Articles | Volume 21, issue 1
Nat. Hazards Earth Syst. Sci., 21, 203–217, 2021
https://doi.org/10.5194/nhess-21-203-2021

Special issue: Groundbreaking technologies, big data, and innovation for...

Nat. Hazards Earth Syst. Sci., 21, 203–217, 2021
https://doi.org/10.5194/nhess-21-203-2021

Research article 21 Jan 2021

Research article | 21 Jan 2021

A glimpse into the future of exposure and vulnerabilities in cities? Modelling of residential location choice of urban population with random forest

Sebastian Scheuer et al.

Related subject area

Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Comparing an insurer's perspective on building damages with modelled damages from pan-European winter windstorm event sets: a case study from Zurich, Switzerland
Christoph Welker, Thomas Röösli, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 21, 279–299, https://doi.org/10.5194/nhess-21-279-2021,https://doi.org/10.5194/nhess-21-279-2021, 2021
Short summary
Probabilistic characterisation of coastal storm-induced risks using Bayesian networks
Marc Sanuy and Jose A. Jiménez
Nat. Hazards Earth Syst. Sci., 21, 219–238, https://doi.org/10.5194/nhess-21-219-2021,https://doi.org/10.5194/nhess-21-219-2021, 2021
Invited perspectives: Building sustainable and resilient communities – recommended actions for natural hazard scientists
Joel C. Gill, Faith E. Taylor, Melanie J. Duncan, Solmaz Mohadjer, Mirianna Budimir, Hassan Mdala, and Vera Bukachi
Nat. Hazards Earth Syst. Sci., 21, 187–202, https://doi.org/10.5194/nhess-21-187-2021,https://doi.org/10.5194/nhess-21-187-2021, 2021
Short summary
Design of parametric risk transfer solutions for volcanic eruptions: an application to Japanese volcanoes
Delioma Oramas-Dorta, Giulio Tirabassi, Guillermo Franco, and Christina Magill
Nat. Hazards Earth Syst. Sci., 21, 99–113, https://doi.org/10.5194/nhess-21-99-2021,https://doi.org/10.5194/nhess-21-99-2021, 2021
Short summary
Multi-hazard risk assessment for roads: probabilistic versus deterministic approaches
Stefan Oberndorfer, Philip Sander, and Sven Fuchs
Nat. Hazards Earth Syst. Sci., 20, 3135–3160, https://doi.org/10.5194/nhess-20-3135-2020,https://doi.org/10.5194/nhess-20-3135-2020, 2020
Short summary

Cited articles

Ali, L., Haase, A., and Heiland, S.: Gentrification through Green Regeneration? Analyzing the Interaction between Inner-City Green Space Development and Neighborhood Change in the Context of Regrowth: The Case of Lene-Voigt-Park in Leipzig, Eastern Germany, Land, 9, 24, https://doi.org/10.3390/land9010024, 2020. a
Andersson, E., Haase, D., Scheuer, S., and Wellmann, T.: Neighbourhood character affects the spatial extent and magnitude of the functional footprint of urban green infrastructure, Landscape Ecol., 35, 1605–1618, https://doi.org/10.1007/s10980-020-01039-z, 2020. a
Antipov, E. A. and Pokryshevskaya, E. B.: Mass appraisal of residential apartments: An application of Random forest for valuation and a CART-based approach for model diagnostics, Expert Syst. Appl., 39, 1772–1778, 2012. a, b
Aslam, A., Masoumi, H., Naeem, N., and Ahmad, M.: Residential location choices and the role of mobility, socioeconomics, and land use in Hafizabad, Pakistan, Urbani Izziv, 30, 115–128, 2019. a, b
Balmes, J. R., Earnest, G., Katz, P. P., Yelin, E. H., Eisner, M. D., Chen, H., Trupin, L., Lurmann, F., and Blanc, P. D.: Exposure to traffic: Lung function and health status in adults with asthma, J. Allergy Clin. Immun., 123, 626–631, 2009. a, b
Download
Short summary
The choice of residential location is one of the drivers shaping risks in cities. We model likely outcomes of this decision-making process for distinct socioeconomic groups in the city of Leipzig, Germany, using random forests and geostatistical methods. In so doing, we uncover hot spots and cold spots that may indicate spatial patterns and trends in exposure and vulnerabilities of urban population, to shed light on how residential location choice affects these risk components as a process.
Altmetrics
Final-revised paper
Preprint