Short summary
We show that ecological value might be reduced by 50 % due to fire perturbation in ecosystems that have not developed in the presence of fire and/or that present changes in the fire regime. The biomes most affected are tropical and subtropical forests, tundra, and mangroves. Integration of biotic and abiotic fire regime and regeneration factors resulted in a powerful way to map ecological vulnerability to fire and develop assessments to generate adaptation plans of management in forest masses.
Aubrey Miller, Pascal Sirguey, Simon Morris, Perry Bartelt, Nicolas Cullen, Todd Redpath, Kevin Thompson, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 22, 2673–2701, https://doi.org/10.5194/nhess-22-2673-2022, https://doi.org/10.5194/nhess-22-2673-2022, 2022
Short summary
Short summary
Natural hazard modelers simulate mass movements to better anticipate the risk to people and infrastructure. These simulations require accurate digital elevation models. We test the sensitivity of a well-established snow avalanche model (RAMMS) to the source and spatial resolution of the elevation model. We find key differences in the digital representation of terrain greatly affect the simulated avalanche results, with implications for hazard planning.
Kathryn C. Fisher, Pascal Haegeli, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 22, 1973–2000, https://doi.org/10.5194/nhess-22-1973-2022, https://doi.org/10.5194/nhess-22-1973-2022, 2022
Short summary
Short summary
Avalanche bulletins include travel and terrain statements to provide recreationists with tangible guidance about how to apply the hazard information. We examined which bulletin users pay attention to these statements, what determines their usefulness, and how they could be improved. Our study shows that reducing jargon and adding simple explanations can significantly improve the usefulness of the statements for users with lower levels of avalanche awareness education who depend on this advice.
Cristina Pérez-Guillén, Frank Techel, Martin Hendrick, Michele Volpi, Alec van Herwijnen, Tasko Olevski, Guillaume Obozinski, Fernando Pérez-Cruz, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 22, 2031–2056, https://doi.org/10.5194/nhess-22-2031-2022, https://doi.org/10.5194/nhess-22-2031-2022, 2022
Short summary
Short summary
A fully data-driven approach to predicting the danger level for dry-snow avalanche conditions in Switzerland was developed. Two classifiers were trained using a large database of meteorological data, snow cover simulations, and danger levels. The models performed well throughout the Swiss Alps, reaching a performance similar to the current experience-based avalanche forecasts. This approach shows the potential to be a valuable supplementary decision support tool for assessing avalanche hazard.
Frank Techel, Stephanie Mayer, Cristina Pérez-Guillén, Günter Schmudlach, and Kurt Winkler
Nat. Hazards Earth Syst. Sci., 22, 1911–1930, https://doi.org/10.5194/nhess-22-1911-2022, https://doi.org/10.5194/nhess-22-1911-2022, 2022
Short summary
Short summary
Can the resolution of forecasts of avalanche danger be increased by using a combination of absolute and comparative judgments? Using 5 years of Swiss avalanche forecasts, we show that, on average, sub-levels assigned to a danger level reflect the expected increase in the number of locations with poor snow stability and in the number and size of avalanches with increasing forecast sub-level.
Yves Bühler, Peter Bebi, Marc Christen, Stefan Margreth, Lukas Stoffel, Andreas Stoffel, Christoph Marty, Gregor Schmucki, Andrin Caviezel, Roderick Kühne, Stephan Wohlwend, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 22, 1825–1843, https://doi.org/10.5194/nhess-22-1825-2022, https://doi.org/10.5194/nhess-22-1825-2022, 2022
Short summary
Short summary
To calculate and visualize the potential avalanche hazard, we develop a method that automatically and efficiently pinpoints avalanche starting zones and simulate their runout for the entire canton of Grisons. The maps produced in this way highlight areas that could be endangered by avalanches and are extremely useful in multiple applications for the cantonal authorities, including the planning of new infrastructure, making alpine regions more safe.
Tero M. Partanen and Mikhail Sofiev
Nat. Hazards Earth Syst. Sci., 22, 1335–1346, https://doi.org/10.5194/nhess-22-1335-2022, https://doi.org/10.5194/nhess-22-1335-2022, 2022
Short summary
Short summary
The presented method aims to forecast regional wildfire-emitted radiative power in a time-dependent manner several days in advance. The temporal fire radiative power can be converted to an emission production rate, which can be implemented in air quality forecasting simulations. It is shown that in areas with a high incidence of wildfires, the fire radiative power is quite predictable, but otherwise it is not.
Christos Bountzouklis, Dennis M. Fox, and Elena Di Bernardino
Nat. Hazards Earth Syst. Sci., 22, 1181–1200, https://doi.org/10.5194/nhess-22-1181-2022, https://doi.org/10.5194/nhess-22-1181-2022, 2022
Short summary
Short summary
The study addresses the evolution of burned areas in southeastern France from 1970 to 2019 through the scope of a firefighting policy shift in 1994 that resulted in a significant decrease in the burned area. Regions with large fires were particularly impacted, whereas, in other areas, the fires remained frequent and occurred closer to built-up zones. Environmental characteristics such as south-facing slopes and low vegetation (bushes) are increasingly associated with burned areas.
Cited articles
Abatzoglou, J. T., Williams, A. P., and Barbero, R.: Global Emergence of
Anthropogenic Climate Change in Fire Weather Indices, Geophys. Res. Lett., 46, 326–336, https://doi.org/10.1029/2018GL080959, 2019. a
Agard, J., Schipper, E. L. F., Birkmann, J., Campos, M., Dubeux, C., Nojiri, Y., Olsson, J., Osman-Elasha, B., Pelling, M., Prather, M. J., Rivera-Ferre, M. G., Ruppel, O. C., Sallenger, A., Smith, K. R., and St. Clair, A. L.: AR5 Climate Change 2014: Impacts, Adaptation, and Vulnerability: Annex II Glossary, Cambridge University Press, New York, 2014. a, b
Black, M. T., Karoly, D. J., and King, A. D.: The contribution of anthropogenic forcing to the Adelaide and Melbourne, Australia, heat waves of
January 2014, B. Am. Meteorol. Soc., 96, S145–S148, https://doi.org/10.1175/BAMS-D-15-00097.1, 2015. a
Boucher, O., Servonnat, J., Albright, A. L., Aumont, O. Y. B., Bastriko, V.,
Bekki, S., Bonnet, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P.,
Cadule, P., Caubel, A., Cheru, F., Cozic, A., Cugnet, D., D'Andrea, F.,
Davini, P., de Lavergne, C., Denvil, S., Deshayes, J., M., D., Ducharne, A.,
Dufresne, J.-L., Dupont, E., Ethé, C., Fairhead, L., Falletti, L.,
Foujols, M.-A., Gardoll, S., Gastinea, G. J. G., Grandpeix, J.-Y., Guenet,
B., Guez, L., Guilyardi, E., Guimberteau, M., Hauglustaine, D., Hourdin, F.,
Idelkadi, A., Joussaume, S., Kageyama, M., Khadre-Traoré, A., Khodri, M.,
Krinner, G., Lebas, N., Levavasseur, G., Lévy, C., Li, L., Lott, F.,
Lurton, T., Luyssaert, S. G. M., Madeleine, J.-B., Maignan, F., Marchand, M., Marti, O., Mellul, L., Meurdesoif, Y., Mignot, J., Musat, I., Ottlé, C., Peylin, P., Planton, Y., Polcher, J., Rio, C., Rousset, C., Sepulchre, P., Sima, A., Swingedouw, D., Thieblemont, R., Traoré, A., Vancoppenolle, M., Vial, J., Vialard, J., Viovy, N., and Vuichard, N.: Presentation an evaluation of the IPSL-CM6A-LR climate model, J. Adv. Model. Earth Syst., 12, e2019MS002010, https://doi.org/10.1029/2019MS002010, 2020. a
Bryant, R. A., Waters, E., Gibbs, L., Gallagher, H. C., Pattison, P., Lusher,
D., MacDougall, C., Harms, L., Block, K., Snowdon, E., Sinnott, V., Ireton,
G., Richardson, J., and Forbes, D.: Psychological outcomes following the
Victorian Black Saturday bushfires, Aust. New Zeal. J. Psych., 48, 634–643, https://doi.org/10.1177/0004867414534476, 2014. a
Camia, A. and Amatulli, G.: Weather Factors and Fire Danger in the Mediterranean, in: Earth Observation of Wildland Fires in Mediterranean
Ecosystems, edited by Chuvieco, Springer, Berllin, Heidelberg,
https://doi.org/10.1007/978-3-642-01754-4_6, 2009. a
Ciavarella, A., Christidis, N., Andrews, M., Groenendijk, M., Rostron, J.,
Elkington, M., Burke, C., Lott, F. C., and Stott, P. A.: Upgrade of the
HadGEM3-A based attribution system to high resolution and a new validation
framework for probabilistic event attribution, Weather Clim. Extrem., 20, 9–32, https://doi.org/10.1016/j.wace.2018.03.003, 2018. a
Clarke, H., Lucas, C., and Smith, P.: Changes in Australian fire weather
between 1973 and 2010, Int. J. Climatol., 33, 931–944, https://doi.org/10.1002/joc.3480, 2013. a
Cooley, D., Hunter, B., and Smith, R.: Handbook of Environmental and Ecological Statistics, in: chap. 8, Univariate and multivariate extremes for the environmental sciences, CRC Press, Boca Raton, FL, USA, 153–180, 2019. a
Dimitrakopoulos, A. P., Bemmerzouk, A. M., and Mitsopoulos, I. D.: Evaluation
of the Canadian fire weather index system in an eastern Mediterranean
environment, Meteorol. Appl., 18, 83–93, https://doi.org/10.1002/met.214, 2011. a
Dowdy, A. J.: Climatological Variability of Fire Weather in Australia, J.
Appl. Meteorol. Clim., 57, 221–234, https://doi.org/10.1175/JAMC-D-17-0167.1, 2018. a, b, c
Dowdy, A. J. and Pepler, A.: Pyroconvection Risk in Australia: Climatological
Changes in Atmospheric Stability and Surface Fire Weather Conditions, Geophys. Res. Lett., 45, 2005–2013, https://doi.org/10.1002/2017GL076654, 2018. a
Dowdy, A. J., Mills, G. A., Finkele, K., and de Groot, W.: Australian fire
weather as represented by the McArthur Forest Fire Danger Index and the
Canadian Forest Fire Weather Index, Technical Report 10, The Centre for Australian Weather and Climate Research, Melbourne, Australia, 2009. a
Dowdy, A. J., Ye, H., Pepler, A., Thatcher, M., Osbrough, S. L., Evans, J. P., Di Virgilio, G., and McCarthy, N.: Future changes in extreme weather and
pyroconvection risk factors for Australian wildfires, Scient. Rep., 9, 10073, https://doi.org/10.1038/s41598-019-46362-x, 2019. a
Eden, J. M., Wolter, K., Otto, F. E. L., and van Oldenborgh, G. J.:
Multi-method attribution analysis of extreme precipitation in Boulder, Colorado, Environ. Res. Lett., 11, 124009,
https://doi.org/10.1088/1748-9326/11/12/124009, 2016. a
Eden, J. M., Kew, S. F., Bellprat, O., Lenderink, G., Manola, I., Omrani, H.,
and van Oldenborgh, G. J.: Extreme precipitation in the Netherlands: An event attribution case study, Weather Clim. Extrem., 21, 90–101,
https://doi.org/10.1016/j.wace.2018.07.003, 2018. a
Energy Networks Association: Bushfires + Energy Networks, available at:
https://www.energynetworks.com.au/resources/fact-sheets/bushfires-and-energy-networks/ (last access: 7 March 2021), 2013. a
Finlay, S. E., Moffat, A., Gazzard, R., Baker, D., and Murray, V.: Health
impacts of wildfires, PLoS Curr. Disast., 4, e4f959951cce2c,
https://doi.org/10.1371/4f959951cce2c, 2012. a
Fischer, E. M., Seneviratne, S. I., Vidale, P. L., Lüthi, D., and
Schär, C.: Soil Moisture–Atmosphere Interactions during the 2003 European Summer Heat Wave, J. Climate, 20, 5081–5099,
https://doi.org/10.1175/JCLI4288.1, 2007. a
Guillod, B. P., Jones, R. G., Bowery, A., Haustein, K., Massey, N. R.,
Mitchell, D. M., Otto, F. E. L., Sparrow, S. N., Uhe, P., Wallom, D. C. H.,
Wilson, S., and Allen, M. R.: weather@home 2: validation of an improved
global–regional climate modelling system, Geosci. Model Dev., 10, 1849–1872, https://doi.org/10.5194/gmd-10-1849-2017, 2017. a
Haikerwal, A., Akram, M., Del Monaco, A., Smith, K., Sim, M. R., Meyer, M.,
Tonkin, A. M., Abramson, M. J., and Dennekamp, M.: Impact of Fine Particulate
Matter (PM2.5) Exposure During Wildfires on Cardiovascular Health Outcomes, J. Am. Heart Assoc., 4, e001653, https://doi.org/10.1161/JAHA.114.001653, 2015. a
Hansen, J., Ruedy, R., Sato, M., and Lo, K.: Global Surface Temperature Change, Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345, 2010. a
Harris, S. and Lucas, C.: Understanding the variability of Australian fire
weather between 1973 and 2017, PLoS ONE, 14, e0222328, https://doi.org/10.1371/journal.pone.0222328, 2019. a
Haustein, K., Otto, F. E. L., Venema, V., Jacobs, P., Cowtan, K., Hausfather,
Z., Way, R. G., White, B., Subramanian, A., and Schurer, A. P.: A Limited Role for Unforced Internal Variability in Twentieth-Century Warming, J.
Climate, 32, 4893–4917, https://doi.org/10.1175/JCLI-D-18-0555.1, 2019. a
Hazeleger, W., Severijns, C., Semmler, T., Stefanescu, S., Yang, S., Wang, X., Wyser, K., Dutra, E., Baldasano, J. M., Bintanja, R., Bougeault, P.,
Caballero, R., Ekman, A. M. L., Christensen, J. H., van den Hurk, B., Jimenez, P., Jones, C., Kallberg, P., Koenigk, T., McGrath, R., Miranda, P.,
Van Noije, T., Palmer, T., Parodi, J. A., Schmith, T., Selten, F., Storelvmo,
T., Sterl, A., Tapamo, H., Vancoppenolle, M., Viterbo, P., and Willen, U.:
EC-Earth: A Seamless Earth-System Prediction Approach in Action, B. Am. Meteorol. Soc., 91, 1357–1363, https://doi.org/10.1175/2010BAMS2877.1, 2010. a
Hersbach, H., Bell, W., Berrisford, P., Horányi, A. J. M.-S., Nicolas, J., Radu, R., Schepers, D., Simmons, A., Soci, C., and Dee, D.: Global reanalysis: goodbye ERA-Interim, hello ERA5, ECMWF Newslett., 159, 17–24, https://doi.org/10.21957/vf291hehd7, 2019. a
Hope, P., Wang, G., Lim, E.-P., Hendon, H. H., and Arblaster, J. M.: What
caused the recofrd-breaking heat across Australia in October 2015?, B. Amer. Meteorol. Soc., 97, S1–S5, https://doi.org/10.1175/BAMS-D-16-0142.1, 2016. a
Hope, P., Black, M. T., Lim, E.-P., Dowdy, A., Wang, G., Pepler, A. S., and
Fawcett, R. J. B.: On Determining the Impact of Increasing Atmospheric CO2 on the Record Fire Weather In Eastern Australia In February 2017, B. Am. Meteorol. Soc., 100, S111–S117, https://doi.org/10.1175/BAMS-D-18-0135.1, 2019. a, b
Jeffrey, S., Rotstayn, L., Collier, M., Dravitzki, S., Hamalainen, C.,
Moeseneder, C., Wong, K., and Syktus, J.: Australia's CMIP5 submission using
the CSIRO-Mk3. 6 model, Aust. Meteorol. Oceanogr. J., 63, 1–13, 2013. a
Johnston, F. and Bowman, D.: Bushfire Smoke: An Exemplar of Coupled Human and
Natural Systems, Geogr. Res., 52, 45–54, https://doi.org/10.1111/1745-5871.12028, 2014. a
Kala, J., De Kauwe, M. G., Pitman, A. J., Medlyn, B. E., Wang, Y.-P., Lorenz,
R., and Perkins-Kirkpatrick, S. E.: Impact of the representation of stomatal
conductance on model projections of heatwave intensity, Sci. Rep., 6, 23418, https://doi.org/10.1038/srep23418, 2016. a
Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G.,
Arblaster, J. M., Bates, S., Danabasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque, J.-F., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L., and Vertenstein, M.: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability, B. Am. Meteorol. Soc., 96, 1333–1349, https://doi.org/10.1175/BAMS-D-13-00255.1, 2015. a
Kew, S. F., Philip, S. Y., van Oldenborgh, G. J., Otto, F. E., Vautard, R., and van der Schrier, G.: The exceptional summer heatwave in Southern Europe 2017, Bu. Am. Meteorol. Soc., 100, S2–S5, https://doi.org/10.1175/BAMS-D-18-0109.1, 2019. a, b
King, A. D., Black, M. T., Karoly, D. J., and Donat, M. G.: Incraesed likelihood of Brisbane, Australia, G20 heat event due to anthropogenic climate change, B. Am. Meteorol. Soc., 96, S141–S144, https://doi.org/10.1175/BAMS-D-15-00098.1, 2015a. a
King, A. D., van Oldenborgh, G. J., Karoly, D. J., Lewis, S. C., and Cullen,
H.: Attribution of the record high Central England temperature of 2014 to
anthropogenic influences, Environ. Res. Lett., 10, 054002,
https://doi.org/10.1088/1748-9326/10/5/054002, 2015b. a
King, A. D., van Oldenborgh, G. J., and Karoly, D. J.: Climate Change and El Niño increase likelihood of Indonesian heat and drought, B. Am. Meteorol. Soc., 97, S113–S117, https://doi.org/10.1175/BAMS-D-16-0164.1, 2016. a
Kirchmeier-Young, M. C., Zwiers, F. W., and Gillett, N. P.: Attribution of
extreme events in Arctic sea ice extent, J. Climate, 30, 553–571,
https://doi.org/10.1175/JCLI-D-16-0412.1, 2017. a
Koplitz, S. N., Mickley, L. J., Marlier, M. E., Buonocore, J. J., Kim, P. S.,
Liu, T., Sulprizio, M. P., DeFries, R. S., Jacob, D. J., Schwartz, J., Pongsiri, M., and Myers, S. S.: Public health impacts of the severe haze in
Equatorial Asia in September–October 2015: demonstration of a new framework for informing fire management strategies to reduce downwind smoke exposure, Environ. Res. Lett., 11, 094023, https://doi.org/10.1088/1748-9326/11/9/094023, 2016. a
Krikken, F., Lehner, F., Haustein, K., Drobyshev, I., and van Oldenborgh, G. J.: Attribution of the role of climate change in the forest fires in Sweden 2018, Nat. Hazards Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/nhess-2019-206, in review, 2019. a, b, c, d
Lewis, S., Blake, S., Trewin, B., Black, M., Dowdy, A., Perkins-Kirkpatrick,
S., King, A., and Sharples, J.: Deconstructing factors contributing to the
2018 fire weather in Queensland, Australia, B. Am. Meteorol. Soc., 101, S115–S122, https://doi.org/10.1175/BAMS-D-19-0144.1, 2020. a, b
Lewis, S. C. and Karoly, D. J.: Anthropogenic contributions to Australia's
record summer temperatures of 2013, Geophys. Res. Lett., 40, 3705–3709, https://doi.org/10.1002/grl.50673, 2013. a
Maher, N., Milinski, S., Suarez-Gutierrez, L., Botzet, M., Kornblueh, L.,
Takano, Y., Kröger, J., Ghosh, R., Hedemann, C., Li, C., Li, H., Manzini, E., Notz, D., Putrasahan, D., Boysen, L., Claussen, M., Ilyina, T., Olonscheck, D., Raddatz, T., Stevens, B., and Marotzke, J.: The Max Planck Institute grand ensemble-enabling the exploration of climate system variability, J. Adv. Model. Earth Syst., 11, 2050–2069, https://doi.org/10.1029/2019MS001639, 2019. a
Martins, E. S. P. R., Coelho, C. A. S., Haarsma, R. J., Otto, F. E. L., King,
A. D., van Oldenborgh, G. J., Kew, S. F., Philip, S. Y., Vasconselos Junior, F. C., and Cullen, H.: A multimethod attribution analysis of the prolonged
northeast Brazil hydrometeorological drought (2012–16), Bu. Am. Meteorol. Soc., 99, S65–S69, https://doi.org/10.1175/BAMS-D-17-0102.1, 2018. a
Mathur, R. and AchutaRao, K.: A modelling exploration of the sensitivity of the India's climate to irrigation, Clim. Dynam., 54, 1851–1872, https://doi.org/10.1007/s00382-019-05090-8, 2019. a
McArthur, A. G.: Weather and grassland fire behaviour, Tech. Rep. Leaflet 100, Aust. For. Timb. Bur., Canberra, Australia, 1966. a
McArthur, A. G.: Fire behaviour in eucalypt forest, Tech. Rep. Leaflet 107,
Aust. For. Timb. Bur., Canberra, Australia, 1967. a
Miller, C., Plucinski, M., Sullivan, A., Stephenson, A., Huston, C., Charman,
K., Prakash, M., and Dunstall, S.: Electrically caused wildfires in Victoria, Australia are over-represented when fire danger is elevated, Landsc. Urban Plan., 167, 267–274, https://doi.org/10.1016/j.landurbplan.2017.06.016, 2017. a
Miralles, D. G., Teuling, A. J., van Heerwaarden, C. C., and Vilà-Guerau de Arellano, J.: Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation, Nat. Geosci., 7, 345–349, https://doi.org/10.1038/ngeo2141, 2014. a
Mitchell, J. W.: Power line failures and catastrophic wildfires under extreme
weather conditions, Eng. Fail. Anal., 35, 726–735, https://doi.org/10.1016/j.engfailanal.2013.07.006, 2013. a
Morgan, G., Sheppeard, V., Khalaj, B., Ayyar, A., Lincoln, D., Jalaludin, B.,
Beard, J., Corbett, S., and Lumley, T.: Effects of Bushfire Smoke on Daily
Mortality and Hospital Admissions in Sydney, Australia, Epidemiology, 21,
47–55, https://doi.org/10.1097/EDE.0b013e3181c15d5a, 2010. a
Naveau, P., Huser, R., Ribereau, P., and Hannart, A.: Modeling jointly low,
moderate, and heavy rainfall intensities without a threshold selection, Water
Resour. Res., 52, 2753–2769, 2016. a
Noble, I. R., Gill, A. M., and Bary, G. A. V.: McArthur's fire-danger meters
expressed as equations, Aust. J. Ecol., 5, 201–203,
https://doi.org/10.1111/j.1442-9993.1980.tb01243.x, 1980. a
Otto, F. E. L., van der Wiel, K., van Oldenborgh, G. J., Philip, S. Y., Kew,
S. F., Uhe, P., and Cullen, H.: Climate change increases the probability of
heavy rains in Northern England/Southern Scotland like those of storm Desmond – a real-time event attribution revisited, Environ. Res. Lett., 13, 024006, https://doi.org/10.1088/1748-9326/aa9663, 2018a. a
Otto, F. E. L., Wolski, P., Lehner, F., Tebaldi, C., van Oldenborgh, G. J.,
Hogesteeger, S., Singh, R., Holden, P., Fuckar, N. S., Odoulami, R., and New,
M.: Anthropogenic influence on the drivers of the Western Cape drought 2015–2017, Environ. Res. Lett., 13, 124010, https://doi.org/10.1088/1748-9326/aae9f9, 2018b. a, b
Pasquale, C.: Are your data really Pareto distributed?, Physica A, 392, 5947–5962, https://doi.org/10.1016/j.physa.2013.07.061, 2013. a
Pepler, A., Coutts-Smith, A., and Timbal, B.: The role of East Coast Lows on
rainfall patterns and inter-annual variability across the East Coast of Australia, Int. J. Climatol., 34, 1011–1021, https://doi.org/10.1002/joc.3741, 2014. a
Perkins, S. E. and Gibson, P. B.: Increased risk of the 2014 Australian May
heatwave due to anthrpogenic activity, B. Am. Meteorol. Soc., 96, S154–S157, https://doi.org/10.1175/BAMS-D-15-00074.1, 2015. a
Perkins, S. E., Lewis, S. C., King, A. D., and Alexander, L. V.: Increased
Simulated Risk of the Hot Australian Summer of 2012/13 due to Anthropogenic
Activity as Measured by Heat Wave Frequency and Intensity, B. Am. Meteorol. Soc., 95, S34–S37, 2014. a
Philip, S. Y., Kew, S. F., Hauser, M., Guillod, B. P., Teuling, A. J., Whan,
K., Uhe, P., and v. Oldenborgh, G. J.: Western US high June 2015 temperatures and their relation to global warming and soil moisture, Clim. Dynam., 50, 2587–2601, https://doi.org/10.1007/s00382-017-3759-x, 2018a. a
Philip, S. Y., Kew, S. F., van Oldenborgh, G.J., Aalbers, E., Otto, F. E. L.,
Haustein, K., Habets, F., and Singh, R.: Validation of a rapid attribution of
the May/June 2016 flood-inducing precipitation in France to climate change, J. Hydrometeorol., 19, 1881–1898, https://doi.org/10.1175/JHM-D-18-0074.1, 2018b. a
Philip, S. Y., Kew, S. F., van Oldenborgh, G. J., Otto, F. E. L., O'Keefe, S., Haustein, K., King, A. D., Zegeye, A., Eshetu, Z., Hailemariam, K., Singh, R. K., Jjemba, E., Funk, C., and Cullen, H.: Attribution analysis of the Ethiopian drought of 2015, J. Climate, 31, 2465–2486,
https://doi.org/10.1175/JCLI-D-17-0274.1, 2018c. a
Philip, S. Y., Kew, S. F., van Oldenborgh, G. J., Otto, F. E. L., Vautard, R., van der Wiel, K., King, A. D., Lott, F. C., Arrighi, J., Singh, R. P., and van Aalst, M. K.: A protocol for probabilistic extreme event attribution
analyses, Adv. Stat. Climatol. Meteorol. Oceanogr., 6, 177–203, https://doi.org/10.5194/ascmo-6-177-2020, 2020. a, b, c
Price, O. F. and Bradstock, R. A.: The efficacy of fuel treatment in mitigating property loss during wildfires: Insights from analysis of the severity of the catastrophic fires in 2009 in Victoria, Australia, J. Environ. Manage., 113, 146–157, https://doi.org/10.1016/j.jenvman.2012.08.041, 2012. a
Reid, C. E., Brauer, M., Johnston, F. H., Jerrett, M., Balmes, J. R., and
Elliott, C. T.: Critical Review of Health Impacts of Wildfire Smoke Exposure,
Environ. Health Perspect., 124, 1334–1343, https://doi.org/10.1289/ehp.1409277, 2016. a
Ribes, A., Thao, S., and Cattiaux, J.: Describing the Relationship between a
Weather Event and Climate Change: A New Statistical Approach, J. Climate, 33, 6297–6314, https://doi.org/10.1175/JCLI-D-19-0217.1, 2020. a
Rodgers, K. B., Lin, J., and Frölicher, T. L.: Emergence of multiple ocean ecosystem drivers in a large ensemble suite with an Earth system model,
Biogeosciences, 12, 3301–3320, https://doi.org/10.5194/bg-12-3301-2015, 2015. a
Sanderson, B. M. and Fisher, R. A.: A fiery wake-up call for climate science,
Nat. Clim. Change, 54, 175–177, https://doi.org/10.1038/s41558-020-0707-2, 2020. a
Schaller, N., Otto, F. E. L., van Oldenborgh, G. J., Massey, N. R., Sparrow,
S., and Allen, M. R.: The heavy precipitation event of May–June 2013 in the upper Danube and Elbe basins, B. Am. Meteorol. Soc., 95, S69–S72, 2014. a
Shabbar, A., Skinner, W., and Flannigan, M. D.: Prediction of Seasonal Forest
Fire Severity in Canada from Large-Scale Climate Patterns, J. Appl. Meteorol. Clim., 50, 785–799, https://doi.org/10.1175/2010JAMC2547.1, 2011. a
Shaposhnikov, D., Revich, B., Bellander, T., Bedada, G. B., Bottai, M., Kharkova, T., Kvasha, E., Lezina, E., Lind, T., Semutnikova, E., and Pershagen, G.: Mortality related to air pollution with the moscow heat wave
and wildfire of 2010, Epidemiology, 25, 359–364, https://doi.org/10.1097/EDE.0000000000000090, 2014. a
Siswanto, van Oldenborgh, G. J., van der Schrier, G., Lenderink, G., and van den Hurk, B. J. J. M.: Trends in high-daily precipitation events in Jakarta and the flooding of January 2014, B. Am. Meteorol. Soc., 96, S131–S135, https://doi.org/10.1175/BAMS-D-15-00128.1, 2015. a
Sun, L., Alexander, M., and Deser, C.: Evolution of the global coupled climate response to Arctic sea ice loss during 1990–2090 and its contribution to climate change, J. Climate, 31, 7823–7843, https://doi.org/10.1175/JCLI-D-18-0134.1, 2018. a
Tebaldi, C. and Arblaster, J. M.: Pattern scaling: Its strengths and limitations, and an update on the latest model simulations, Climatic Change,
122, 459–471, https://doi.org/10.1007/s10584-013-1032-9, 2014. a
Thiery, W., Davin, E. L., Lawrence, D. M., Hirsch, A. L., Hauser, M., and
Seneviratne, S. I.: Present-day irrigation mitigates heat extremes, J. Geophys. Res.-Atmos., 122, 1403–1422, https://doi.org/10.1002/2016JD025740, 2017. a
Uhe, P., Philip, S. Y., Kew, S. F., Shah, K., Kimutai, J., Mwangi, E., van Oldenborgh, G. J., Singh, R. K., Arrighi, J., Jjemba, E., Cullen, H., and
Otto, F. E. L.: Attributing drivers of the 2016 Kenyan drought, Int. J. Climatol., 38, e554–e568, https://doi.org/10.1002/joc.5389, 2018. a
van der Wiel, K., Kapnick, S. B., van Oldenborgh, G. J., Whan, K., Philip, S. Y., Vecchi, G. A., Singh, R. K., Arrighi, J., and Cullen, H.: Rapid
attribution of the August 2016 flood-inducing extreme precipitation in south Louisiana to climate change, Hydrol. Earth Syst. Sci., 21, 897–921, https://doi.org/10.5194/hess-21-897-2017, 2017.
a
van Oldenborgh, G. J.: Data used in Attribution of the Australian bushfire risk to anthropogenic climate change, available at: https://climexp.knmi.nl/bushfires_timeseries.cgi, last access: 7 March 2021. a
van Oldenborgh, G. J., Haarsma, R., De Vries, H., and Allen, M. R.: Cold
Extremes in North America vs. Mild Weather in Europe: The Winter of 2013–14 in the Context of a Warming World, B. Am. Meteorol. Soc., 96, 707–714, https://doi.org/10.1175/BAMS-D-14-00036.1, 2015. a
van Oldenborgh, G. J., Otto, F. E. L., Haustein, K., and Achuta Rao, K.: The
heavy precipitation event of December 2015 in Chennai, India, B. Am. Meteorol. Soc., 97, S87–S91, https://doi.org/10.1175/BAMS-D-16-0129.1, 2016. a
van Oldenborgh, G. J., van der Wiel, K., Sebastian, A., Singh, R. K., Arrighi, J., Otto, F. E. L., Haustein, K., Li, S., Vecchi, G. A., and Cullen, H.: Attribution of extreme rainfall from Hurricane Harvey, August 2017, Environ. Res. Lett., 12, 124009, https://doi.org/10.1088/1748-9326/aa9ef2, 2017. a
van Oldenborgh, G. J., Philip, S. Y., Kew, S. F., van Weele, M., Uhe, P., Otto, F. E. L., Singh, R. K., Pai, I., Cullen, H., and AchutaRao, K.: Extreme heat in India and anthropogenic climate change, Nat. Hazards Earth Syst. Sci., 18, 365–381, https://doi.org/10.5194/nhess-18-365-2018, 2018. a
Van Wagner, C. E.: Conversion of William's Severity Rating for Use with the
Fire Weather Index, Petawawa For. Exp. Sta. Inf. Rep. PS-X-21, Can. For.
Serv., Chalk River, ON, Canada, 1970. a
Vautard, R., van Oldenborgh, G. J., Thao, S., Dubuisson, B., Lenderink, G.,
Ribes, A., Soubeyroux, J. M., Yiou, P., and Planton, S.: Extreme fall 2014
precipitations in the Cévennes mountain range, B. Am. Meteorol. Soc., 96, S56–S60, https://doi.org/10.1175/BAMS-D-15-00088.1, 2015. a
Weisheimer, A., Schaller, N., O'Reilly, C., MacLeod, D. A., and Palmer, T.:
Atmospheric seasonal forecasts of the twentieth century: multi-decadal
variability in predictive skill of the winter North Atlantic Oscillation (NAO) and their potential value for extreme event attribution, Q. J. Roy. Meteorol. Soc., 143, 917–926, https://doi.org/10.1002/qj.2976, 2017. a
Whittaker, J., Taylor, M., and Bearman, C.: Why don't bushfire warnings work as intended? Responses to official warnings during bushfires in New South Wales, Australia, Int. J. Disast. Risk Reduct., 45, 101476, https://doi.org/10.1016/j.ijdrr.2020.101476, 2020. a
Short summary
Southeastern Australia suffered from disastrous bushfires during the 2019/20 fire season, raising the question whether these have become more likely due to climate change. We found no attributable trend in extreme annual or monthly low precipitation but a clear shift towards more extreme heat. However, this shift is underestimated by the models. Analysing fire weather directly, we found that the chance has increased by at least 30 %, but due to the underestimation it could well be higher.
Southeastern Australia suffered from disastrous bushfires during the 2019/20 fire season,...
Altmetrics
Final-revised paper
Preprint