Articles | Volume 21, issue 10
https://doi.org/10.5194/nhess-21-3057-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-3057-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Are interactions important in estimating flood damage to economic entities? The case of wine-making in France
David Nortes Martínez
G-EAU, Univ. Montpellier, AgroParisTech, CIRAD, IRD, INRAE, Montpellier SupAgro, Montpellier, France
G-EAU, Univ. Montpellier, AgroParisTech, CIRAD, IRD, INRAE, Montpellier SupAgro, Montpellier, France
Pauline Brémond
G-EAU, Univ. Montpellier, AgroParisTech, CIRAD, IRD, INRAE, Montpellier SupAgro, Montpellier, France
Stefano Farolfi
CIRAD, UMR G-EAU, 34398 Montpellier, France
CEE-M, Univ. Montpellier, 34090 Montpellier, France
Juliette Rouchier
LAMSADE, CNRS, PSL (Université Paris-Dauphine), Paris, France
Related authors
No articles found.
Pauline Brémond, Anne-Laurence Agenais, Frédéric Grelot, and Claire Richert
Nat. Hazards Earth Syst. Sci., 22, 3385–3412, https://doi.org/10.5194/nhess-22-3385-2022, https://doi.org/10.5194/nhess-22-3385-2022, 2022
Short summary
Short summary
It is impossible to protect all issues against flood risk. To prioritise protection, economic analyses are conducted. The French Ministry of the Environment wanted to make available damage functions that we have developed for several sectors. For this, we propose a methodological framework and apply it to the model we have developed to assess damage to agriculture. This improves the description, validation, transferability and updatability of models based on expert knowledge.
Daniela Molinari, Anna Rita Scorzini, Chiara Arrighi, Francesca Carisi, Fabio Castelli, Alessio Domeneghetti, Alice Gallazzi, Marta Galliani, Frédéric Grelot, Patric Kellermann, Heidi Kreibich, Guilherme S. Mohor, Markus Mosimann, Stephanie Natho, Claire Richert, Kai Schroeter, Annegret H. Thieken, Andreas Paul Zischg, and Francesco Ballio
Nat. Hazards Earth Syst. Sci., 20, 2997–3017, https://doi.org/10.5194/nhess-20-2997-2020, https://doi.org/10.5194/nhess-20-2997-2020, 2020
Short summary
Short summary
Flood risk management requires a realistic estimation of flood losses. However, the capacity of available flood damage models to depict real damages is questionable. With a joint effort of eight research groups, the objective of this study was to compare the performances of nine models for the estimation of flood damage to buildings. The comparison provided more objective insights on the transferability of the models and on the reliability of their estimations.
Claire Richert, Hélène Boisgontier, and Frédéric Grelot
Nat. Hazards Earth Syst. Sci., 19, 2525–2539, https://doi.org/10.5194/nhess-19-2525-2019, https://doi.org/10.5194/nhess-19-2525-2019, 2019
Short summary
Short summary
To limit the losses due to floods, people can adopt measures to protect their dwellings. We assessed the cost and efficacy of such measures using computer modelling. We found that the benefits of most of the measures studied are unlikely to exceed their cost when they are taken in dwellings that are not exposed to frequent floods (probability of occurrence of less than 1 / 100 per year). It is also often less expensive to use building materials adapted to floods than other common materials.
P. Brémond, F. Grelot, and A.-L. Agenais
Nat. Hazards Earth Syst. Sci., 13, 2493–2512, https://doi.org/10.5194/nhess-13-2493-2013, https://doi.org/10.5194/nhess-13-2493-2013, 2013
Related subject area
Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Quantifying the potential benefits of risk-mitigation strategies on future flood losses in Kathmandu Valley, Nepal
Review article: Potential of nature-based solutions to mitigate hydro-meteorological risks in sub-Saharan Africa
Invited perspectives: An insurer's perspective on the knowns and unknowns in natural hazard risk modelling
Classifying marine faults for hazard assessment offshore Israel: a new approach based on fault size and vertical displacement
Assessing agriculture's vulnerability to drought in European pre-Alpine regions
Tsunami risk perception in central and southern Italy
Brief communication: Critical infrastructure impacts of the 2021 mid-July western European flood event
Multi-scenario urban flood risk assessment by integrating future land use change models and hydrodynamic models
Building-scale flood loss estimation through vulnerability pattern characterization: application to an urban flood in Milan, Italy
Process-based flood damage modelling relying on expert knowledge: a methodological contribution applied to the agricultural sector
Dynamic risk assessment of compound hazards based on VFS–IEM–IDM: a case study of typhoon–rainstorm hazards in Shenzhen, China
Integrated seismic risk assessment in Nepal
Machine learning models to predict myocardial infarctions from past climatic and environmental conditions
Reliability of flood marks and practical relevance for flood hazard assessment in southwestern Germany
Invited perspectives: Managed realignment as a solution to mitigate coastal flood risks – optimizing success through knowledge co-production
Invited perspectives: Views of 350 natural hazard community members on key challenges in natural hazards research and the Sustainable Development Goals
Estimating return intervals for extreme climate conditions related to winter disasters and livestock mortality in Mongolia
Surveying the surveyors to address risk perception and adaptive-behaviour cross-study comparability
Differences in volcanic risk perception among Goma’s population before the Nyiragongo eruption of May 2021, Virunga volcanic province (DR Congo)
Comparison of sustainable flood risk management by four countries – the United Kingdom, the Netherlands, the United States, and Japan – and the implications for Asian coastal megacities
Projected impact of heat on mortality and labour productivity under climate change in Switzerland
Full-scale experiments to examine the role of deadwood in rockfall dynamics in forests
Predicting drought and subsidence risks in France
Review article: Design and Evaluation of Weather Index Insurance for Multi-Hazard Resilience and Food Insecurity
Scenario-based multi-risk assessment from existing single-hazard vulnerability models. An application to consecutive earthquakes and tsunamis in Lima, Peru
The determinants affecting the intention of urban residents to prepare for flood risk in China
Strategic framework for natural disaster risk mitigation using deep learning and cost-benefit analysis
Risk communication during seismo-volcanic crises: the example of Mayotte, France
Invited perspectives: Challenges and step changes for natural hazard – perspectives from the German Committee for Disaster Reduction (DKKV)
Invited perspectives: When research meets practice: challenges, opportunities, and suggestions from the implementation of the Floods Directive in the largest Italian river basin
Rapid landslide risk zoning toward multi-slope units of the Neikuihui tribe for preliminary disaster management
INSYDE-BE: adaptation of the INSYDE model to the Walloon region (Belgium)
Identifying the drivers of private flood precautionary measures in Ho Chi Minh City, Vietnam
Performance of the flood warning system in Germany in July 2021 – insights from affected residents
Effective uncertainty visualization for aftershock forecast maps
Invited perspectives: A research agenda towards disaster risk management pathways in multi-(hazard-)risk assessment
Design and Testing of a Multi-Hazard Risk Rapid Assessment Questionnaire for Hill Communities in the Indian Himalayan Region
Empirical tsunami fragility modelling for hierarchical damage levels: An application to damage data of the 2009 South Pacific tsunami
Education, financial aid, and awareness can reduce smallholder farmers' vulnerability to drought under climate change
Regional county-level housing inventory predictions and the effects on hurricane risk
Brief communication: Key papers of 20 years in Natural Hazards and Earth System Sciences
Invited Perspectives: “Small country, big challenges – Switzerland's hazard prevention research”
Invited perspectives: Challenges and future directions in improving bridge flood resilience
Bangladesh's vulnerability to cyclonic coastal flooding
A geography of drought indices: mismatch between indicators of drought and its impacts on water and food securities
Cost–benefit analysis of coastal flood defence measures in the North Adriatic Sea
About the return period of a catastrophe
Brief communication: Radar images for monitoring informal urban settlements in vulnerable zones in Lima, Peru
A simulation–optimization framework for post-disaster allocation of mental health resources
Lessons learned about the importance of raising risk awareness in the Mediterranean region (north Morocco and west Sardinia, Italy)
Carlos Mesta, Gemma Cremen, and Carmine Galasso
Nat. Hazards Earth Syst. Sci., 23, 711–731, https://doi.org/10.5194/nhess-23-711-2023, https://doi.org/10.5194/nhess-23-711-2023, 2023
Short summary
Short summary
Flood risk is expected to increase in many regions worldwide due to rapid urbanization and climate change. The benefits of risk-mitigation measures remain inadequately quantified for potential future events in some multi-hazard-prone areas such as Kathmandu Valley (KV), Nepal, which this paper addresses. The analysis involves modeling two flood occurrence scenarios and using four residential exposure inventories representing current urban system or near-future development trajectories for KV.
Kirk B. Enu, Aude Zingraff-Hamed, Mohammad A. Rahman, Lindsay C. Stringer, and Stephan Pauleit
Nat. Hazards Earth Syst. Sci., 23, 481–505, https://doi.org/10.5194/nhess-23-481-2023, https://doi.org/10.5194/nhess-23-481-2023, 2023
Short summary
Short summary
In sub-Saharan Africa, there is reported uptake of at least one nature-based solution (NBS) in 71 % of urban areas in the region for mitigating hydro-meteorological risks. These NBSs are implemented where risks exist but not where they are most severe. With these NBSs providing multiple ecosystem services and four out of every five NBSs creating livelihood opportunities, NBSs can help address major development challenges in the region, such as water and food insecurity and unemployment.
Madeleine-Sophie Déroche
Nat. Hazards Earth Syst. Sci., 23, 251–259, https://doi.org/10.5194/nhess-23-251-2023, https://doi.org/10.5194/nhess-23-251-2023, 2023
Short summary
Short summary
This paper proves the need to conduct an in-depth review of the existing loss modelling framework and makes it clear that only a transdisciplinary effort will be up to the challenge of building global loss models. These two factors are essential to capture the interactions and increasing complexity of the three risk drivers (exposure, hazard, and vulnerability), thus enabling insurers to anticipate and be equipped to face the far-ranging impacts of climate change and other natural events.
May Laor and Zohar Gvirtzman
Nat. Hazards Earth Syst. Sci., 23, 139–158, https://doi.org/10.5194/nhess-23-139-2023, https://doi.org/10.5194/nhess-23-139-2023, 2023
Short summary
Short summary
This study aims to provide a practical and relatively fast solution for early-stage planning of marine infrastructure that must cross a faulted zone. Instead of investing huge efforts in finding whether each specific fault meets a pre-defined criterion of activeness, we map the subsurface and determine the levels of fault hazard based on the amount of displacement and the fault's plane size. This allows for choosing the least problematic infrastructure routes at an early planning stage.
Ruth Stephan, Stefano Terzi, Mathilde Erfurt, Silvia Cocuccioni, Kerstin Stahl, and Marc Zebisch
Nat. Hazards Earth Syst. Sci., 23, 45–64, https://doi.org/10.5194/nhess-23-45-2023, https://doi.org/10.5194/nhess-23-45-2023, 2023
Short summary
Short summary
This study maps agriculture's vulnerability to drought in the European pre-Alpine regions of Thurgau (CH) and Podravska (SI). We combine region-specific knowledge with quantitative data mapping; experts of the study regions, far apart, identified a few common but more region-specific factors that we integrated in two vulnerability scenarios. We highlight the benefits of the participatory approach in improving the quantitative results and closing the gap between science and practitioners.
Lorenzo Cugliari, Massimo Crescimbene, Federica La Longa, Andrea Cerase, Alessandro Amato, and Loredana Cerbara
Nat. Hazards Earth Syst. Sci., 22, 4119–4138, https://doi.org/10.5194/nhess-22-4119-2022, https://doi.org/10.5194/nhess-22-4119-2022, 2022
Short summary
Short summary
The Tsunami Alert Centre of the National Institute of Geophysics and Volcanology (CAT-INGV) has been promoting the study of tsunami risk perception in Italy since 2018. A total of 7342 questionnaires were collected in three survey phases (2018, 2020, 2021). In this work we present the main results of the three survey phases, with a comparison among the eight surveyed regions and between the coastal regions and some coastal metropolitan cities involved in the survey.
Elco E. Koks, Kees C. H. van Ginkel, Margreet J. E. van Marle, and Anne Lemnitzer
Nat. Hazards Earth Syst. Sci., 22, 3831–3838, https://doi.org/10.5194/nhess-22-3831-2022, https://doi.org/10.5194/nhess-22-3831-2022, 2022
Short summary
Short summary
This study provides an overview of the impacts to critical infrastructure and how recovery has progressed after the July 2021 flood event in Germany, Belgium and the Netherlands. The results show that Germany and Belgium were particularly affected, with many infrastructure assets severely damaged or completely destroyed. This study helps to better understand how infrastructure can be affected by flooding and can be used for validation purposes for future studies.
Qinke Sun, Jiayi Fang, Xuewei Dang, Kepeng Xu, Yongqiang Fang, Xia Li, and Min Liu
Nat. Hazards Earth Syst. Sci., 22, 3815–3829, https://doi.org/10.5194/nhess-22-3815-2022, https://doi.org/10.5194/nhess-22-3815-2022, 2022
Short summary
Short summary
Flooding by extreme weather events and human activities can lead to catastrophic impacts in coastal areas. The research illustrates the importance of assessing the performance of different future urban development scenarios in response to climate change, and the simulation study of urban risks will prove to decision makers that incorporating disaster prevention measures into urban development plans will help reduce disaster losses and improve the ability of urban systems to respond to floods.
Andrea Taramelli, Margherita Righini, Emiliana Valentini, Lorenzo Alfieri, Ignacio Gatti, and Simone Gabellani
Nat. Hazards Earth Syst. Sci., 22, 3543–3569, https://doi.org/10.5194/nhess-22-3543-2022, https://doi.org/10.5194/nhess-22-3543-2022, 2022
Short summary
Short summary
This work aims to support decision-making processes to prioritize effective interventions for flood risk reduction and mitigation for the implementation of flood risk management concepts in urban areas. Our findings provide new insights into vulnerability spatialization of urban flood events for the residential sector, demonstrating that the nature of flood pathways varies spatially and is influenced by landscape characteristics, as well as building features.
Pauline Brémond, Anne-Laurence Agenais, Frédéric Grelot, and Claire Richert
Nat. Hazards Earth Syst. Sci., 22, 3385–3412, https://doi.org/10.5194/nhess-22-3385-2022, https://doi.org/10.5194/nhess-22-3385-2022, 2022
Short summary
Short summary
It is impossible to protect all issues against flood risk. To prioritise protection, economic analyses are conducted. The French Ministry of the Environment wanted to make available damage functions that we have developed for several sectors. For this, we propose a methodological framework and apply it to the model we have developed to assess damage to agriculture. This improves the description, validation, transferability and updatability of models based on expert knowledge.
Wenwu Gong, Jie Jiang, and Lili Yang
Nat. Hazards Earth Syst. Sci., 22, 3271–3283, https://doi.org/10.5194/nhess-22-3271-2022, https://doi.org/10.5194/nhess-22-3271-2022, 2022
Short summary
Short summary
We propose a model named variable fuzzy set and information diffusion (VFS–IEM–IDM) to assess the dynamic risk of compound hazards, which takes into account the interrelations between the hazard drivers, deals with the problem of data sparsity, and considers the temporal dynamics of the occurrences of the compound hazards. To examine the efficacy of the proposed VFS–IEM–IDM model, a case study of typhoon–rainstorm risks in Shenzhen, China, is presented.
Sanish Bhochhibhoya and Roisha Maharjan
Nat. Hazards Earth Syst. Sci., 22, 3211–3230, https://doi.org/10.5194/nhess-22-3211-2022, https://doi.org/10.5194/nhess-22-3211-2022, 2022
Short summary
Short summary
This is a comprehensive approach to risk assessment that considers the dynamic relationship between loss and damage. The study combines physical risk with social science to mitigate the disaster caused by earthquakes in Nepal, taking socioeconomical parameters into account such that the risk estimates can be monitored over time. The main objective is to recognize the cause of and solutions to seismic hazard, building the interrelationship between individual, natural, and built-in environments.
Lennart Marien, Mahyar Valizadeh, Wolfgang zu Castell, Christine Nam, Diana Rechid, Alexandra Schneider, Christine Meisinger, Jakob Linseisen, Kathrin Wolf, and Laurens M. Bouwer
Nat. Hazards Earth Syst. Sci., 22, 3015–3039, https://doi.org/10.5194/nhess-22-3015-2022, https://doi.org/10.5194/nhess-22-3015-2022, 2022
Short summary
Short summary
Myocardial infarctions (MIs; heart attacks) are influenced by temperature extremes, air pollution, lack of green spaces and ageing population. Here, we apply machine learning (ML) models in order to estimate the influence of various environmental and demographic risk factors. The resulting ML models can accurately reproduce observed annual variability in MI and inter-annual trends. The models allow quantification of the importance of individual factors and can be used to project future risk.
Annette Sophie Bösmeier, Iso Himmelsbach, and Stefan Seeger
Nat. Hazards Earth Syst. Sci., 22, 2963–2979, https://doi.org/10.5194/nhess-22-2963-2022, https://doi.org/10.5194/nhess-22-2963-2022, 2022
Short summary
Short summary
Encouraging a systematic use of flood marks for more comprehensive flood risk management, we collected a large number of marks along the Kinzig, southwestern Germany, and tested them for plausibility and temporal continuance. Despite uncertainty, the marks appeared to be an overall consistent and practical source that may also increase flood risk awareness. A wide agreement between the current flood hazard maps and the collected flood marks moreover indicated a robust local hazard assessment.
Mark Schuerch, Hannah L. Mossman, Harriet E. Moore, Elizabeth Christie, and Joshua Kiesel
Nat. Hazards Earth Syst. Sci., 22, 2879–2890, https://doi.org/10.5194/nhess-22-2879-2022, https://doi.org/10.5194/nhess-22-2879-2022, 2022
Short summary
Short summary
Coastal nature-based solutions to adapt to sea-level rise, such as managed realignments (MRs), are becoming increasingly popular amongst scientists and coastal managers. However, local communities often oppose these projects, partly because scientific evidence for their efficiency is limited. Here, we propose a framework to work with stakeholders and communities to define success variables of MR projects and co-produce novel knowledge on the projects’ efficiency to mitigate coastal flood risks.
Robert Šakić Trogrlić, Amy Donovan, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci., 22, 2771–2790, https://doi.org/10.5194/nhess-22-2771-2022, https://doi.org/10.5194/nhess-22-2771-2022, 2022
Short summary
Short summary
Here we present survey responses of 350 natural hazard community members to key challenges in natural hazards research and step changes to achieve the Sustainable Development Goals. Challenges identified range from technical (e.g. model development, early warning) to governance (e.g. co-production with community members). Step changes needed are equally broad; however, the majority of answers showed a need for wider stakeholder engagement, increased risk management and interdisciplinary work.
Masahiko Haraguchi, Nicole Davi, Mukund Palat Rao, Caroline Leland, Masataka Watanabe, and Upmanu Lall
Nat. Hazards Earth Syst. Sci., 22, 2751–2770, https://doi.org/10.5194/nhess-22-2751-2022, https://doi.org/10.5194/nhess-22-2751-2022, 2022
Short summary
Short summary
Mass livestock mortality during severe winters (dzud in Mongolian) is a compound event. Summer droughts are a precondition for dzud. We estimate the return levels of relevant variables: summer drought conditions and minimum winter temperature. The result shows that the return levels of drought conditions vary over time. Winter severity, however, is constant. We link climatic factors to socioeconomic impacts and draw attention to the need for index insurance.
Samuel Rufat, Mariana Madruga de Brito, Alexander Fekete, Emeline Comby, Peter J. Robinson, Iuliana Armaş, W. J. Wouter Botzen, and Christian Kuhlicke
Nat. Hazards Earth Syst. Sci., 22, 2655–2672, https://doi.org/10.5194/nhess-22-2655-2022, https://doi.org/10.5194/nhess-22-2655-2022, 2022
Short summary
Short summary
It remains unclear why people fail to act adaptively to reduce future losses, even when there is ever-richer information available. To improve the ability of researchers to build cumulative knowledge, we conducted an international survey – the Risk Perception and Behaviour Survey of Surveyors (Risk-SoS). We find that most studies are exploratory and often overlook theoretical efforts that would enable the accumulation of evidence. We offer several recommendations for future studies.
Blaise Mafuko Nyandwi, Matthieu Kervyn, Muhashy Habiyaremye, François Kervyn, and Caroline Michellier
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-217, https://doi.org/10.5194/nhess-2022-217, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
Risk perception involves the processes of collecting, selecting, and interpreting signals about uncertain impacts of hazards. It may contribute to improving risk communication and motivating the protective behaviour of the population living near volcanoes. Our work describes the spatial variation and factors influencing volcanic risk perception of 2204 adults of Goma exposed to Nyiragongo. It contributes to providing a case study for risk perception understanding in the global south.
Faith Ka Shun Chan, Liang Emlyn Yang, Gordon Mitchell, Nigel Wright, Mingfu Guan, Xiaohui Lu, Zilin Wang, Burrell Montz, and Olalekan Adekola
Nat. Hazards Earth Syst. Sci., 22, 2567–2588, https://doi.org/10.5194/nhess-22-2567-2022, https://doi.org/10.5194/nhess-22-2567-2022, 2022
Short summary
Short summary
Sustainable flood risk management (SFRM) has become popular since the 1980s. This study examines the past and present flood management experiences in four developed countries (UK, the Netherlands, USA, and Japan) that have frequently suffered floods. We analysed ways towards SFRM among Asian coastal cities, which are still reliant on a hard-engineering approach that is insufficient to reduce future flood risk. We recommend stakeholders adopt mixed options to undertake SFRM practices.
Zélie Stalhandske, Valentina Nesa, Marius Zumwald, Martina S. Ragettli, Alina Galimshina, Niels Holthausen, Martin Röösli, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 22, 2531–2541, https://doi.org/10.5194/nhess-22-2531-2022, https://doi.org/10.5194/nhess-22-2531-2022, 2022
Short summary
Short summary
We model the impacts of heat on both mortality and labour productivity in Switzerland in a changing climate. We estimate 658 heat-related death currently per year in Switzerland and CHF 665 million in losses in labour productivity. Should we remain on a high-emissions pathway, these values may double or even triple by the end of the century. Under a lower-emissions scenario impacts are expected to slightly increase and peak by around mid-century.
Adrian Ringenbach, Elia Stihl, Yves Bühler, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Guang Lu, Andreas Stoffel, Martin Kistler, Sandro Degonda, Kevin Simmler, Daniel Mader, and Andrin Caviezel
Nat. Hazards Earth Syst. Sci., 22, 2433–2443, https://doi.org/10.5194/nhess-22-2433-2022, https://doi.org/10.5194/nhess-22-2433-2022, 2022
Short summary
Short summary
Forests have a recognized braking effect on rockfalls. The impact of lying deadwood, however, is mainly neglected. We conducted 1 : 1-scale rockfall experiments in three different states of a spruce forest to fill this knowledge gap: the original forest, the forest including lying deadwood and the cleared area. The deposition points clearly show that deadwood has a protective effect. We reproduced those experimental results numerically, considering three-dimensional cones to be deadwood.
Arthur Charpentier, Molly James, and Hani Ali
Nat. Hazards Earth Syst. Sci., 22, 2401–2418, https://doi.org/10.5194/nhess-22-2401-2022, https://doi.org/10.5194/nhess-22-2401-2022, 2022
Short summary
Short summary
Predicting consequences of drought episodes is complex, all the more when focusing on subsidence. We use 20 years of insurer data to derive a model to predict both the intensity and the severity of such events, using geophysical and climatic information located in space and time.
Marcos Roberto Benso, Gabriela Chiquito Gesualdo, Greicelene Jesus Silva, Luis Miguel Castillo Rápalo, Fabrício Alonso Richmond Navarro, Roberto Fray Silva, and Eduardo Mario Mendiondo
EGUsphere, https://doi.org/10.5194/egusphere-2022-498, https://doi.org/10.5194/egusphere-2022-498, 2022
Short summary
Short summary
Lately we have been exposed to news demonstrating the vulnerability of our society to a variety of natural disasters and they usually are not isolated. To improve the financial stability, we need to provide insurance contracts that allow coverage for multiple sources of threats, such as droughts, extreme temperatures and floods. We conducted a review of the literature for answering very simple questions regarding weather index insurance design and how to cope with multiple hazard risks.
Juan Camilo Gómez Zapata, Massimiliano Pittore, Nils Brinckmann, Juan Lizarazo-Marriaga, Sergio Medina, Nicola Tarque, and Fabrice Cotton
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-183, https://doi.org/10.5194/nhess-2022-183, 2022
Revised manuscript under review for NHESS
Short summary
Short summary
To investigate cumulative damage on extended building portfolios, we propose an alternative and modular method to probabilistically integrate sets of single-hazard vulnerability models that are being constantly developed by experts from various research fields to be used within a multi-risk context. We demonstrate its application by assessing the economic losses expected for the residential building stock of Lima, Peru, a megacity commonly exposed to consecutive earthquake and tsunami scenarios.
Tiantian Wang, Yunmeng Lu, Tiezhong Liu, Yujiang Zhang, Xiaohan Yan, and Yi Liu
Nat. Hazards Earth Syst. Sci., 22, 2185–2199, https://doi.org/10.5194/nhess-22-2185-2022, https://doi.org/10.5194/nhess-22-2185-2022, 2022
Short summary
Short summary
To identify the main determinants influencing urban residents' intention to prepare for flood risk in China, we developed an integrated theoretical framework based on protection motivation theory (PMT) and validated it with structural equation modeling. The results showed that both threat perception and coping appraisal were effective in increasing residents' intention to prepare. In addition, individual heterogeneity and social context also had an impact on preparedness intentions.
Ji-Myong Kim, Sang-Guk Yum, Hyunsoung Park, and Junseo Bae
Nat. Hazards Earth Syst. Sci., 22, 2131–2144, https://doi.org/10.5194/nhess-22-2131-2022, https://doi.org/10.5194/nhess-22-2131-2022, 2022
Short summary
Short summary
Insurance data has been utilized with deep learning techniques to predict natural disaster damage losses in South Korea.
Maud Devès, Robin Lacassin, Hugues Pécout, and Geoffrey Robert
Nat. Hazards Earth Syst. Sci., 22, 2001–2029, https://doi.org/10.5194/nhess-22-2001-2022, https://doi.org/10.5194/nhess-22-2001-2022, 2022
Short summary
Short summary
This paper focuses on the issue of population information about natural hazards and disaster risk. It builds on the analysis of the unique seismo-volcanic crisis on the island of Mayotte, France, that started in May 2018 and lasted several years. We document the gradual response of the actors in charge of scientific monitoring and risk management. We then make recommendations for improving risk communication strategies in Mayotte and also in contexts where comparable geo-crises may happen.
Benni Thiebes, Ronja Winkhardt-Enz, Reimund Schwarze, and Stefan Pickl
Nat. Hazards Earth Syst. Sci., 22, 1969–1972, https://doi.org/10.5194/nhess-22-1969-2022, https://doi.org/10.5194/nhess-22-1969-2022, 2022
Short summary
Short summary
The worldwide challenge of the present as well as the future is to navigate the global community to a sustainable and secure future. Humanity is increasingly facing multiple risks under more challenging conditions. The continuation of climate change and the ever more frequent occurrence of extreme, multi-hazard, and cascading events are interacting with increasingly complex and interconnected societies.
Tommaso Simonelli, Laura Zoppi, Daniela Molinari, and Francesco Ballio
Nat. Hazards Earth Syst. Sci., 22, 1819–1823, https://doi.org/10.5194/nhess-22-1819-2022, https://doi.org/10.5194/nhess-22-1819-2022, 2022
Short summary
Short summary
The paper discusses challenges (and solutions) emerged during a collaboration among practitioners, stakeholders, and scientists in the definition of flood damage maps in the Po River District. Social aspects were proven to be fundamental components of the risk assessment; variety of competences in the working group was key in finding solutions and revealing weaknesses of intermediate proposals. This paper finally highlights the need of duplicating such an experience at a broader European level.
Chih-Chung Chung and Zih-Yi Li
Nat. Hazards Earth Syst. Sci., 22, 1777–1794, https://doi.org/10.5194/nhess-22-1777-2022, https://doi.org/10.5194/nhess-22-1777-2022, 2022
Short summary
Short summary
The Neikuihui tribe in northern Taiwan faces landslides during rainfall events. Since the government needs to respond with disaster management for the most at-risk tribes, this study develops rapid risk zoning, which involves the susceptibility, activity, exposure, and vulnerability of each slope unit of the area. Results reveal that one of the slope units of the Neikuihui tribal area has a higher risk and did suffer a landslide during the typhoon in 2016.
Anna Rita Scorzini, Benjamin Dewals, Daniela Rodriguez Castro, Pierre Archambeau, and Daniela Molinari
Nat. Hazards Earth Syst. Sci., 22, 1743–1761, https://doi.org/10.5194/nhess-22-1743-2022, https://doi.org/10.5194/nhess-22-1743-2022, 2022
Short summary
Short summary
This study presents a replicable procedure for the adaptation of synthetic, multi-variable flood damage models among countries that may have different hazard and vulnerability features. The procedure is exemplified here for the case of adaptation to the Belgian context of a flood damage model, INSYDE, for the residential sector, originally developed for Italy. The study describes necessary changes in model assumptions and input parameters to properly represent the new context of implementation.
Thulasi Vishwanath Harish, Nivedita Sairam, Liang Emlyn Yang, Matthias Garschagen, and Heidi Kreibich
EGUsphere, https://doi.org/10.5194/egusphere-2022-171, https://doi.org/10.5194/egusphere-2022-171, 2022
Short summary
Short summary
Coastal Asian cities are becoming more vulnerable to flooding. In this study we analyse the data collected from flood prone houses in Ho Chi Minh City to identify what motivates the households to adopt flood precautionary measures. The results revealed that educating the households about the available flood precautionary measures and communicating the flood protection measures taken by the government encourages the households to adopt measures without having to experience multiple flood events.
Annegret H. Thieken, Philip Bubeck, Anna Heidenreich, Jennifer von Keyserlingk, Lisa Dillenardt, and Antje Otto
EGUsphere, https://doi.org/10.5194/egusphere-2022-244, https://doi.org/10.5194/egusphere-2022-244, 2022
Short summary
Short summary
In July 2021 intense rainfall caused devastating floods in Western Europe with 184 fatalities in the German federal states of North Rhine-Westphalia (NW) and Rhineland-Palatinate (RP) questioning their warning system. An online survey revealed that 35 % of the respondents from NW and 29 % from RP did not receive any warning. Many of those who were warned did not expect severe flooding, nor did they know how to react. The study provides entry points for improving the warning system in Germany.
Max Schneider, Michelle McDowell, Peter Guttorp, E. Ashley Steel, and Nadine Fleischhut
Nat. Hazards Earth Syst. Sci., 22, 1499–1518, https://doi.org/10.5194/nhess-22-1499-2022, https://doi.org/10.5194/nhess-22-1499-2022, 2022
Short summary
Short summary
Aftershock forecasts are desired for risk response, but public communications often omit their uncertainty. We evaluate three uncertainty visualization designs for aftershock forecast maps. In an online experiment, participants complete map-reading and judgment tasks relevant across natural hazards. While all designs reveal which areas are likely to have many or no aftershocks, one design can also convey that areas with high uncertainty can have more aftershocks than forecasted.
Philip J. Ward, James Daniell, Melanie Duncan, Anna Dunne, Cédric Hananel, Stefan Hochrainer-Stigler, Annegien Tijssen, Silvia Torresan, Roxana Ciurean, Joel C. Gill, Jana Sillmann, Anaïs Couasnon, Elco Koks, Noemi Padrón-Fumero, Sharon Tatman, Marianne Tronstad Lund, Adewole Adesiyun, Jeroen C. J. H. Aerts, Alexander Alabaster, Bernard Bulder, Carlos Campillo Torres, Andrea Critto, Raúl Hernández-Martín, Marta Machado, Jaroslav Mysiak, Rene Orth, Irene Palomino Antolín, Eva-Cristina Petrescu, Markus Reichstein, Timothy Tiggeloven, Anne F. Van Loon, Hung Vuong Pham, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, https://doi.org/10.5194/nhess-22-1487-2022, 2022
Short summary
Short summary
The majority of natural-hazard risk research focuses on single hazards (a flood, a drought, a volcanic eruption, an earthquake, etc.). In the international research and policy community it is recognised that risk management could benefit from a more systemic approach. In this perspective paper, we argue for an approach that addresses multi-hazard, multi-risk management through the lens of sustainability challenges that cut across sectors, regions, and hazards.
Shivani Chouhan and Mahua Mukherjee
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-91, https://doi.org/10.5194/nhess-2022-91, 2022
Revised manuscript under review for NHESS
Short summary
Short summary
The Himalayas are prone to multi-hazard. To minimize loss, proper planning and execution in the right direction is necessary. Data collection is base for any risk assessment process. This enhanced survey form is easy to understand, pictorial and identify high-risk components of any building (structural & non-structural) and campus from multi-hazards. Its results can help to utilize the budget in a prioritized way. This study is gone through SWOT of the existing risk assessment form.
Fatemeh Jalayer, Hossein Ebrahimian, Konstantinos Trevlopoulos, and Brendon Bradley
EGUsphere, https://doi.org/10.5194/egusphere-2022-206, https://doi.org/10.5194/egusphere-2022-206, 2022
Short summary
Short summary
Assessing tsunami fragility and the related uncertainties is crucial in the evaluation of incurred losses. Empirical fragility modelling is based on observed tsunami intensity and damage data. Fragility curves for hierarchical damage levels are distinguished by their laminar shape; that is, the curves should not intersect. However, this condition is not satisfied automatically. We present a workflow for hierarchical fragility modelling, uncertainty propagation, and fragility model selection.
Marthe L. K. Wens, Anne F. van Loon, Ted I. E. Veldkamp, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 22, 1201–1232, https://doi.org/10.5194/nhess-22-1201-2022, https://doi.org/10.5194/nhess-22-1201-2022, 2022
Short summary
Short summary
In this paper, we present an application of the empirically calibrated drought risk adaptation model ADOPT for the case of smallholder farmers in the Kenyan drylands. ADOPT is used to evaluate the effect of various top-down drought risk reduction interventions (extension services, early warning systems, ex ante cash transfers, and low credit rates) on individual and community drought risk (adaptation levels, food insecurity, poverty, emergency aid) under different climate change scenarios.
Caroline J. Williams, Rachel A. Davidson, Linda K. Nozick, Joseph E. Trainor, Meghan Millea, and Jamie L. Kruse
Nat. Hazards Earth Syst. Sci., 22, 1055–1072, https://doi.org/10.5194/nhess-22-1055-2022, https://doi.org/10.5194/nhess-22-1055-2022, 2022
Short summary
Short summary
A neural network model based on publicly available data was developed to forecast the number of housing units for each of 1000 counties in the southeastern United States in each of the next 20 years. The estimated number of housing units is almost always (97 % of the time) less than 1 percentage point different than the observed number, which are predictive errors acceptable for most practical purposes. The housing unit projections can help quantify changes in future expected hurricane impacts.
Animesh K. Gain, Yves Bühler, Pascal Haegeli, Daniela Molinari, Mario Parise, David J. Peres, Joaquim G. Pinto, Kai Schröter, Ricardo M. Trigo, María Carmen Llasat, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 985–993, https://doi.org/10.5194/nhess-22-985-2022, https://doi.org/10.5194/nhess-22-985-2022, 2022
Short summary
Short summary
To mark the 20th anniversary of Natural Hazards and Earth System Sciences (NHESS), an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences, we highlight 11 key publications covering major subject areas of NHESS that stood out within the past 20 years.
Dorothea Wabbels and Gian Reto Bezzola
Nat. Hazards Earth Syst. Sci., 22, 927–930, https://doi.org/10.5194/nhess-22-927-2022, https://doi.org/10.5194/nhess-22-927-2022, 2022
Short summary
Short summary
Due to its geography and climate, densely populated Switzerland is often affected by water-related hazards such as surface runoff, floods, debris flows, landslides, rockfalls and avalanches. Almost every part of Switzerland is exposed to natural hazards, and anyone can be affected.
Enrico Tubaldi, Christopher J. White, Edoardo Patelli, Stergios Aristoteles Mitoulis, Gustavo de Almeida, Jim Brown, Michael Cranston, Martin Hardman, Eftychia Koursari, Rob Lamb, Hazel McDonald, Richard Mathews, Richard Newell, Alonso Pizarro, Marta Roca, and Daniele Zonta
Nat. Hazards Earth Syst. Sci., 22, 795–812, https://doi.org/10.5194/nhess-22-795-2022, https://doi.org/10.5194/nhess-22-795-2022, 2022
Short summary
Short summary
Bridges are critical infrastructure components of transport networks. A large number of these critical assets cross or are adjacent to waterways and are therefore exposed to the potentially devastating impact of floods. This paper discusses a series of issues and areas where improvements in research and practice are required in the context of risk assessment and management of bridges exposed to flood hazard, with the ultimate goal of guiding future efforts in improving bridge flood resilience.
Aurélia Bernard, Nathalie Long, Mélanie Becker, Jamal Khan, and Sylvie Fanchette
Nat. Hazards Earth Syst. Sci., 22, 729–751, https://doi.org/10.5194/nhess-22-729-2022, https://doi.org/10.5194/nhess-22-729-2022, 2022
Short summary
Short summary
This article reviews current scientific literature in order to define vulnerability in the context of coastal Bangladesh facing cyclonic flooding. A new metric, called the socio-spatial vulnerability index, is defined as a function of both the probability of the cyclonic flood hazard and the sensitivity of delta inhabitants. The main result shows that three very densely populated districts, located in the Ganges delta tidal floodplain, are highly vulnerable to cyclonic flooding.
Sarra Kchouk, Lieke A. Melsen, David W. Walker, and Pieter R. van Oel
Nat. Hazards Earth Syst. Sci., 22, 323–344, https://doi.org/10.5194/nhess-22-323-2022, https://doi.org/10.5194/nhess-22-323-2022, 2022
Short summary
Short summary
The aim of our study was to question the validity of the assumed direct linkage between drivers of drought and its impacts on water and food securities, mainly found in the frameworks of drought early warning systems (DEWSs). We analysed more than 5000 scientific studies leading us to the conclusion that the local context can contribute to drought drivers resulting in these drought impacts. Our research aims to increase the relevance and utility of the information provided by DEWSs.
Mattia Amadio, Arthur H. Essenfelder, Stefano Bagli, Sepehr Marzi, Paolo Mazzoli, Jaroslav Mysiak, and Stephen Roberts
Nat. Hazards Earth Syst. Sci., 22, 265–286, https://doi.org/10.5194/nhess-22-265-2022, https://doi.org/10.5194/nhess-22-265-2022, 2022
Short summary
Short summary
We estimate the risk associated with storm surge events at two case study locations along the North Adriatic Italian coast, considering sea level rise up to the year 2100, and perform a cost–benefit analysis of planned or proposed coastal renovation projects. The study uses nearshore hydrodynamic modelling. Our findings represent a useful indication for disaster risk management, helping to understand the importance of investing in adaptation and estimating the economic return on investments.
Mathias Raschke
Nat. Hazards Earth Syst. Sci., 22, 245–263, https://doi.org/10.5194/nhess-22-245-2022, https://doi.org/10.5194/nhess-22-245-2022, 2022
Short summary
Short summary
We develop the combined return period to stochastically measure hazard and catastrophe events. This is used to estimate a risk curve by stochastic scaling of historical events and averaging corresponding risk parameters in combination with a vulnerability model. We apply the method to extratropical cyclones over Germany and estimate the risk for insured losses. The results are strongly influenced by assumptions about spatial dependence.
Luis Moya, Fernando Garcia, Carlos Gonzales, Miguel Diaz, Carlos Zavala, Miguel Estrada, Fumio Yamazaki, Shunichi Koshimura, Erick Mas, and Bruno Adriano
Nat. Hazards Earth Syst. Sci., 22, 65–70, https://doi.org/10.5194/nhess-22-65-2022, https://doi.org/10.5194/nhess-22-65-2022, 2022
Short summary
Short summary
Informal occupation of unused lands for settlements is a critical issue in Peru. In most cases, such areas are unsafe against natural hazards. We performed a time-series analysis of Sentinel-1 images at recent informal settlements in Lima. The result suggests that a low-cost and sustainable monitoring system of informal settlements can be implemented.
Stephen Cunningham, Steven Schuldt, Christopher Chini, and Justin Delorit
Nat. Hazards Earth Syst. Sci., 21, 3843–3862, https://doi.org/10.5194/nhess-21-3843-2021, https://doi.org/10.5194/nhess-21-3843-2021, 2021
Short summary
Short summary
The severity of disaster-induced mental health illness outcomes varies based on factors such as socioeconomic standing, age, and degree of exposure. This research proposes a resource allocation framework allowing decision-makers the capability to assess the capacity and scalability of early, intermediate, and long-term mental health treatment and recovery. Ultimately, this framework can inform policy and operational decisions based on community needs and constrained resources post-disaster.
Ante Ivčević, Hubert Mazurek, Lionel Siame, Raquel Bertoldo, Vania Statzu, Kamal Agharroud, Isabel Estrela Rego, Nibedita Mukherjee, and Olivier Bellier
Nat. Hazards Earth Syst. Sci., 21, 3749–3765, https://doi.org/10.5194/nhess-21-3749-2021, https://doi.org/10.5194/nhess-21-3749-2021, 2021
Short summary
Short summary
The results from two Mediterranean case studies, in north Morocco and west Sardinia, confirm the importance of interdisciplinarity and risk awareness sessions for risk management. The policy literature and interviews held with the administration, associations and scientists indicate that although recognised, the importance of risk awareness sessions is not necessarily put into practice. As a consequence, this could lead to a failure of risk management policy.
Cited articles
Barendrecht, M. H., Viglione, A., and Blöschl, G.: A dynamic framework for flood risk, Water Secur., 1, 3–11, https://doi.org/10.1016/j.wasec.2017.02.001, 2017. a
Bauduceau, N.: Éléments d'analyse des répercussions des inondations de novembre 1999 sur les activités agricoles des départements de l'Aude, des Pyrénées-Orientales et du Tarn, Tech. rep., Équipe pluridisciplinaire Plan Loire Grandeur Nature, Orleans, France, 2001. a
Bosello, F. and Standardi, G.: A Sub-national CGE Model for the European
Mediterranean Countries, in: The New Generation of Computable General
Equilibrium Models: Modeling the Economy, edited by: Perali, F. and Scandizzo, P. L., Springer International Publishing, 279–308, https://doi.org/10.1007/978-3-319-58533-8_11, 2018. a
Brémond, P. and Grelot, F.: Taking into account recovery to assess
vulnerability: application to farms exposed to flooding, in: Managing Resources of a Limited Planet, 2012 International Congress on Environmental
Modelling and Software, edited by: Seppelt, R., Voinov, A. A., Lange, S., and
Bankamp, D., International Environmental Modelling and Software Society,
Leipzig, Germany, 2012. a
Brémond, P., Grelot, F., and Agenais, A.-L.: Review Article: “Flood
damage assessment on agricultural areas: review and analysis of existing
methods”, Nat. Hazards Earth Syst. Sci., 13, 2493–2512,
https://doi.org/10.5194/nhess-13-2493-2013, 2013. a, b, c
Brouwer, R. and van Elk, R.: Integrated ecological, economic and social impact assessment of alternative flood control policies in the Netherlands,
Ecol. Econ., 50, 1–21, https://doi.org/10.1016/j.ecolecon.2004.01.020, 2004. a
Brouwers, L. and Boman, M.: A computational agent model of flood management
strategies, in: Computational Methods for Agricultural Research: Advances and
Applications, chap. 14, edited by: do Prado, H. A., Luiz, A. J. B., and Filho, H. C., IGI Global, Hershey, PA, 2010. a
Carrera, L., Standardi, G., Bosello, F., and Mysiak, J.: Assessing direct and
indirect economic impacts of a flood event through the integration of spatial
and computable general equilibrium modelling, Environ. Model. Softw., 63, 109–122, 2015. a
CCMSA: Conférence de presse de rentrée de la CCMSA, Mutualité
Sociale Agricole, Direction de la communication – Service Presse, available at: https://www.msa.fr/lfy/documents/98830/41910604/Dossier de presse de la conference de presse de rentree 2017/77fafd3b-bc63-44a0-9808-8168b3bac248 (last access: January 2018), 2017. a, b
Chambre d'agriculture Var: Action 25 du PAPI d'intention de l'Argens,
Réalisation de diagnostics de vulnérabilité d'installations
agricoles en zone inondable, France, 2014. a
Chevet, J. M.: Le rôle des caves coopératives dans le regroupement de
l'offre en France au XXème siècle, Tech. Rep. 2004-12, INRA-CORELA
working papers, available at:
https://www6.versailles-grignon.inra.fr/aliss/content/download/3348/35635/file/WP04-12.pdf (last access: 11 October 2021) 2004. a, b, c
Chongvilaivan, A.: Thailand's 2011 flooding: Its impact on direct exports and
global supply chains, ARTNeT Working Paper Series 113, ARTNeT – Asia-Pacific Research and Training Network on Trade, ESCAP, Bangkok, available at: https://www.unescap.org/sites/default/files/AWP No. 113.pdf (last access: 11 October 2021), 2012. a
Cochrane, H. C.: Indirect Losses from Natural Disasters: Measurement and Myth, in: Modeling Spatial and Economic Impacts of Disasters, Advances in Spatial Science, chap. 3, edited by: Okuyama, Y. and Chang, S. E., Springer,
Berlin, Heidelberg, 37–52, https://doi.org/10.1007/978-3-540-24787-6_3, 2004. a
Collombat, P.-Y.: Rapport d'information fait au nom de la mission commune
d'information sur les inondations qui se sont produites dans le Var, et plus
largement, dans le sud-est de la France au mois de novembre 2011, available at: https://www.senat.fr/rap/r11-775/r11-7751.pdf (last access: 11 October 2021), 2012. a
Crawford-Brown, D., Syddall, M., Guan, D., Hall, J., Li, J., Jenkins, K., and
Beaven, R.: Vulnerability of London's Economy to Climate Change: Sensitivity to Production Loss, J. Environ. Protect., 4, 548–563, 2013. a
Crespi, V., Galstyan, A., and Lerman, K.: Top-down vs bottom-up methodologies
in multi-agent system design, Autonom. Robots, 24, 303–313,
https://doi.org/10.1007/s10514-007-9080-5, 2008. a
Dawson, R. J., Peppe, R., and Wang, M.: An agent-based model for risk-based
flood incident management, Nat. Hazards, 59, 167–189,
https://doi.org/10.1007/s11069-011-9745-4, 2011. a
Donaghy, K. P., Balta-Ozkan, N., and Hewings, G. J.: Modeling Unexpected Events in Temporally Disaggregated Econometric Input-Output Models of Regional Economies, Econ. Syst. Res., 19, 125–145, https://doi.org/10.1080/09535310701328484, 2007. a
Dubbelboer, J., Nikolic, I., Jenkins, K., and Hall, J.: An Agent-Based Model of Flood Risk and Insurance, J. Artif. Soc. Social Simul., 20, 6, https://doi.org/10.18564/jasss.3135, 2017. a, b
EEA: Corine Land Cover, European Environment Agency, available at:
https://land.copernicus.eu/pan-european/corine-land-cover (last access: 11 October 2021), 2012. a
Erdlenbruch, K. and Bonté, B.: Simulating the dynamics of individual
adaptation to floods, Environ. Sci. Policy, 84, 134–148, https://doi.org/10.1016/j.envsci.2018.03.005, 2018. a, b
Erdlenbruch, K., Thoyer, S., Grelot, F., Kast, R., and Enjolras, G.:
Risk-sharing policies in the context of the French Flood Prevention Action
Programmes, J. Environ. Manage., 91, 363–369, https://doi.org/10.1016/j.jenvman.2009.09.002, 2009. a, b
Ferrarese, C. and Mazzoli, E.: Analysis of Local Economic Impacts Using a
Village Social Accounting Matrix: The Case of Oaxaca, in: The New Generation of Computable General Equilibrium Models: Modeling the Economy, edited by: Perali, F. and Scandizzo, P. L., Springer International Publishing, 85–116, https://doi.org/10.1007/978-3-319-58533-8_5, 2018. a
Field, C. B., Barros, V., Stocker, T. F., Dahe, Q., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., and Midgley, P. M.: Managing the Risks of Extreme Events and Disasters to
Advance Climate Change Adaptation, in: A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, Cambridge University
Press, Cambridge, 2012. a, b
Filatova, T.: Empirical agent-based land market: Integrating adaptive economic behavior in urban land-use models, Computers, Environ. Urban Syst.,
54, 397–413, https://doi.org/10.1016/j.compenvurbsys.2014.06.007, 2015. a, b
Filatova, T., Veen, A. V. D., and Parker, D. C.: Land Market Interactions
between Heterogeneous Agents in a Heterogeneous Landscape – Tracing the
Macro-Scale Effects of Individual Trade-Offs between Environmental Amenities
and Disamenities, Can. J. Agricult. Econ., 57, 431–457, https://doi.org/10.1111/j.1744-7976.2009.01164.x, 2009. a, b
Filatova, T., Parker, D., and van der Veen, A.: The Implications of Skewed Risk Perception for a Dutch Coastal Land Market: Insights from an Agent-Based
Computational Economics Model, Agricult. Resour. Econ. Rev., 40, 3, https://doi.org/10.1017/S1068280500002860, 2011. a, b
Grames, J., Prskawetz, A., Grass, D., Viglione, A., and Blöschl, G.:
Modeling the interaction between flooding events and economic growth, Ecol. Econ., 129, 193–209, https://doi.org/10.1016/j.ecolecon.2016.06.014, 2016. a
Grames, J., Grass, D., Kort, P. M., and Fürnkranz-Prskawetz, A.: Optimal
investment and location decisions of a firm in a flood risk area using
Impulse Control Theory, ECON WPS – Vienna University of Technology Working
Papers inEconomic Theory and Policy No. 01/2017, Vienna University of
Technology, Vienna, 2017. a
Grelot, F., Bertrand, C., Besson, P., Bonté, B., Brémond, P., Cherel, J.-P., Collard, A.-L., Défossez, S., Erdlenbruch, K., Heaumé, C., Moatty, A., Nortes Martinez, D., Payan, C., Richert, C., Sanseverino-Godfrin, V., Vinet, F., and Zerluth, N.: Résilience des territoires face à l'inondation. Pour une approche préventive par l'adaptation post-événement, Rapport final, Ministère de l'Écologie, du Développement Durable et de l'Énergie, 2017. a
Haer, T., Botzen, W. W., and Aerts, J. C.: The effectiveness of flood risk
communication strategies and the influence of social networks – Insights from an agent-based model, Environ. Sci. Policy, 60, 44–52,
https://doi.org/10.1016/j.envsci.2016.03.006, 2016a. a, b
Haer, T., Wouter Botzen, W. J., de Moel, H., and Aerts, J. C. J. H.:
Integrating Household Risk Mitigation Behavior in Flood Risk Analysis: An
Agent-Based Model Approach, Risk Anal., 37, 1977–1992, https://doi.org/10.1111/risa.12740, 2016b. a, b
Hallegatte, S.: An Adaptive Regional Input-Output Model and its Application to the Assessment of the Economic Cost of Katrina, Risk Anal., 28, 779–799, 2008. a
Hallegatte, S.: Modeling the Role of Inventories and Heterogeneity in the
Assessment of the Economic Costs of Natural Disasters, Risk Anal., 34, 152–167, 2014. a
Hallegatte, S. and Ghil, M.: Natural disasters impacting a macroeconomic model with endogenous dynamics, Ecol. Econ., 68, 582–592, 2008. a
Hallegatte, S. and Przyluski, V.: The Economics of Natural Disasters. Concepts and Methods, Policy Research Working Paper 5507, The World Bank, 2010. a
Hallegatte, S., Hourcade, J.-C., and Dumas, P.: Why economic dynamics matter in assessing climate change damages: Illustration on extreme events, Ecological Economics, 62, 330–340, https://doi.org/10.1016/j.ecolecon.2006.06.006, 2007. a
Hess, T. M. and Morris, J.: Estimating the value of flood alleviation on
agricultural grassland, Agr. Water Manage., 15, 141–153, 1988. a
Jansen, J., van Ittersum, M., Janssen, S., and Reidsma, P.: Integrated
Assessment of Agricultural Systems at the European Level, Policy Brief LIAISE
– SEAMLESS, available at:
https://www.wur.nl/upload_mm/c/f/3/6f3b0caa-bf89-40a5-a0d9-0f9c5ad87cf5_Policy_brief_final_A.pdf
(last access: 11 October 2021), 2016. a
Jenkins, K., Surminski, S., Hall, J., and Crick, F.: Assessing surface water
flood risk and management strategies under future climate change: Insights
from an Agent-Based Model, Sci. Total Environ., 595, 159–168,
https://doi.org/10.1016/j.scitotenv.2017.03.242, 2017. a, b
Kajitani, Y. and Tatano, H.: Estimation of production capacity loss rate after the great east Japan earthquake and tsunami in 2011, Econ. Syst. Res., 26, 13–38, https://doi.org/10.1080/09535314.2013.872081, 2014. a
Kelly, S.: Estimating economic loss from cascading infrastructure failure: a
perspective on modelling interdependency, in: Infrastructure Complexity, Vol. 2, Springer, https://doi.org/10.1186/s40551-015-0010-y, 2015. a
Koks, E. E., Bockarjova, M., de Moel, H., and Aerts, J. C. J. H.: Integrated
Direct and Indirect Flood Risk Modeling: Development and Sensitivity
Analysis, Risk Anal., 35, 882–900, https://doi.org/10.1111/risa.12300, 2014. a
Koks, E. E., Carrera, L., Jonkeren, O., Aerts, J. C. J. H., Husby, T. G., Thissen, M., Standardi, G., and Mysiak, J.: Regional disaster impact analysis: comparing input–output and computable general equilibrium models, Nat. Hazards Earth Syst. Sci., 16, 1911–1924, https://doi.org/10.5194/nhess-16-1911-2016, 2016. a
Kreibich, H. and Bubeck, P.: Natural hazards: Direct Costs and Losses Due to
the Disruption of Production Processes, Tech. rep., UNISDR GAR, available at: https://www.preventionweb.net/publication/natural-hazards-direct-costs-and-losses-due-disruption-
production-processes
(last access: 11 October 2021), 2013. a, b, c
Linghe, Y. and Masato, A.: The impacts of natural disasters on global supply
chains, ARTNeT Working Paper Series 115, ARTNeT – Asia-Pacific Research and Training Network on Trade, ESCAP, Bangkok, 2012. a
Merz, B., Kreibich, H., Schwarze, R., and Thieken, A.: Review article “Assessment of economic flood damage”, Nat. Hazards Earth Syst. Sci., 10, 1697–1724, https://doi.org/10.5194/nhess-10-1697-2010, 2010. a, b
Meyer, V., Becker, N., Markantonis, V., Schwarze, R., Aerts, J. C. J. H.,
van den Bergh, J. C. J. M., Bouwer, L. M., Bubeck, P., Ciavola, P., Daniel,
V., Genovese, E., Green, C., Hallegatte, S., Kreibich, H., Lequeux, Q.,
Lochner, B., Logar, I., Papyrakis, E., Pfurtscheller, C., Poussin, J.,
Przyluski, V., Thieken, A. H., Thompson, P., and Viavattene, C.: Costs of
Natural Hazards – A Synthesis, Tech. rep., European research project CONHAZ,
CONHAZ consortium, 2012. a
Meyer, V., Becker, N., Markantonis, V., Schwarze, R., van den Bergh, J. C. J. M., Bouwer, L. M., Bubeck, P., Ciavola, P., Genovese, E., Green, C., Hallegatte, S., Kreibich, H., Lequeux, Q., Logar, I., Papyrakis, E., Pfurtscheller, C., Poussin, J., Przyluski, V., Thieken, A. H., and Viavattene, C.: Review article: Assessing the costs of natural hazards – state of the art and knowledge gaps, Nat. Hazards Earth Syst. Sci., 13, 1351–1373, https://doi.org/10.5194/nhess-13-1351-2013, 2013. a, b, c, d, e, f, g
Morris, J. and Brewin, P.: The impact of seasonal flooding on agriculture: the spring 2012 floods in Somerset, England, J. Flood Risk Manage., 7, 128–140, https://doi.org/10.1111/jfr3.12041, 2014. a
Morris, J. and Hess, T. M.: Agricultural flood alleviation benefit assessment: a case study, J. Agricult. Econ., 39, 402–412, 1988. a
National Research Council: The Impacts of Natural Disasters: A Framework for
Loss Estimation, The National Academies Press, Washington, DC, 1999. a
OCDE: Étude de l'OCDE sur la gestion des risques d'inondation: la Seine en Île-de-France, Tech. rep., OECD Publishing, Paris, https://doi.org/10.1787/9789264207929-fr, 2014. a
Okuyama, Y. and Santos, J. R.: Disaster impact and input-output analysis,
Econ. Syst. Res., 26, 1–12, https://doi.org/10.1080/09535314.2013.871505, 2014. a
Oosterhaven, J. and Többen, J.: Wider economic impacts of heavy flooding in Germany: a non-linear programming approach, Spat. Econ. Anal., 12, 404–428, https://doi.org/10.1080/17421772.2017.1300680, 2017. a, b
Otto, C., Willner, S., Wenz, L., Frieler, K., and Levermann, A.: Modeling
loss-propagation in the global supply network: The dynamic agent-based model
acclimate, J. Econ. Dynam. Control, 83, 232–269,
https://doi.org/10.1016/j.jedc.2017.08.001, 2017. a
Penning-Rowsell, E. C., Priest, S. J., Parker, D. J., Morris, J., Tunstall, S. M., Viavattene, C., Chatterton, J., and Owen, D.: Flood and Coastal Erosion Risk Management: A Manual for Economic Appraisal, Routledge,
Isbn 9780203066393, https://doi.org/10.4324/9780203066393, 2013. a, b
Penning-Rowsell, E. C. and Green, C. H.: New Insights into the Appraisal of
Flood-Alleviation Benefits: (1) Flood Damage and Flood Loss Information, Water Environ. J., 14, 347–353, https://doi.org/10.1111/j.1747-6593.2000.tb00272.x, 2000. a
Posthumus, H., Morris, J., Hess, T. M., Neville, D., Philips, E., and Baylis,
A.: Impacts of the summer 2007 floods on agriculture in England, J. Flood Risk Manage., 2, 182–189, https://doi.org/10.1111/j.1753-318X.2009.01031.x, 2009. a
Przyluski, V. and Hallegatte, S.: Indirect Costs of Natural Hazards, CONHAZ
WP2 Final Report, SMASH–CIRED, CONHAZ consortium, 2011. a
Putra, H. C., Zhang, H., and Andrews, C.: Modeling Real Estate Market Responses to Climate Change in the Coastal Zone, J. Artif. Soc. Social Simul., 18, 18, https://doi.org/10.18564/jasss.2577, 2015. a, b
Rollins, N. D., Barton, C. M., Bergin, S., Janssen, M. A., and Lee, A.: A
Computational Model Library for publishing model documentation and code,
Environ. Model. Softw., 61, 59–64, https://doi.org/10.1016/j.envsoft.2014.06.022, 2014. a
Rose, A. and Liao, S. Y.: Modeling Regional Economic Resilience to Disasters: A Computable General Equilibrium Analysis of Water Service Disruptions, J. Reg. Sci., 45, 75–112, 2005. a
Rouchon, D., Peinturier, C., Christin, N., and Nicklaus, D.: Analyse
multicritère des projets de prévention des inondations – Guide
méthodologique 2018, Tech. rep., MTES, Paris, France, 2018. a
Safarzyńska, K., Brouwer, R., and Hofkes, M.: Evolutionary modelling of the macro-economic impacts of catastrophic flood events, Ecol. Econom., 88, 108–118, 2013. a
Santos, J. R., Yu, K. D. S., Pagsuyoin, S. A. T., and Tan, R. R.: Time-varying disaster recovery model for interdependent economic systems using hybrid input-output and event tree analysis, Econ. Syst. Res., 26, 60–80, https://doi.org/10.1080/09535314.2013.872602, 2014. a
Scawthorn, C., Flores, P., Blais, N., Seligson, H., Tate, E., Chang, S.,
Mifflin, E., Thomas, W., Murphy, J., Jones, C., and Lawrence, M.: HAZUS-MH
Flood Loss Estimation Methodology. II. Damage and Loss Assessment, Nat. Hazards Rev., 7, 72–81, 2006. a
Smajgl, A. and Barreteau, O.: Empiricism and Agent-Based Modelling, in:
Empirical Agent-Based Modelling – Challenges and Solutions, vol. 1, The Characterisation and Parameterisation of Empirical Agent-Based Models, chap. 1, edited by: Smajgl, A. and Barreteau, O., Springer-Verlag, New York,
https://doi.org/10.1007/978-1-4614-6134-0, 2014.
a
Smajgl, A. and Barreteau, O.: Framing options for characterising and
parameterising human agents in empirical ABM, Environ. Model. Softw., 93, 29–41, https://doi.org/10.1016/j.envsoft.2017.02.011, 2017. a
SwissRE: Natural catastrophes and man-made disasters in 2016: a year of
widespread damages, Sigma No. 2/2017, Swiss Reinsurance Company, Zurich, 2017. a
Tesfatsion, L.: Agent-Based Computational Economics: Growing Economies From the Bottom Up, Artif. Life, 8, 55–82, https://doi.org/10.1162/106454602753694765, 2002. a
Tonn, G. L. and Guikema, S. D.: An Agent-Based Model of Evolving Community
Flood Risk, Risk Anal., 38, 1258–1278, https://doi.org/10.1111/risa.12939, 2017. a, b
Van der Veen, A., Steenge, A. E., Bockarjova, M., and Logtmeijer, C. J. J.:
Structural economic effects of large scale inundation: a simulation of the
Krimpen dike breakage, Tech. rep., University of Twente, Twente, 2003. a
Viglione, A., Di Baldassarre, G., Brandimarte, L., Kuil, L., Carr, G., Salinas, J. L., Scolobig, A., and Blöschl, G.: Insights from socio-hydrology modelling on dealing with flood risk – Roles of collective memory, risk-taking attitude and trust, J. Hydrol., 518, 71–82,
https://doi.org/10.1016/j.jhydrol.2014.01.018, 2014. a
Vinet, F.: Crues et inondations dans la France méditerranéenne. Les
crues torrentielles des 12 et 13 novembre 1999 (Aude, Tarn,
Pyrénées-Orientales et Hérault), Questions de Géographie,
Éditions du Temps, Nantes, France, 2003. a
Xie, W., Li, N., Wu, J.-D., and Liu, X.-Q.: Evaluation of indirect loss from hypothetical catastrophes in two regions with different economic development levels in China, Nat. Hazards Earth Syst. Sci., 12, 3325–3335, https://doi.org/10.5194/nhess-12-3325-2012, 2012. a
Xie, W., Li, N., Wu, J.-D., and Hao, X.-L.: Modeling the economic costs of disasters and recovery: analysis using a dynamic computable general equilibrium model, Nat. Hazards Earth Syst. Sci., 14, 757–772, https://doi.org/10.5194/nhess-14-757-2014, 2014. a
Yang, L., Kajitani, Y., Tatano, H., and Jiang, X.: A methodology for estimating business interruption loss caused by flood disasters: insights from business surveys after Tokai Heavy Rain in Japan, Nat. Hazards, 84, 411–430, https://doi.org/10.1007/s11069-016-2534-3, 2016. a
Short summary
Estimating flood damage, although crucial for assessing flood risk and for designing mitigation policies, continues to face numerous challenges, notably the assessment of indirect damage. We focus on flood damage induced by the interactions between economic activities. By modeling the production processes of a cooperative wine-making system, we show that these interactions are important depending on their spatial and temporal characteristics.
Estimating flood damage, although crucial for assessing flood risk and for designing mitigation...
Altmetrics
Final-revised paper
Preprint