Articles | Volume 20, issue 9
Nat. Hazards Earth Syst. Sci., 20, 2503–2519, 2020
https://doi.org/10.5194/nhess-20-2503-2020
Nat. Hazards Earth Syst. Sci., 20, 2503–2519, 2020
https://doi.org/10.5194/nhess-20-2503-2020
Research article
22 Sep 2020
Research article | 22 Sep 2020

The object-specific flood damage database HOWAS 21

Patric Kellermann et al.

Related authors

Are flood damage models converging to “reality”? Lessons learnt from a blind test
Daniela Molinari, Anna Rita Scorzini, Chiara Arrighi, Francesca Carisi, Fabio Castelli, Alessio Domeneghetti, Alice Gallazzi, Marta Galliani, Frédéric Grelot, Patric Kellermann, Heidi Kreibich, Guilherme S. Mohor, Markus Mosimann, Stephanie Natho, Claire Richert, Kai Schroeter, Annegret H. Thieken, Andreas Paul Zischg, and Francesco Ballio
Nat. Hazards Earth Syst. Sci., 20, 2997–3017, https://doi.org/10.5194/nhess-20-2997-2020,https://doi.org/10.5194/nhess-20-2997-2020, 2020
Short summary
Large-scale application of the flood damage model RAilway Infrastructure Loss (RAIL)
Patric Kellermann, Christine Schönberger, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 16, 2357–2371, https://doi.org/10.5194/nhess-16-2357-2016,https://doi.org/10.5194/nhess-16-2357-2016, 2016
Estimating flood damage to railway infrastructure – the case study of the March River flood in 2006 at the Austrian Northern Railway
P. Kellermann, A. Schöbel, G. Kundela, and A. H. Thieken
Nat. Hazards Earth Syst. Sci., 15, 2485–2496, https://doi.org/10.5194/nhess-15-2485-2015,https://doi.org/10.5194/nhess-15-2485-2015, 2015

Related subject area

Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
Forecasting vegetation condition with a Bayesian auto-regressive distributed lags (BARDL) model
Edward E. Salakpi, Peter D. Hurley, James M. Muthoka, Adam B. Barrett, Andrew Bowell, Seb Oliver, and Pedram Rowhani
Nat. Hazards Earth Syst. Sci., 22, 2703–2723, https://doi.org/10.5194/nhess-22-2703-2022,https://doi.org/10.5194/nhess-22-2703-2022, 2022
Short summary
A dynamic hierarchical Bayesian approach for forecasting vegetation condition
Edward E. Salakpi, Peter D. Hurley, James M. Muthoka, Andrew Bowell, Seb Oliver, and Pedram Rowhani
Nat. Hazards Earth Syst. Sci., 22, 2725–2749, https://doi.org/10.5194/nhess-22-2725-2022,https://doi.org/10.5194/nhess-22-2725-2022, 2022
Short summary
Using a single remote-sensing image to calculate the height of a landslide dam and the maximum volume of a lake
Weijie Zou, Yi Zhou, Shixin Wang, Futao Wang, Litao Wang, Qing Zhao, Wenliang Liu, Jinfeng Zhu, Yibing Xiong, Zhenqing Wang, and Gang Qin
Nat. Hazards Earth Syst. Sci., 22, 2081–2097, https://doi.org/10.5194/nhess-22-2081-2022,https://doi.org/10.5194/nhess-22-2081-2022, 2022
Short summary
Development of black ice prediction model using GIS-based multi-sensor model validation
Seok Bum Hong, Hong Sik Yun, Sang Guk Yum, Seung Yeop Ryu, In Seong Jeong, and Jisung Kim
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-147,https://doi.org/10.5194/nhess-2022-147, 2022
Revised manuscript accepted for NHESS
Short summary
Enhancing disaster risk resilience using greenspace in urbanising Quito, Ecuador
C. Scott Watson, John R. Elliott, Susanna K. Ebmeier, María Antonieta Vásquez, Camilo Zapata, Santiago Bonilla-Bedoya, Paulina Cubillo, Diego Francisco Orbe, Marco Córdova, Jonathan Menoscal, and Elisa Sevilla
Nat. Hazards Earth Syst. Sci., 22, 1699–1721, https://doi.org/10.5194/nhess-22-1699-2022,https://doi.org/10.5194/nhess-22-1699-2022, 2022
Short summary

Cited articles

Barredo, J. I.: Normalised flood losses in Europe: 1970–2006, Nat. Hazards Earth Syst. Sci., 9, 97–104, https://doi.org/10.5194/nhess-9-97-2009, 2009. 
Blong, R.: Residential building damage and natural perils: examples and issues, Build. Res. Inf., 32, 379–390, 2004. 
Bouwer, L. M.: Have disaster losses increased due to anthropogenic climate change?, B. Am. Meteorol. Soc., 92, 39–46, 2011. 
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001. 
Buck, W. and Merkel, U.: Auswertung der HOWAS Schadendatenbank. Institut für Wasserwirtschaft und Kulturtechnik der Universität Karlsruhe, HY98/15, 1999. 
Download
Short summary
The flood damage database HOWAS 21 contains object-specific flood damage data resulting from fluvial, pluvial and groundwater flooding. The datasets incorporate various variables of flood hazard, exposure, vulnerability and direct tangible damage at properties from several economic sectors. This paper presents HOWAS 21 and highlights exemplary analyses to demonstrate the use of HOWAS 21 flood damage data.
Altmetrics
Final-revised paper
Preprint