Articles | Volume 20, issue 9
https://doi.org/10.5194/nhess-20-2503-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-20-2503-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The object-specific flood damage database HOWAS 21
Patric Kellermann
GFZ German Research Centre for Geosciences, Section Hydrology,
Telegrafenberg, 14473 Potsdam, Germany
Kai Schröter
GFZ German Research Centre for Geosciences, Section Hydrology,
Telegrafenberg, 14473 Potsdam, Germany
Annegret H. Thieken
Institute of Environmental Science and Geography, University of
Potsdam, Karl-Liebknecht-Straße 24–25, 14476 Potsdam, Germany
Sören-Nils Haubrock
Beyond Concepts GmbH, Adolfstr. 23, 49078 Osnabrück, Germany
Heidi Kreibich
CORRESPONDING AUTHOR
GFZ German Research Centre for Geosciences, Section Hydrology,
Telegrafenberg, 14473 Potsdam, Germany
Related authors
Daniela Molinari, Anna Rita Scorzini, Chiara Arrighi, Francesca Carisi, Fabio Castelli, Alessio Domeneghetti, Alice Gallazzi, Marta Galliani, Frédéric Grelot, Patric Kellermann, Heidi Kreibich, Guilherme S. Mohor, Markus Mosimann, Stephanie Natho, Claire Richert, Kai Schroeter, Annegret H. Thieken, Andreas Paul Zischg, and Francesco Ballio
Nat. Hazards Earth Syst. Sci., 20, 2997–3017, https://doi.org/10.5194/nhess-20-2997-2020, https://doi.org/10.5194/nhess-20-2997-2020, 2020
Short summary
Short summary
Flood risk management requires a realistic estimation of flood losses. However, the capacity of available flood damage models to depict real damages is questionable. With a joint effort of eight research groups, the objective of this study was to compare the performances of nine models for the estimation of flood damage to buildings. The comparison provided more objective insights on the transferability of the models and on the reliability of their estimations.
Kasra Rafiezadeh Shahi, Nivedita Sairam, Lukas Schoppa, Le Thanh Sang, Do Ly Hoai Tan, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 25, 2845–2861, https://doi.org/10.5194/nhess-25-2845-2025, https://doi.org/10.5194/nhess-25-2845-2025, 2025
Short summary
Short summary
Ho Chi Minh City (HCMC) faces severe flood risks from climatic and socio-economic changes, requiring effective adaptation solutions. Flood loss estimation is crucial, but advanced probabilistic models accounting for key drivers and uncertainty are lacking. This study presents a probabilistic flood loss model with a feature selection paradigm for HCMC’s residential sector. Experiments using new survey data from flood-affected households demonstrate the model's superior performance.
Timothy Tiggeloven, Colin Raymond, Marleen C. de Ruiter, Jana Sillmann, Annegret H. Thieken, Sophie L. Buijs, Roxana Ciurean, Emma Cordier, Julia M. Crummy, Lydia Cumiskey, Kelley De Polt, Melanie Duncan, Davide M. Ferrario, Wiebke S. Jäger, Elco E. Koks, Nicole van Maanen, Heather J. Murdock, Jaroslav Mysiak, Sadhana Nirandjan, Benjamin Poschlod, Peter Priesmeier, Nivedita Sairam, Pia-Johanna Schweizer, Tristian R. Stolte, Marie-Luise Zenker, James E. Daniell, Alexander Fekete, Christian M. Geiß, Marc J. C. van den Homberg, Sirkku K. Juhola, Christian Kuhlicke, Karen Lebek, Robert Šakić Trogrlić, Stefan Schneiderbauer, Silvia Torresan, Cees J. van Westen, Judith N. Claassen, Bijan Khazai, Virginia Murray, Julius Schlumberger, and Philip J. Ward
EGUsphere, https://doi.org/10.5194/egusphere-2025-2771, https://doi.org/10.5194/egusphere-2025-2771, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Short summary
Natural hazards like floods, earthquakes, and landslides are often interconnected which may create bigger problems than when they occur alone. We studied expert discussions from an international conference to understand how scientists and policymakers can better prepare for these multi-hazards and use new technologies to protect its communities while contributing to dialogues about future international agreements beyond the Sendai Framework and supporting global sustainability goals.
Anna Buch, Dominik Paprotny, Kasra Rafiezadeh Shahi, Heidi Kreibich, and Nivedita Sairam
Nat. Hazards Earth Syst. Sci., 25, 2437–2453, https://doi.org/10.5194/nhess-25-2437-2025, https://doi.org/10.5194/nhess-25-2437-2025, 2025
Short summary
Short summary
Many households in Vietnam depend on revenue from micro-businesses (shop houses). However, losses caused by regular flooding are not modelled. Business turnover, building age, and water depth were found to be the main drivers of flood losses of micro-businesses. We built and validated probabilistic models (non-parametric Bayesian networks) that estimate flood losses of micro-businesses. The results help with flood risk management and adaption decision making for micro-businesses.
Thi Dieu My Pham, Paul Hudson, Annegret H. Thieken, and Philip Bubeck
EGUsphere, https://doi.org/10.5194/egusphere-2025-3021, https://doi.org/10.5194/egusphere-2025-3021, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Experiencing severe flooding and COVID-19 together adversely affects mental health. A 2020 survey in Vietnam found that 20 % of participants experienced mental distress, whereas 80 % did not. Flood risk factors include livelihood difficulties, seeing dead human bodies, and being rescued; COVID-19 stressors relate to individual health impacts and interrupted education. These findings highlight the need to address health risks from multiple sources and provide more support for at-risk communities.
Shahin Khosh Bin Ghomash, Heiko Apel, Kai Schröter, and Max Steinhausen
Nat. Hazards Earth Syst. Sci., 25, 1737–1749, https://doi.org/10.5194/nhess-25-1737-2025, https://doi.org/10.5194/nhess-25-1737-2025, 2025
Short summary
Short summary
This work introduces RIM2D (Rapid Inundation Model 2D), a hydrodynamic model for precise and rapid flood predictions that is ideal for early warning systems. We demonstrate RIM2D's ability to deliver detailed and localized flood forecasts using the June 2023 flood in Braunschweig, Germany, as a case study. This research highlights the readiness of RIM2D and the required hardware for integration into operational flood warning and impact-based forecasting systems.
André Felipe Rocha Silva, Julian Cardoso Eleutério, Heiko Apel, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 25, 1501–1520, https://doi.org/10.5194/nhess-25-1501-2025, https://doi.org/10.5194/nhess-25-1501-2025, 2025
Short summary
Short summary
This work uses agent-based modelling to evaluate the impact of flood warning and evacuation systems on human losses during the 2021 Ahr Valley flood in Germany. While the first flood warning with evacuation instructions is identified as timely, its lack of detail and effectiveness resulted in low public risk awareness. Better dissemination of warnings and improved risk perception and preparedness among the population could reduce casualties by up to 80 %.
Ravi Kumar Guntu, Guilherme Samprogna Mohor, Annegret H. Thieken, Meike Müller, and Heidi Kreibich
EGUsphere, https://doi.org/10.5194/egusphere-2025-1715, https://doi.org/10.5194/egusphere-2025-1715, 2025
Short summary
Short summary
The 2021 flood in Germany caused severe damage to companies, with over half reporting losses above €100,000. Using probabilistic models, we identify key factors driving direct damage and business interruption. Water depth, flow velocity and company exposure were key factors, but preparedness played a crucial role. Companies that took good precaution recovered faster. Our findings stress the value of early warnings and risk communication to reduce damage from unprecedented flood events.
Apoorva Singh, Ravi Kumar Guntu, Nivedita Sairam, Kasra Rafiezadeh Shahi, Anna Buch, Melanie Fischer, Chandrika Thulaseedharan Dhanya, and Heidi Kreibich
EGUsphere, https://doi.org/10.5194/egusphere-2025-1512, https://doi.org/10.5194/egusphere-2025-1512, 2025
Short summary
Short summary
We develop novel probabilistic models to estimate flash flood losses of companies and households in Germany. Using multiple flash flood events, we identify key drivers of flash floods loss. FLEMO flash model reveals that for companies, the effectiveness of emergency measures is crucial in mitigating losses. In contrast, household benefit more from knowledge about emergency response, suggesting that enhancing preparedness can effectively reduce flash flood losses.
Tim Busker, Daniela Rodriguez Castro, Sergiy Vorogushyn, Jaap Kwadijk, Davide Zoccatelli, Rafaella Loureiro, Heather J. Murdock, Laurent Pfister, Benjamin Dewals, Kymo Slager, Annegret H. Thieken, Jan Verkade, Patrick Willems, and Jeroen C. J. H. Aerts
EGUsphere, https://doi.org/10.5194/egusphere-2025-828, https://doi.org/10.5194/egusphere-2025-828, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
In July 2021, the Netherlands, Luxembourg, Germany, and Belgium were hit by an extreme flood event with over 200 fatalities. Our study provides, for the first time, critical insights into the operational flood early-warning systems in this entire region. Based on 13 expert interviews, we conclude that the systems strongly improved in all countries. Interviewees stressed the need for operational impact-based forecasts, but emphasized that its operational implementation is challenging.
Sarah Lindenlaub, Guilherme Samprogna Mohor, and Annegret Thieken
Abstr. Int. Cartogr. Assoc., 9, 22, https://doi.org/10.5194/ica-abs-9-22-2025, https://doi.org/10.5194/ica-abs-9-22-2025, 2025
Maurice W. M. L. Kalthof, Jens de Bruijn, Hans de Moel, Heidi Kreibich, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 25, 1013–1035, https://doi.org/10.5194/nhess-25-1013-2025, https://doi.org/10.5194/nhess-25-1013-2025, 2025
Short summary
Short summary
Our study explores how farmers in India's Bhima basin respond to consecutive droughts. We simulated farmers' individual choices – like changing crops or digging wells – and their effects on profits, yields, and water resources. Results show these adaptations, while improving incomes, ultimately increase drought vulnerability and damage. Such insights emphasize the need for alternative adaptations and highlight the value of socio-hydrological models in shaping policies to lessen drought impacts.
Nadja Veigel, Heidi Kreibich, Jens A. de Bruijn, Jeroen C. J. H. Aerts, and Andrea Cominola
Nat. Hazards Earth Syst. Sci., 25, 879–891, https://doi.org/10.5194/nhess-25-879-2025, https://doi.org/10.5194/nhess-25-879-2025, 2025
Short summary
Short summary
This study explores how social media, specifically Twitter (X), can help us understand public reactions to floods in Germany from 2014 to 2021. Using large language models, we extract topics and patterns of behavior from flood-related tweets. The findings offer insights to improve communication and disaster management. Topics related to low-impact flooding contain descriptive hazard-related content, while the focus shifts to catastrophic impacts and responsibilities during high-impact events.
Belinda Rhein and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 25, 581–589, https://doi.org/10.5194/nhess-25-581-2025, https://doi.org/10.5194/nhess-25-581-2025, 2025
Short summary
Short summary
In July 2021, flooding killed 190 people in Germany, 134 of them in the Ahr valley, making it the deadliest flood in recent German history. The flash flood was extreme in terms of water levels, flow velocities and flood extent, and early warning and evacuation were inadequate. Many died on the ground floor or in the street, with older and impaired individuals especially vulnerable. Clear warnings should urge people to seek safety rather than save belongings, and timely evacuations are essential.
Bruno Merz, Günter Blöschl, Robert Jüpner, Heidi Kreibich, Kai Schröter, and Sergiy Vorogushyn
Nat. Hazards Earth Syst. Sci., 24, 4015–4030, https://doi.org/10.5194/nhess-24-4015-2024, https://doi.org/10.5194/nhess-24-4015-2024, 2024
Short summary
Short summary
Flood risk assessments help us decide how to reduce the risk of flooding. Since these assessments are based on probabilities, it is hard to check their accuracy by comparing them to past data. We suggest a new way to validate these assessments, making sure they are practical for real-life decisions. This approach looks at both the technical details and the real-world situations where decisions are made. We demonstrate its practicality by applying it to flood emergency planning.
Cassiano Bastos Moroz and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 3299–3314, https://doi.org/10.5194/nhess-24-3299-2024, https://doi.org/10.5194/nhess-24-3299-2024, 2024
Short summary
Short summary
We evaluate the influence of urban processes on the impacts of the 2023 disaster that hit the North Coast of São Paulo, Brazil. The impacts of the disaster were largely associated with rapid urban expansion over the last 3 decades, with a recent occupation of risky areas. Moreover, lower-income neighborhoods were considerably more severely impacted, which evidences their increased exposure to such events. These results highlight the strong association between disaster risk and urban poverty.
Dominik Paprotny, Belinda Rhein, Michalis I. Vousdoukas, Paweł Terefenko, Francesco Dottori, Simon Treu, Jakub Śledziowski, Luc Feyen, and Heidi Kreibich
Hydrol. Earth Syst. Sci., 28, 3983–4010, https://doi.org/10.5194/hess-28-3983-2024, https://doi.org/10.5194/hess-28-3983-2024, 2024
Short summary
Short summary
Long-term trends in flood losses are regulated by multiple factors, including climate variation, population and economic growth, land-use transitions, reservoir construction, and flood risk reduction measures. Here, we reconstruct the factual circumstances in which almost 15 000 potential riverine, coastal and compound floods in Europe occurred between 1950 and 2020. About 10 % of those events are reported to have caused significant socioeconomic impacts.
Viet Dung Nguyen, Jeroen Aerts, Max Tesselaar, Wouter Botzen, Heidi Kreibich, Lorenzo Alfieri, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 24, 2923–2937, https://doi.org/10.5194/nhess-24-2923-2024, https://doi.org/10.5194/nhess-24-2923-2024, 2024
Short summary
Short summary
Our study explored how seasonal flood forecasts could enhance insurance premium accuracy. Insurers traditionally rely on historical data, yet climate fluctuations influence flood risk. We employed a method that predicts seasonal floods to adjust premiums accordingly. Our findings showed significant year-to-year variations in flood risk and premiums, underscoring the importance of adaptability. Despite limitations, this research aids insurers in preparing for evolving risks.
Marie-Luise Zenker, Philip Bubeck, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 24, 2837–2856, https://doi.org/10.5194/nhess-24-2837-2024, https://doi.org/10.5194/nhess-24-2837-2024, 2024
Short summary
Short summary
Despite the visible flood damage, mental health is a growing concern. Yet, there is limited data in Germany on mental health impacts after floods. A survey in a heavily affected region revealed that 28 % of respondents showed signs of post-traumatic stress disorder 1 year later. Risk factors include gender, serious injury or illness due to flooding, and feeling left alone to cope with impacts. The study highlights the need for tailored mental health support for flood-affected populations.
Kai Schröter, Pia-Johanna Schweizer, Benedikt Gräler, Lydia Cumiskey, Sukaina Bharwani, Janne Parviainen, Chahan Kropf, Viktor Wattin Hakansson, Martin Drews, Tracy Irvine, Clarissa Dondi, Heiko Apel, Jana Löhrlein, Stefan Hochrainer-Stigler, Stefano Bagli, Levente Huszti, Christopher Genillard, Silvia Unguendoli, and Max Steinhausen
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-135, https://doi.org/10.5194/nhess-2024-135, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
With the increasing negative impacts of extreme weather events globally, it's crucial to align efforts to manage disasters with measures to adapt to climate change. We identify challenges in systems and organizations working together. We suggest that collaboration across various fields is essential and propose an approach to improve collaboration, including a framework for better stakeholder engagement and an open-source data system that helps gather and connect important information.
Niklas Ebers, Kai Schröter, and Hannes Müller-Thomy
Nat. Hazards Earth Syst. Sci., 24, 2025–2043, https://doi.org/10.5194/nhess-24-2025-2024, https://doi.org/10.5194/nhess-24-2025-2024, 2024
Short summary
Short summary
Future changes in sub-daily rainfall extreme values are essential in various hydrological fields, but climate scenarios typically offer only daily resolution. One solution is rainfall generation. With a temperature-dependent rainfall generator climate scenario data were disaggregated to 5 min rainfall time series for 45 locations across Germany. The analysis of the future 5 min rainfall time series showed an increase in the rainfall extremes values for rainfall durations of 5 min and 1 h.
Seth Bryant, Heidi Kreibich, and Bruno Merz
Proc. IAHS, 386, 181–187, https://doi.org/10.5194/piahs-386-181-2024, https://doi.org/10.5194/piahs-386-181-2024, 2024
Short summary
Short summary
Our study found that simplifying data in flood risk models can introduce errors. We tested 344 damage functions and found errors up to 40 % of the total asset value. This means large-scale flood risk assessments may have significant errors due to the modelling approach. Our research highlights the need for more attention to data aggregation in flood risk models.
Seth Bryant, Guy Schumann, Heiko Apel, Heidi Kreibich, and Bruno Merz
Hydrol. Earth Syst. Sci., 28, 575–588, https://doi.org/10.5194/hess-28-575-2024, https://doi.org/10.5194/hess-28-575-2024, 2024
Short summary
Short summary
A new algorithm has been developed to quickly produce high-resolution flood maps. It is faster and more accurate than current methods and is available as open-source scripts. This can help communities better prepare for and mitigate flood damages without expensive modelling.
Lisa Dillenardt and Annegret H. Thieken
EGUsphere, https://doi.org/10.5194/egusphere-2024-162, https://doi.org/10.5194/egusphere-2024-162, 2024
Short summary
Short summary
Using survey data, we analysed the influence of different flood types on whether households implement adaptive measures. We found that communication and management strategies need to involve municipalities and should be tailored to the locally relevant flood type.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Thulasi Vishwanath Harish, Nivedita Sairam, Liang Emlyn Yang, Matthias Garschagen, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 23, 1125–1138, https://doi.org/10.5194/nhess-23-1125-2023, https://doi.org/10.5194/nhess-23-1125-2023, 2023
Short summary
Short summary
Coastal Asian cities are becoming more vulnerable to flooding. In this study we analyse the data collected from flood-prone houses in Ho Chi Minh City to identify what motivates the households to adopt flood precautionary measures. The results revealed that educating the households about the available flood precautionary measures and communicating the flood protection measures taken by the government encourage the households to adopt measures without having to experience multiple flood events.
Annegret H. Thieken, Philip Bubeck, Anna Heidenreich, Jennifer von Keyserlingk, Lisa Dillenardt, and Antje Otto
Nat. Hazards Earth Syst. Sci., 23, 973–990, https://doi.org/10.5194/nhess-23-973-2023, https://doi.org/10.5194/nhess-23-973-2023, 2023
Short summary
Short summary
In July 2021 intense rainfall caused devastating floods in western Europe with 184 fatalities in the German federal states of North Rhine-Westphalia (NW) and Rhineland-Palatinate (RP), calling their warning system into question. An online survey revealed that 35 % of respondents from NW and 29 % from RP did not receive any warning. Many of those who were warned did not expect severe flooding, nor did they know how to react. The study provides entry points for improving Germany's warning system.
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724, https://doi.org/10.5194/nhess-22-3701-2022, https://doi.org/10.5194/nhess-22-3701-2022, 2022
Short summary
Short summary
In a warming climate, extreme precipitation events are becoming more frequent. To advance our knowledge on such phenomena, we present a multidisciplinary analysis of a selected case study that took place on 29 June 2017 in the Berlin metropolitan area. Our analysis provides evidence of the extremeness of the case from the atmospheric and the impacts perspectives as well as new insights on the physical mechanisms of the event at the meteorological and climate scales.
Michael Dietze, Rainer Bell, Ugur Ozturk, Kristen L. Cook, Christoff Andermann, Alexander R. Beer, Bodo Damm, Ana Lucia, Felix S. Fauer, Katrin M. Nissen, Tobias Sieg, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 22, 1845–1856, https://doi.org/10.5194/nhess-22-1845-2022, https://doi.org/10.5194/nhess-22-1845-2022, 2022
Short summary
Short summary
The flood that hit Europe in July 2021, specifically the Eifel, Germany, was more than a lot of fast-flowing water. The heavy rain that fell during the 3 d before also caused the slope to fail, recruited tree trunks that clogged bridges, and routed debris across the landscape. Especially in the upper parts of the catchments the flood was able to gain momentum. Here, we discuss how different landscape elements interacted and highlight the challenges of holistic future flood anticipation.
Brunella Bonaccorso, Carmelo Cammalleri, Athanasios Loukas, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 1857–1862, https://doi.org/10.5194/nhess-22-1857-2022, https://doi.org/10.5194/nhess-22-1857-2022, 2022
Animesh K. Gain, Yves Bühler, Pascal Haegeli, Daniela Molinari, Mario Parise, David J. Peres, Joaquim G. Pinto, Kai Schröter, Ricardo M. Trigo, María Carmen Llasat, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 985–993, https://doi.org/10.5194/nhess-22-985-2022, https://doi.org/10.5194/nhess-22-985-2022, 2022
Short summary
Short summary
To mark the 20th anniversary of Natural Hazards and Earth System Sciences (NHESS), an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences, we highlight 11 key publications covering major subject areas of NHESS that stood out within the past 20 years.
Annegret H. Thieken, Guilherme Samprogna Mohor, Heidi Kreibich, and Meike Müller
Nat. Hazards Earth Syst. Sci., 22, 165–185, https://doi.org/10.5194/nhess-22-165-2022, https://doi.org/10.5194/nhess-22-165-2022, 2022
Short summary
Short summary
Various floods hit Germany recently. While there was a river flood with some dike breaches in 2013, flooding in 2016 resulted directly from heavy rainfall, causing overflowing drainage systems in urban areas and destructive flash floods in steep catchments. Based on survey data, we analysed how residents coped with these different floods. We observed significantly different flood impacts, warnings, behaviour and recovery, offering entry points for tailored risk communication and support.
Valeria Cigala, Giulia Roder, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 85–96, https://doi.org/10.5194/nhess-22-85-2022, https://doi.org/10.5194/nhess-22-85-2022, 2022
Short summary
Short summary
Non-male scientists constitute a minority in the geoscience professional environment, and they are underrepresented in disaster risk reduction planning. So far the international agenda has failed to effectively promote gender inclusion in disaster policy, preventing non-male scientists from career development and recognition. Here we share the thoughts, experiences, and priorities of women and non-binary scientists as a starting point to expand the discourse and promote intersectional research.
Guilherme S. Mohor, Annegret H. Thieken, and Oliver Korup
Nat. Hazards Earth Syst. Sci., 21, 1599–1614, https://doi.org/10.5194/nhess-21-1599-2021, https://doi.org/10.5194/nhess-21-1599-2021, 2021
Short summary
Short summary
We explored differences in the damaging process across different flood types, regions within Germany, and six flood events through a numerical model in which the groups can learn from each other. Differences were found mostly across flood types, indicating the importance of identifying them, but there is great overlap across regions and flood events, indicating either that socioeconomic or temporal information was not well represented or that they are in fact less different within our cases.
Gustavo Andrei Speckhann, Heidi Kreibich, and Bruno Merz
Earth Syst. Sci. Data, 13, 731–740, https://doi.org/10.5194/essd-13-731-2021, https://doi.org/10.5194/essd-13-731-2021, 2021
Short summary
Short summary
Dams are an important element of water resources management. Data about dams are crucial for practitioners, scientists, and policymakers. We present the most comprehensive open-access dam inventory for Germany to date. The inventory combines multiple sources of information. It comprises 530 dams with information on name, location, river, start year of construction and operation, crest length, dam height, lake area, lake volume, purpose, dam structure, and building characteristics.
Marco Cerri, Max Steinhausen, Heidi Kreibich, and Kai Schröter
Nat. Hazards Earth Syst. Sci., 21, 643–662, https://doi.org/10.5194/nhess-21-643-2021, https://doi.org/10.5194/nhess-21-643-2021, 2021
Short summary
Short summary
Effective flood management requires information about the potential consequences of flooding. We show how openly accessible data from OpenStreetMap can support the estimation of flood damage for residential buildings. Working with methods of machine learning, the building geometry is used to predict flood damage in combination with information about inundation depth. Our approach makes it easier to transfer models to regions where no detailed data of flood impacts have been observed yet.
Daniela Molinari, Anna Rita Scorzini, Chiara Arrighi, Francesca Carisi, Fabio Castelli, Alessio Domeneghetti, Alice Gallazzi, Marta Galliani, Frédéric Grelot, Patric Kellermann, Heidi Kreibich, Guilherme S. Mohor, Markus Mosimann, Stephanie Natho, Claire Richert, Kai Schroeter, Annegret H. Thieken, Andreas Paul Zischg, and Francesco Ballio
Nat. Hazards Earth Syst. Sci., 20, 2997–3017, https://doi.org/10.5194/nhess-20-2997-2020, https://doi.org/10.5194/nhess-20-2997-2020, 2020
Short summary
Short summary
Flood risk management requires a realistic estimation of flood losses. However, the capacity of available flood damage models to depict real damages is questionable. With a joint effort of eight research groups, the objective of this study was to compare the performances of nine models for the estimation of flood damage to buildings. The comparison provided more objective insights on the transferability of the models and on the reliability of their estimations.
Cited articles
Barredo, J. I.: Normalised flood losses in Europe: 1970–2006, Nat. Hazards Earth Syst. Sci., 9, 97–104, https://doi.org/10.5194/nhess-9-97-2009, 2009.
Blong, R.: Residential building damage and natural perils: examples and
issues, Build. Res. Inf., 32, 379–390, 2004.
Bouwer, L. M.: Have disaster losses increased due to anthropogenic climate
change?, B. Am. Meteorol. Soc., 92, 39–46, 2011.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32,
2001.
Buck, W. and Merkel, U.: Auswertung der HOWAS Schadendatenbank. Institut
für Wasserwirtschaft und Kulturtechnik der Universität Karlsruhe,
HY98/15, 1999.
Cammerer, H., Thieken, A. H., and Lammel, J.: Adaptability and transferability of flood loss functions in residential areas, Nat. Hazards Earth Syst. Sci., 13, 3063–3081, https://doi.org/10.5194/nhess-13-3063-2013, 2013.
Carisi, F., Schröter, K., Domeneghetti, A., Kreibich, H., and Castellarin, A.: Development and assessment of uni- and multivariable flood loss models for Emilia-Romagna (Italy), Nat. Hazards Earth Syst. Sci., 18, 2057–2079, https://doi.org/10.5194/nhess-18-2057-2018, 2018.
De Groeve, T., Poljansek, K., Ehrlich, D., and Corbane, C.: Current Status
and Best Practices for Disaster Loss Data recording in EU Member States: A
comprehensive overview of current practice in the EU Member States, Joint Research Centre of the European Commission, Report, JRC92290,
https://doi.org/10.2788/18330, 2014.
Destatis (Statistisches Bundesamt): Klassifikation der Wirtschaftszweige mit
Erläuterungen, Statistisches Bundesamt, Wiesbaden, available at: https://www.destatis.de/static/DE/dokumente/klassifikation-wz-2008-3100100089004.pdf (last access: 10 September 2020), 2008.
Destatis (Statistisches Bundesamt): GV-ISys – Verzeichnis der Regional- und
Gebietseinheiten, Definitionen und Beschreibungen, Statistisches Bundesamt, Wiesbaden, available at:
https://www.destatis.de/DE/Themen/Laender-Regionen/Regionales/Gemeindeverzeichnis/Administrativ/beschreibung-gebietseinheiten.pdf?__blob=publicationFile
(last access: 10 September 2020), 2019.
Dolan, M., Walliman, N., Amouzad, S., and Ogden, R.: Forensic Disaster
Analysis of Flood Damage at Commercial and Industrial Firms, in: Flood
Damage Survey and Assessment, edited by: Molinari, D., Menoni, S., and
Ballio, F., Geoph. Monog. Series, chap. 13, 195–209, https://doi.org/10.1002/9781119217930.ch13, 2017.
Downton, M. W., Miller, J. Z. B., and Pielke Jr., R. A.: Reanalysis of U.S. National Weather Service Flood Loss Database, Nat. Hazards Rev., 6, 13–22, 2005.
Elmer, F., Seifert, I., Kreibich, H., and Thieken, A. H.: A Delphi method
expert survey to derive standards for flood damage data collection, Risk
Anal., 30, 107–124, 2010a.
Elmer, F., Thieken, A. H., Pech, I., and Kreibich, H.: Influence of flood frequency on residential building losses, Nat. Hazards Earth Syst. Sci., 10, 2145–2159, https://doi.org/10.5194/nhess-10-2145-2010, 2010b.
Gall, M., Borden, K. A., and Cutter, S. L.: When do losses count? Six
fallacies of natural hazards loss data, B. Am. Meteorol. Soc., 90, 799–809,
2009.
Gelman, A. and Hill, J.: Data Analysis Using Regression and Multilevel/Hierarchical Models, in: Analytical Methods for Social Research,
Cambridge University Press, Cambridge, i–viii, https://doi.org/10.1017/CBO9780511790942, 2006.
Gerl, T., Kreibich, H., Franco, G., Marechal, D., and Schröter, K.: A
Review of Flood Loss Models as Basis for Harmonization and Benchmarking,
PLoS ONE, 11, e0159791, https://doi.org/10.1371/journal.pone.0159791, 2016.
Getty: Getty Thesaurus of Geographic Names®, available at: https://www.getty.edu/research/tools/vocabularies/tgn/
(last access: 10 September 2020), 2017.
GFZ German Research Centre for Geosciences: HOWAS 21, Helmholtz Centre Potsdam, https://doi.org/10.1594/GFZ.SDDB.HOWAS21, 2020.
Grigg, N. S. and Helweg, O. J.: State-of-the-art of estimating flood damage
in urban areas, Water Resourc. Bull., 11, 379–390, 1975.
Hasanzadeh Nafari, R., Ngo, T., and Mendis, P.: An Assessment of the
Effectiveness of Tree-Based Models for Multi-Variate Flood Damage Assessment
in Australia, Water, 8, 282, https://doi.org/10.3390/w8070282, 2016.
Hilker, N., Badoux, A., and Hegg, C.: The Swiss flood and landslide damage database 1972–2007, Nat. Hazards Earth Syst. Sci., 9, 913–925, https://doi.org/10.5194/nhess-9-913-2009, 2009.
Hübl, J., Kienholz, H., and Loipersberger, A. (Eds.): DOMODIS –
Documentation of Mountain Disasters – State of Discussion in the European
Mountain Areas, Intrapraevent, Klagenfurt, 2002.
Jonkman, S. N.: Global Perspectives on Loss of Human Life Caused by Floods, Nat. Hazards, 34, 151–175, 2005.
Kellermann, P., Bubeck, P., Otto, A., Kundela, G., Schönberger, C.,
Kirnbauer, R., Schöbel, A., Aksentijevic, J., and Thieken, A. H.:
Building railway transport resilience to alpine hazards, in: ENHANCE: Novel
Multi-Sector Partnerships in Disaster Risk Management, Results of the
ENHANCE project, edited by: Aerts, J. and Mysiak, J., EU FP7 project
ENHANCE, Brussels, 322–343, 2016.
Kienzler, S., Pech, I., Kreibich, H., Müller, M., and Thieken, A. H.: After the extreme flood in 2002: changes in preparedness, response and recovery of flood-affected residents in Germany between 2005 and 2011, Nat. Hazards Earth Syst. Sci., 15, 505–526, https://doi.org/10.5194/nhess-15-505-2015, 2015.
Kreibich, H., Thieken, A. H., Petrow, Th., Müller, M., and Merz, B.: Flood loss reduction of private households due to building precautionary measures – lessons learned from the Elbe flood in August 2002, Nat. Hazards Earth Syst. Sci., 5, 117–126, https://doi.org/10.5194/nhess-5-117-2005,
2005.
Kreibich, H., Müller, M., Thieken, A. H., and Merz, B.: Flood precaution
of companies and their ability to cope with the flood in August 2002 in
Saxony, Germany, Water Resour. Res., 43, W03408, https://doi.org/10.1029/2005WR004691, 2007.
Kreibich, H., Piroth, K., Seifert, I., Maiwald, H., Kunert, U., Schwarz, J., Merz, B., and Thieken, A. H.: Is flow velocity a significant parameter in flood damage modelling?, Nat. Hazards Earth Syst. Sci., 9, 1679–1692, https://doi.org/10.5194/nhess-9-1679-2009, 2009.
Kreibich, H., Seifert, I., Merz, B., and Thieken, A. H.: Development of
FLEMOcs – A new model for the estimation of flood losses in companies,
Hydrolog. Sci. J., 55, 1302–1314, 2010.
Kreibich, H., Seifert, I., Merz, B., and Thieken A. H.: Recent changes in
flood preparedness of private households and businesses in Germany, Reg.
Environ. Change, 11, 59–71, 2011.
Kreibich, H., Botto, A., Merz, B., and Schröter, K.: Probabilistic,
multivariable flood loss modeling on the mesoscale with BT-FLEMO, Risk
Anal., 37, 774–787, https://doi.org/10.1111/risa.12650, 2017a.
Kreibich, H., Thieken, A. H., Haubrock, S. and Schröter, K.: HOWAS 21,
the German Flood Damage Database, in: Flood Damage Survey and Assessment,
edited by: Molinari, D., Menoni, S., and Ballio, F., Geoph. Monog. Series, chap. 5, 65–75, https://doi.org/10.1002/9781119217930.ch5, 2017b.
Kreibich, H., Blauhut, V., Aerts, J. C. J. H., Bouwer, L. M., Van Lanen, H.
A. J., Mejia, A., Mens, M., and Van Loon, A. F.: How to improve attribution
of changes in drought and flood impacts, Hydrolog. Sci. J., 64, 1–18, https://doi.org/10.1080/02626667.2018.1558367, 2019.
Kron, W., Steuer, M., Löw, P., and Wirtz, A.: How to deal properly with a natural catastrophe database – analysis of flood losses, Nat. Hazards Earth Syst. Sci., 12, 535–550, https://doi.org/10.5194/nhess-12-535-2012, 2012.
LeBreton, J. M. and Senter, J. L.: Answers to 20 questions about interrater
reliability and interrater agreement, Organ. Res. Methods, 11, 815–852, 2008.
Lüdtke, S., Schröter, K., Steinhausen, M., Weise, L., Figueiredo,
R., and Kreibich, H.: A Consistent Approach for Probabilistic Residential
Flood Loss Modeling in Europe, Water Resour. Res., 55, 10616–10635, https://doi.org/10.1029/2019WR026213, 2019.
Mazzorana, B., Simoni, S., Scherer, C., Gems, B., Fuchs, S., and Keiler, M.: A physical approach on flood risk vulnerability of buildings, Hydrol. Earth Syst. Sci., 18, 3817–3836, https://doi.org/10.5194/hess-18-3817-2014, 2014.
Menoni, S., Molinari, D., Ballio, F., Minucci, G., Mejri, O., Atun, F., Berni, N., and Pandolfo, C.: Flood damage: a model for consistent, complete and multipurpose scenarios, Nat. Hazards Earth Syst. Sci., 16, 2783–2797, https://doi.org/10.5194/nhess-16-2783-2016, 2016.
Merz, B., Kreibich, H., Thieken, A., and Schmidtke, R.: Estimation uncertainty of direct monetary flood damage to buildings, Nat. Hazards Earth Syst. Sci., 4, 153–163, https://doi.org/10.5194/nhess-4-153-2004, 2004.
Merz, B., Kreibich, H., and Lall, U.: Multi-variate flood damage assessment: a tree-based data-mining approach, Nat. Hazards Earth Syst. Sci., 13, 53–64, https://doi.org/10.5194/nhess-13-53-2013, 2013.
Mohor, G. S., Hudson, P., and Thieken, A. H.: A comparison of factors driving
flood losses in households affected by different flood types, Water
Resour. Res., 54, e2019WR025943, https://doi.org/10.1029/2019WR025943, 2020.
Moran, A., Thieken, A., Schöbel, A., and Rachoy, C.: Documentation of
flood damage on railway infrastructure, in: Data and mobility. Transforming
information into intelligent traffic and transportation, edited by: Düh,
J., Hufnagl, H., Juritsch, E., Pfliegl, R., Schimany, H., and
Schönegger, H., Springer, 2010.
Paprotny, D., Morales-Nápoles, O., and Jonkman, S. N.: HANZE: a
pan-European database of exposure to natural hazards and damaging historical
floods since 1870, Earth Syst. Sci. Data, 10, 565–581,
https://doi.org/10.5194/essd-10-565-2018, 2018.
Parker, D., Green, C., Thompson, C. S.: Urban flood protection benefits: A
project appraisal guide, Gower Technical Press, Aldershot, 1987.
Penning-Rowsell, E. C. and Chatterton, J. B.: The benefits of flood
alleviation: A manual of assessment techniques, Gower Technical Press,
Aldershot, 1977.
Penning-Rowsell, E. C. and Green, C. S.: New insights into the appraisal of
flood-alleviation benefits: (1) Flood damage and flood loss information, J.
Chart. Inst. Water E., 14, 347–353, 2000.
Penning-Rowsell, E., Priest, S., Parker, D., Morris, J., Tunstall, S.,
Viavattene, C., Chatterton, J., and Owen, D.: Flood and Coastal Erosion Risk
Management, London, Routledge, 2013.
Rözer, V., Kreibich, H., Schröter, K., Müller, M., Sairam, N.,
Doss-Gollin, J., Lall, U., and Merz, B.: Probabilistic Models Significantly
Reduce Uncertainty in Hurricane Harvey Pluvial Flood Loss Estimates, Earth's
Future, 7, 384–394, https://doi.org/10.1029/2018EF001074, 2019.
Rudari, R., Massabò, M., and Bedrina, T.: Overview of Loss Data Storage
at Global Scale, in: Flood Damage Survey and Assessment, edited by:
Molinari, D., Menoni, S., and Ballio, F., Geoph. Monog. Series, chap. 3, 31–51, https://doi.org/10.1002/9781119217930.ch3, 2017.
Sairam, N., Schröter, K., Rözer, V., Merz, B., and Kreibich, H.:
Hierarchical Bayesian approach for modeling spatiotemporal variability in
flood damage processes, Water Resour. Res., 55, 8223–8237, https://doi.org/10.1029/2019WR025068, 2019.
Schröter, K., Kreibich, H., Vogel, K., Riggelsen, C., Scherbaum, F., and
Merz, B.: How useful are complex flood damage models?, Water Resour. Res.,
50, 3378–3395, https://doi.org/10.1002/2013WR014396, 2014.
Sieg, T., Vogel, K., Merz, B., and Kreibich, H.: Tree-based flood damage
modeling of companies: Damage processes and model performance, Water Resour.
Res., 53, 6050–6068, https://doi.org/10.1002/2017WR020784, 2017.
Smith, D. I.: Flood damage estimation – A review of urban stage-damage
curves and loss functions, Water SA, 20, 231–238, 1994.
Smith, D. I. and Ward, R.: Floods: Physical processes and human impacts,
John Wiley and Sons, Chichester, 1998.
Sultana, Z., Sieg, T., Kellermann, P., Müller, M., and Kreibich, H.:
Assessment of Business Interruption of Flood-Affected Companies Using Random
Forests, Water, 10, 1049, https://doi.org/10.3390/w10081049, 2018.
Thieken, A. H., Müller, M., Kreibich, H., and Merz, B.: Flood damage and
influencing factors: New insights from the August 2002 flood in Germany,
Water Resour. Res., 41, W12430, https://doi.org/10.1029/2005WR004177, 2005.
Thieken, A. H., Kreibich, H., Müller, M., and Merz, B.: Coping with
floods: preparedness, response and recovery of flood-affected residents in
Germany in 2002, Hydrolog. Sci. J., 52, 1016–1037, 2007.
Thieken, A. H., Olschewski, A., Kreibich, H., Kobsch, S., and Merz, B.:
Development and evaluation of FLEMOps – a new Flood Loss Estimation Model
for the Private Sector, in: Flood Recovery, Innovation and Response I, WIT
Press, Southampton, UK, WIT Trans. Ecol. Envir., 118, 315–324, https://doi.org/10.2495/FRIAR080301, 2008.
Thieken, A. H., Seifert, I., Elmer, F., Maiwald, H., Haubrock, S., Schwarz,
J., Müller, M., and Seifert, J.: Standardisierte Erfassung und Bewertung
von Hochwasserschäden, Hydrol. Wasserbewirts., 53, 198–207, 2009.
Thieken, A. H., Bessel, T., Kienzler, S., Kreibich, H., Müller, M., Pisi, S., and Schröter, K.: The flood of June 2013 in Germany: how much do we know about its impacts?, Nat. Hazards Earth Syst. Sci., 16, 1519–1540, https://doi.org/10.5194/nhess-16-1519-2016, 2016.
Totschnig, R. and Fuchs, S.: Mountain torrents: Quantifying vulnerability
and assessing uncertainties, Eng. Geol., 155, 31–44, 2013.
Tschoegl, L., Below, R., and Guha-Sapir, D.: An Analytical Review of
Selected Data Sets on Natural Disasters and Impacts, UNDP/CRED Workshop on
Improving Compilation of Reliable Data on Disaster Occurrence and Impact, 2–4 April 2006, Bangkok, Thailand, available at:
http://www.cred.be/sites/default/files/TschoeglDataSetsReview.pdf (last access: 10 September 2020), 2006.
UN (United Nations): International Standard Industrial Classification of All
Economic Activities (ISIC), Revision 4, Statistical Papers, Series M No. 4, Rev. 4, United Nations, New York, available at: https://unstats.un.org/unsd/publication/seriesM/seriesm_4rev4e.pdf (last access: 10 September 2020), 2008.
Van Ootegem, L., Verhofstadt, E., Van Herck, K., and Creten, T.:
Multivariate pluvial flood damage models, Environ. Impact Asses., 54, 91–100, 2015.
Vogel, K., Weise, L., Schröter, K., and Thieken, A. H.: Identifying
Driving Factors in Flood Damaging Processes Using Graphical Models, Water
Resour. Res., 54, 8864–8889, https://doi.org/10.1029/2018WR022858, 2018.
Wagenaar, D. J., de Bruijn, K. M., Bouwer, L. M., and de Moel, H.: Uncertainty in flood damage estimates and its potential effect on investment decisions, Nat. Hazards Earth Syst. Sci., 16, 1–14, https://doi.org/10.5194/nhess-16-1-2016, 2016.
Wagenaar, D., Lüdtke, S., Schröter, K., Bouwer, L. M., and Kreibich,
H.: Regional and temporal transferability of multivariable flood damage
models, Water Resour. Res., 54, 3688–3703, https://doi.org/10.1029/2017WR022233, 2018.
Wang, R. and Strong, D.: Beyond Accuracy: What Data quality Means to Data
Consumers, J. Manage. Inform. Syst., 12, 5–34, 1996.
Wenzel, F., Zschau, J., Kunz, M., Daniell, J. E., Khazai, B., and
Kunz-Plapp, T.: Near Real-Time Forensic Disaster Analysis, in: Proceedings
of the 10th International ISCRAM Conference, Baden–Baden, Germany, 12–15 May 2013, edited by: Comes, T., Fiedrich, F., Fortier, S., Geldermann, J., and Müller, T., Karlsruhe Inst. of Technology, Karlsruhe, Germany, 2013.
Zhai, G. F., Fukuzono, T., and Ikeda, S.: Modeling flood damage: Case of
Tokai flood 2000, J. Am. Water Resour. As., 41, 77–92, 2005.
Short summary
The flood damage database HOWAS 21 contains object-specific flood damage data resulting from fluvial, pluvial and groundwater flooding. The datasets incorporate various variables of flood hazard, exposure, vulnerability and direct tangible damage at properties from several economic sectors. This paper presents HOWAS 21 and highlights exemplary analyses to demonstrate the use of HOWAS 21 flood damage data.
The flood damage database HOWAS 21 contains object-specific flood damage data resulting from...
Altmetrics
Final-revised paper
Preprint