Articles | Volume 20, issue 9
https://doi.org/10.5194/nhess-20-2503-2020
https://doi.org/10.5194/nhess-20-2503-2020
Research article
 | 
22 Sep 2020
Research article |  | 22 Sep 2020

The object-specific flood damage database HOWAS 21

Patric Kellermann, Kai Schröter, Annegret H. Thieken, Sören-Nils Haubrock, and Heidi Kreibich

Related authors

Are flood damage models converging to “reality”? Lessons learnt from a blind test
Daniela Molinari, Anna Rita Scorzini, Chiara Arrighi, Francesca Carisi, Fabio Castelli, Alessio Domeneghetti, Alice Gallazzi, Marta Galliani, Frédéric Grelot, Patric Kellermann, Heidi Kreibich, Guilherme S. Mohor, Markus Mosimann, Stephanie Natho, Claire Richert, Kai Schroeter, Annegret H. Thieken, Andreas Paul Zischg, and Francesco Ballio
Nat. Hazards Earth Syst. Sci., 20, 2997–3017, https://doi.org/10.5194/nhess-20-2997-2020,https://doi.org/10.5194/nhess-20-2997-2020, 2020
Short summary
Large-scale application of the flood damage model RAilway Infrastructure Loss (RAIL)
Patric Kellermann, Christine Schönberger, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 16, 2357–2371, https://doi.org/10.5194/nhess-16-2357-2016,https://doi.org/10.5194/nhess-16-2357-2016, 2016
Estimating flood damage to railway infrastructure – the case study of the March River flood in 2006 at the Austrian Northern Railway
P. Kellermann, A. Schöbel, G. Kundela, and A. H. Thieken
Nat. Hazards Earth Syst. Sci., 15, 2485–2496, https://doi.org/10.5194/nhess-15-2485-2015,https://doi.org/10.5194/nhess-15-2485-2015, 2015

Related subject area

Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
A neural network model for automated prediction of avalanche danger level
Vipasana Sharma, Sushil Kumar, and Rama Sushil
Nat. Hazards Earth Syst. Sci., 23, 2523–2530, https://doi.org/10.5194/nhess-23-2523-2023,https://doi.org/10.5194/nhess-23-2523-2023, 2023
Short summary
Fixed photogrammetric systems for natural hazard monitoring with high spatio-temporal resolution
Xabier Blanch, Marta Guinau, Anette Eltner, and Antonio Abellan
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-79,https://doi.org/10.5194/nhess-2023-79, 2023
Revised manuscript accepted for NHESS
Short summary
Brief communication: Landslide activity on the Argentinian Santa Cruz River mega dam works confirmed by PSI DInSAR
Guillermo Tamburini-Beliveau, Sebastián Balbarani, and Oriol Monserrat
Nat. Hazards Earth Syst. Sci., 23, 1987–1999, https://doi.org/10.5194/nhess-23-1987-2023,https://doi.org/10.5194/nhess-23-1987-2023, 2023
Short summary
Inform@Risk. The Development of a Prototype for an Integrated Landslide Early Warning System in an Informal Settlement: the Case of Bello Oriente in Medellín, Colombia
Christian Werthmann, Marta Sapena, Marlene Kühnl, John Singer, Carolina Garcia, Bettina Menschik, Heike Schäfer, Sebastian Schröck, Lisa Seiler, Kurosch Thuro, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-53,https://doi.org/10.5194/nhess-2023-53, 2023
Revised manuscript under review for NHESS
Short summary
Impact of topography on in situ soil wetness measurements for regional landslide early warning – a case study from the Swiss Alpine Foreland
Adrian Wicki, Peter Lehmann, Christian Hauck, and Manfred Stähli
Nat. Hazards Earth Syst. Sci., 23, 1059–1077, https://doi.org/10.5194/nhess-23-1059-2023,https://doi.org/10.5194/nhess-23-1059-2023, 2023
Short summary

Cited articles

Barredo, J. I.: Normalised flood losses in Europe: 1970–2006, Nat. Hazards Earth Syst. Sci., 9, 97–104, https://doi.org/10.5194/nhess-9-97-2009, 2009. 
Blong, R.: Residential building damage and natural perils: examples and issues, Build. Res. Inf., 32, 379–390, 2004. 
Bouwer, L. M.: Have disaster losses increased due to anthropogenic climate change?, B. Am. Meteorol. Soc., 92, 39–46, 2011. 
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001. 
Buck, W. and Merkel, U.: Auswertung der HOWAS Schadendatenbank. Institut für Wasserwirtschaft und Kulturtechnik der Universität Karlsruhe, HY98/15, 1999. 
Download
Short summary
The flood damage database HOWAS 21 contains object-specific flood damage data resulting from fluvial, pluvial and groundwater flooding. The datasets incorporate various variables of flood hazard, exposure, vulnerability and direct tangible damage at properties from several economic sectors. This paper presents HOWAS 21 and highlights exemplary analyses to demonstrate the use of HOWAS 21 flood damage data.
Altmetrics
Final-revised paper
Preprint