Research article 29 May 2020
Research article | 29 May 2020
A methodology to conduct wind damage field surveys for high-impact weather events of convective origin
Oriol Rodríguez et al.
Related authors
No articles found.
Jesús Yus-Díez, Mireia Udina, Maria Rosa Soler, Marie Lothon, Erik Nilsson, Joan Bech, and Jielun Sun
Atmos. Chem. Phys., 19, 9495–9514, https://doi.org/10.5194/acp-19-9495-2019, https://doi.org/10.5194/acp-19-9495-2019, 2019
Short summary
Short summary
This study helps improve the understanding of the turbulence description and the interactions occurring in the lower part of the boundary layer. It is carried out at an orographically influenced site close to the Pyrenees to explore the hockey-stick transition (HOST) theory. HOST is seen to be strongly dependent on both the meteorological conditions and the orographic features. Examples of intermittent turbulence events that lead to transitions between the turbulence regimes are also identified.
L. Trapero, J. Bech, F. Duffourg, P. Esteban, and J. Lorente
Nat. Hazards Earth Syst. Sci., 13, 2969–2990, https://doi.org/10.5194/nhess-13-2969-2013, https://doi.org/10.5194/nhess-13-2969-2013, 2013
Related subject area
Atmospheric, Meteorological and Climatological Hazards
Wet and dry spells in Senegal: comparison of detection based on satellite products, reanalysis, and in situ estimates
Drought impact in the Bolivian Altiplano agriculture associated with the El Niño–Southern Oscillation using satellite imagery data
A statistical–parametric model of tropical cyclones for hazard assessment
The impact of drought on soil moisture trends across Brazilian biomes
Simulating synthetic tropical cyclone tracks for statistically reliable wind and pressure estimations
Radar-based assessment of hail frequency in Europe
A new view on the risk of typhoon occurrence in the western North Pacific
Data assimilation impact studies with the AROME-WMED reanalysis of the first special observation period of the Hydrological cycle in the Mediterranean Experiment
Assessing heat exposure to extreme temperatures in urban areas using the Local Climate Zone classification
Are Kenya Meteorological Department heavy rainfall advisories useful for forecast-based early action and early preparedness for flooding?
Fatalities associated with the weather in the Czech Republic, 2000–2019
A methodology for attributing the role of climate change in extreme events: a global spectrally nudged storyline
A 30 m scale modeling of extreme gusts during Hurricane Irma (2017) landfall on very small mountainous islands in the Lesser Antilles
Modelling a tropical-like cyclone in the Mediterranean Sea under present and warmer climate
Extension of the WRF-Chem volcanic emission preprocessor to integrate complex source terms and evaluation for different emission scenarios of the Grimsvötn 2011 eruption
The contribution of air temperature and ozone to mortality rates during hot weather episodes in eight German cities during the years 2000 and 2017
Observations for high-impact weather and their use in verification
Predictive modeling of hourly probabilities for weather-related road accidents
Assessing atmospheric moisture effects on heavy precipitation during HyMeX IOP16 using GPS nudging and dynamical downscaling
Modeling volcanic ash aggregation processes and related impacts on the April–May 2010 eruptions of Eyjafjallajökull volcano with WRF-Chem
The heavy precipitation event of 14–15 October 2018 in the Aude catchment: A meteorological study based on operational numerical weather prediction systems and standard and personal observations
Risk management framework of environmental hazards and extremes in Mediterranean ecosystems
Intra-annual variability of the Western Mediterranean Oscillation (WeMO) and occurrence of extreme torrential precipitation in Catalonia (NE Iberia)
Review article: A comprehensive review of datasets and methodologies employed to produce thunderstorm climatologies
Drought propagation and construction of a comprehensive drought index based on the SWAT-KC': A case study for the Jinta River basin in Northwestern China
Bias correction of a gauge-based gridded product to improve extreme precipitation analysis in the Yarlung Tsangpo–Brahmaputra River basin
Analysis of the Universal Thermal Climate Index during heat waves in Serbia
An analysis on temporal scaling behavior of extreme rainfall of Germany based on radar precipitation QPE data
Brief Communication: An electrifying atmospheric river – understanding the thunderstorm event in Santa Barbara County during March 2019
Spatiotemporal changes of heat waves and extreme temperatures in the main cities of China from 1955 to 2014
Ambient conditions prevailing during hail events in central Europe
Present and future changes in winter climate indices relevant for access disruptions in Troms, northern Norway
Hydrometeorological droughts in the Miño–Limia–Sil hydrographic demarcation (northwestern Iberian Peninsula): the role of atmospheric drivers
Brief communication: The role of using precipitation or river discharge data when assessing global coastal compound flooding
Estimation of tropical cyclone wind hazards in coastal regions of China
The sensitivity of intense rainfall to aerosol particle loading – a comparison of bin-resolved microphysics modelling with observations of heavy precipitation from HyMeX IOP7a
Brief communication: Hurricane Dorian: automated near-real-time mapping of the “unprecedented” flooding in the Bahamas using synthetic aperture radar
Systematic error analysis of heavy-precipitation-event prediction using a 30-year hindcast dataset
An 18-year climatology of derechos in Germany
Exposure of real estate properties to the 2018 Hurricane Florence flooding
Towards Resilient Vital Infrastructure Systems: Challenges, Opportunities, and Future Research Agenda
Modelling global tropical cyclone wind footprints
Remote sensing in an index-based insurance design for hedging economic impacts on rice cultivation
Contribution of personal weather stations to the observation of deep-convection features near the ground
Improving sub-seasonal forecast skill of meteorological drought: a weather pattern approach
Simulations of the 2005, 1910, and 1876 Vb cyclones over the Alps – sensitivity to model physics and cyclonic moisture flux
Changes in flood damage with global warming on the eastern coast of Spain
Probabilistic modelling of the dependence between rainfed crops and drought hazard
First reported case of thunderstorm asthma in Israel
Meteorological conditions leading to the 2015 Salgar flash flood: lessons for vulnerable regions in tropical complex terrain
Cheikh Modou Noreyni Fall, Christophe Lavaysse, Mamadou Simina Drame, Geremy Panthou, and Amadou Thierno Gaye
Nat. Hazards Earth Syst. Sci., 21, 1051–1069, https://doi.org/10.5194/nhess-21-1051-2021, https://doi.org/10.5194/nhess-21-1051-2021, 2021
Short summary
Short summary
Extreme wet and dry rainfall periods over Senegal provided by satellite, reanalyses, and ground observations are compared. Despite a spatial coherence of seasonal rainfall accumulation between all products, discrepancies are found at intra-seasonal timescales. All datasets highlight comparable seasonal cycles of dry and wet spells. Nevertheless, CHIRPS and TAMSAT are close to observations for the dry spells, whereas TRMM obtains the closest values of wet spells as regards the observations.
Claudia Canedo-Rosso, Stefan Hochrainer-Stigler, Georg Pflug, Bruno Condori, and Ronny Berndtsson
Nat. Hazards Earth Syst. Sci., 21, 995–1010, https://doi.org/10.5194/nhess-21-995-2021, https://doi.org/10.5194/nhess-21-995-2021, 2021
Short summary
Short summary
Drought is a major natural hazard that causes large losses for farmers. This study evaluated drought severity based on a drought classification scheme using NDVI and LST, which was related to the ENSO anomalies. In addition, the spatial distribution of NDVI was associated with precipitation and air temperature at the local level. Our findings show that drought severity increases during El Niño years, and as a consequence the socio-economic drought risk of farmers will likely increase.
William C. Arthur
Nat. Hazards Earth Syst. Sci., 21, 893–916, https://doi.org/10.5194/nhess-21-893-2021, https://doi.org/10.5194/nhess-21-893-2021, 2021
Short summary
Short summary
We have developed a statistical–parametric model of tropical cyclones (TCs), to undertake hazard and risk assessments at continental scales. The model enables users to build an understanding of the likelihood and magnitude of TC-related wind speeds across full ocean basins but at a fine spatial resolution. The model can also be applied to single events, either scenarios or forecast events, to inform detailed impact assessments.
Flavio Lopes Ribeiro, Mario Guevara, Alma Vázquez-Lule, Ana Paula Cunha, Marcelo Zeri, and Rodrigo Vargas
Nat. Hazards Earth Syst. Sci., 21, 879–892, https://doi.org/10.5194/nhess-21-879-2021, https://doi.org/10.5194/nhess-21-879-2021, 2021
Short summary
Short summary
The main objective of this paper was to analyze differences in soil moisture responses to drought for each biome of Brazil. For that we used satellite data from the European Space Agency from 2009 to 2015. We found an overall soil moisture decline of −0.5 % yr−1 at the country level and identified the most vulnerable biomes of Brazil. This information is crucial to enhance the national drought early warning system and develop strategies for drought risk reduction and soil moisture conservation.
Kees Nederhoff, Jasper Hoek, Tim Leijnse, Maarten van Ormondt, Sofia Caires, and Alessio Giardino
Nat. Hazards Earth Syst. Sci., 21, 861–878, https://doi.org/10.5194/nhess-21-861-2021, https://doi.org/10.5194/nhess-21-861-2021, 2021
Short summary
Short summary
The design of coastal protection affected by tropical cyclones is often based solely on the analysis of historical tropical cyclones (TCs). The simulation of numerous synthetic TC tracks based on historical data can overcome this limitation. In this paper, a new method for the generation of synthetic TC tracks is proposed, called the Tropical Cyclone Wind Statistical Estimation Tool (TCWiSE). TCWiSE can simulate thousands of tracks and wind fields in any oceanic basin based on any data source.
Elody Fluck, Michael Kunz, Peter Geissbuehler, and Stefan P. Ritz
Nat. Hazards Earth Syst. Sci., 21, 683–701, https://doi.org/10.5194/nhess-21-683-2021, https://doi.org/10.5194/nhess-21-683-2021, 2021
Short summary
Short summary
Severe convective storms (SCSs) and the related hail events constitute major atmospheric hazards in parts of Europe. In our study, we identified the regions of France, Germany, Belgium and Luxembourg that were most affected by hail over a 10 year period (2005 to 2014). A cell-tracking algorithm was computed on remote-sensing data to enable the reconstruction of several thousand SCS tracks. The location of hail hotspots will help us understand hail formation and improve hail forecasting.
Kelvin S. Ng and Gregor C. Leckebusch
Nat. Hazards Earth Syst. Sci., 21, 663–682, https://doi.org/10.5194/nhess-21-663-2021, https://doi.org/10.5194/nhess-21-663-2021, 2021
Short summary
Short summary
Due to the rarity of high-impact tropical cyclones (TCs), it is difficult to achieve a robust TC hazard assessment based on historical observations only. Here we present an approach to construct a TC event set that contains more than 10 000 years of TC events by using a computationally simple and efficient method. This event set has similar characteristics as the historical observations but includes a better representation of intense TCs. Thus, a robust TC hazard assessment can be achieved.
Nadia Fourrié, Mathieu Nuret, Pierre Brousseau, and Olivier Caumont
Nat. Hazards Earth Syst. Sci., 21, 463–480, https://doi.org/10.5194/nhess-21-463-2021, https://doi.org/10.5194/nhess-21-463-2021, 2021
Short summary
Short summary
The assimilation impact of four observation data sets on forecasts is studied in a mesoscale weather model. The ground-based Global Navigation Satellite System (GNSS) zenithal total delay data set with information on humidity has the largest impact on analyses and forecasts, representing an evenly spread and frequent data set for each analysis time over the model domain. Moreover, the reprocessing of these data also improves the forecast quality, but this impact is not statistically significant.
Joan Gilabert, Anna Deluca, Dirk Lauwaet, Joan Ballester, Jordi Corbera, and Maria Carmen Llasat
Nat. Hazards Earth Syst. Sci., 21, 375–391, https://doi.org/10.5194/nhess-21-375-2021, https://doi.org/10.5194/nhess-21-375-2021, 2021
Short summary
Short summary
Trends of extreme temperature episodes in cities are increasing due to regional climate change in interaction with urban effects. Urban morphologies and thermal properties of the materials used to build them are factors that influence climate variability and are one of the main reasons for the climatic singularity of cities. This paper presents a methodology to evaluate the urban and peri-urban effect on extreme-temperature exposure using land cover and land use maps.
David MacLeod, Mary Kilavi, Emmah Mwangi, Maurine Ambani, Michael Osunga, Joanne Robbins, Richard Graham, Pedram Rowhani, and Martin C. Todd
Nat. Hazards Earth Syst. Sci., 21, 261–277, https://doi.org/10.5194/nhess-21-261-2021, https://doi.org/10.5194/nhess-21-261-2021, 2021
Short summary
Short summary
Forecasts of natural hazards save lives. But the accuracy of forecasts must be evaluated before use. Here we evaluate heavy rainfall advisories over Kenya. We assess their ability to anticipate heavy rainfall and show how well they warned of recent floods which had significant impacts. We find that although they effectively warn of heavy rainfall and flooding, issues such as a lack of spatial detail limit their utility for systematic approaches to preparedness.
Rudolf Brázdil, Kateřina Chromá, Lukáš Dolák, Jan Řehoř, Ladislava Řezníčková, Pavel Zahradníček, and Petr Dobrovolný
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-14, https://doi.org/10.5194/nhess-2021-14, 2021
Revised manuscript accepted for NHESS
Short summary
Short summary
This paper presents an analysis of fatalities attributable to weather conditions in the Czech Republic during the 2000–2019 period, which is based on own database created from newspaper reports, on the database of the Czech Statistical Office and on the database of the Police of the Czech Republic, and on their comparison. Despite some uncertainties, generally declining trends in the number of fatalities appears for majority of weather variables. Structure of fatalities is described in detail.
Linda van Garderen, Frauke Feser, and Theodore G. Shepherd
Nat. Hazards Earth Syst. Sci., 21, 171–186, https://doi.org/10.5194/nhess-21-171-2021, https://doi.org/10.5194/nhess-21-171-2021, 2021
Short summary
Short summary
The storyline method is used to quantify the effect of climate change on a particular extreme weather event using a global atmospheric model by simulating the event with and without climate change. We present the method and its successful application for the climate change signals of the European 2003 and the Russian 2010 heatwaves.
Raphaël Cécé, Didier Bernard, Yann Krien, Frédéric Leone, Thomas Candela, Matthieu Péroche, Emmanuel Biabiany, Gael Arnaud, Ali Belmadani, Philippe Palany, and Narcisse Zahibo
Nat. Hazards Earth Syst. Sci., 21, 129–145, https://doi.org/10.5194/nhess-21-129-2021, https://doi.org/10.5194/nhess-21-129-2021, 2021
Short summary
Short summary
The present innovative modeling aims to combine the most realistic simulated strongest gusts driven by tornado-scale vortices within the eyewall and the most realistic complex terrain effects. The present modeling method could be easily extended to other small mountainous islands to improve the understanding of observed past damage and to develop safer urban management and appropriate building standards.
Shunya Koseki, Priscilla A. Mooney, William Cabos, Miguel Ángel Gaertner, Alba de la Vara, and Juan Jesus González-Alemán
Nat. Hazards Earth Syst. Sci., 21, 53–71, https://doi.org/10.5194/nhess-21-53-2021, https://doi.org/10.5194/nhess-21-53-2021, 2021
Short summary
Short summary
This study investigated one case of a tropical-like cyclone over the Mediterranean Sea under present and future climate conditions with a regional climate model. A pseudo global warming (PGW) technique is employed to simulate the cyclone under future climate, and our simulation showed that the cyclone is moderately strengthened by warmer climate. Other PGW simulations where only ocean and atmosphere are warmed reveal the interesting results that both have counteracting effects on the cyclone.
Marcus Hirtl, Barbara Scherllin-Pirscher, Martin Stuefer, Delia Arnold, Rocio Baro, Christian Maurer, and Marie D. Mulder
Nat. Hazards Earth Syst. Sci., 20, 3099–3115, https://doi.org/10.5194/nhess-20-3099-2020, https://doi.org/10.5194/nhess-20-3099-2020, 2020
Short summary
Short summary
The paper shows the application of a new volcanic emission preprocessor for the chemical transport model WRF-Chem. The model is evaluated with different observational data sets for the eruption of the Grimsvötn volcano 2011.
Alexander Krug, Daniel Fenner, Hans-Guido Mücke, and Dieter Scherer
Nat. Hazards Earth Syst. Sci., 20, 3083–3097, https://doi.org/10.5194/nhess-20-3083-2020, https://doi.org/10.5194/nhess-20-3083-2020, 2020
Short summary
Short summary
This study investigates hot weather episodes in eight German cities which are statistically associated with increased mortality. Besides air temperature, ozone concentrations partly explain these mortality rates. The strength of the respective contributions of the two stressors varies across the cities. Results highlight that during hot weather episodes, not only high air temperature affects urban populations; concurrently high ozone concentrations also play an important role in public health.
Chiara Marsigli, Elizabeth Ebert, Raghavendra Ashrit, Barbara Casati, Jing Chen, Caio A. S. Coelho, Manfred Dorninger, Eric Gilleland, Thomas Haiden, Stephanie Landman, and Marion Mittermaier
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-362, https://doi.org/10.5194/nhess-2020-362, 2020
Revised manuscript accepted for NHESS
Short summary
Short summary
This paper reviews new observations for the verification of high-impact weather, and provides advice for their usage in objective verification. New observations include: remote sensing datasets, products developed for nowcasting, datasets derived from telecommunication systems, data collected from citizens, reports of impacts and reports from insurance companies. This work has been performed in the framework of the Joint Working Group on Forecast Verification Research (JWGFVR) of WMO.
Nico Becker, Henning W. Rust, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 20, 2857–2871, https://doi.org/10.5194/nhess-20-2857-2020, https://doi.org/10.5194/nhess-20-2857-2020, 2020
Short summary
Short summary
A set of models is developed to forecast hourly probabilities of weather-related road accidents in Germany at the spatial scale of administrative districts. Model verification shows that using precipitation and temperature data leads to the best accident forecasts. Based on weather forecast data we show that skilful predictions of accident probabilities of up to 21 h ahead are possible. The models can be used to issue impact-based warnings, which are relevant for road users and authorities.
Alberto Caldas-Alvarez and Samiro Khodayar
Nat. Hazards Earth Syst. Sci., 20, 2753–2776, https://doi.org/10.5194/nhess-20-2753-2020, https://doi.org/10.5194/nhess-20-2753-2020, 2020
Short summary
Short summary
Heavy precipitation causes serious losses and several casualties in the western Mediterranean every year. To predict this phenomenon better, we aim at understanding how the models represent the interaction between atmospheric moisture and precipitation by nudging a 10 min, state-of-the-art GPS data set. We found, for the selected case in autumn 2012, that the improvement in the modelling of precipitation stems from relevant variations of atmospheric instability and humidity above 1.5 km.
Sean D. Egan, Martin Stuefer, Peter W. Webley, Taryn Lopez, Catherine F. Cahill, and Marcus Hirtl
Nat. Hazards Earth Syst. Sci., 20, 2721–2737, https://doi.org/10.5194/nhess-20-2721-2020, https://doi.org/10.5194/nhess-20-2721-2020, 2020
Short summary
Short summary
The Weather Research Forecasting with Chemistry (WRF-Chem) model was modified to include volcanic ash aggregation. The modified WRF-Chem model was run with and without aggregation, and changes in the model output were measured. Changes in the lifetime of volcanic ash a function of the chosen fractal dimension were quantified. A case study using the 2010 eruptions of Eyjafjallajökull revealed that the aggregation modifications result in tephra fallout and ash concentrations near observed values.
Olivier Caumont, Marc Mandement, François Bouttier, Judith Eeckman, Cindy Lebeaupin Brossier, Alexane Lovat, Olivier Nuissier, and Olivier Laurantin
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-310, https://doi.org/10.5194/nhess-2020-310, 2020
Revised manuscript accepted for NHESS
Short summary
Short summary
This study focuses on the case of the heavy rainfall of 14 and 15 October 2018, which caused deadly flash floods in the Aude basin in south-western France. Although similar to the heavy rainfall events that regularly affect the Mediterranean Sea, it is shown, using operational forecasting models and observations including personal observation data, that this case presented specific aggravating factors near the ground.
Panagiotis T. Nastos, Nicolas R. Dalezios, Ioannis N. Faraslis, Kostas Mitrakopoulos, Anna Blanta, Marios Spiliotopoulos, Stavros Sakellariou, Pantelis Sidiropoulos, and Ana María Tarquis
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-155, https://doi.org/10.5194/nhess-2020-155, 2020
Revised manuscript accepted for NHESS
Short summary
Short summary
Risk assessment consists of three steps: identification, estimation and evaluation. Nevertheless, the risk management framework also includes a fourth step, the need for a feedback of all the risk assessment undertakings. However, there is a lack of such feedback, which constitutes a serious deficiency in the reduction of environmental hazards at the present time. The objective of this review paper consists of addressing meteorological hazards and extremes within the risk management framework.
Joan Albert Lopez-Bustins, Laia Arbiol-Roca, Javier Martin-Vide, Antoni Barrera-Escoda, and Marc Prohom
Nat. Hazards Earth Syst. Sci., 20, 2483–2501, https://doi.org/10.5194/nhess-20-2483-2020, https://doi.org/10.5194/nhess-20-2483-2020, 2020
Short summary
Short summary
We considered the Western Mediterranean Oscillation index (WeMOi) to analyse the occurrence of extreme torrential episodes (≥ 200 mm in 24 h) over Catalonia (NE Iberia) during the 1951–2016 period. Principal results reveal the occurrence of 50 episodes, mainly in autumn, especially during the second 10 d period of October (11–20), coinciding with the most negative WeMOi values of the year. Seasonal changes in these episodes and in WeMOi values might be due to sea warming.
Leah Hayward, Malcolm Whitworth, Nick Pepin, and Steve Dorling
Nat. Hazards Earth Syst. Sci., 20, 2463–2482, https://doi.org/10.5194/nhess-20-2463-2020, https://doi.org/10.5194/nhess-20-2463-2020, 2020
Short summary
Short summary
This review article outlines the state of thunderstorm climatologies, which are underrepresented in the literature. Thunderstorms overlap with lightning and intense precipitation events, both of which create important hazards. This article compiles and evaluates information on datasets, research approaches and methodologies used in quantifying thunderstorm distribution, providing an introduction to the topic and signposting new and established researchers to research articles and datasets.
Zheng Liang, Xiaoling Su, and Kai Feng
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-237, https://doi.org/10.5194/nhess-2020-237, 2020
Revised manuscript accepted for NHESS
Short summary
Short summary
This manuscript combines the SWAT model and the empirical Kendall distribution function to construct a trivariate drought index (MAHDI) to capture all characteristics of drought in Jinta River Basin. MAHDI removes the unity of the univariate drought index and can simultaneously characterize meteorological, agricultural and hydrological drought. Moreover, drought transmission shows obvious seasonal characteristics, with the shortest propagation time in summer and the longest in autumn and winter.
Xian Luo, Xuemei Fan, Yungang Li, and Xuan Ji
Nat. Hazards Earth Syst. Sci., 20, 2243–2254, https://doi.org/10.5194/nhess-20-2243-2020, https://doi.org/10.5194/nhess-20-2243-2020, 2020
Short summary
Short summary
In this study, we corrected Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE) in the Yarlung Tsangpo–Brahmaputra River Basin using both linear and nonlinear methods, and their influences on resulting extreme precipitation indices were assessed. Results showed that all methods were able to correct mean precipitation, but their ability to correct wet-day frequency and coefficient of variation were markedly different.
Milica M. Pecelj, Milica Z. Lukić, Dejan J. Filipović, Branko M. Protić, and Uroš M. Bogdanović
Nat. Hazards Earth Syst. Sci., 20, 2021–2036, https://doi.org/10.5194/nhess-20-2021-2020, https://doi.org/10.5194/nhess-20-2021-2020, 2020
Short summary
Short summary
The variation in UTCI heat stress grade was observed during heat waves over the past 20 years in order to identify patterns of biothermal heat stress conditions in Serbia.
Very strong heat stressdescribes an alarming biothermal state and has occurred frequently in the last 10 years. The findings indicate the UTCI14 h index
very strong heat stress event(VSHSE) as an indicator of biothermal heat hazard.
Judith Marie Pöschmann, Dongkyun Kim, Rico Kronenberg, and Christian Bernhofer
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-192, https://doi.org/10.5194/nhess-2020-192, 2020
Revised manuscript accepted for NHESS
Short summary
Short summary
We examined maximum rainfall values for different durations from 16 years of radar-based rainfall records for whole Germany. Unlike existing observations based on rain gauge data no clear linear relationship could be identified. However, by classifying all time series, we could identify three similar groups determined by the temporal structure of rainfall extremes observed in the study period. The study highlights the importance of using long data records and a dense measurement network.
Deanna Nash and Leila M. V. Carvalho
Nat. Hazards Earth Syst. Sci., 20, 1931–1940, https://doi.org/10.5194/nhess-20-1931-2020, https://doi.org/10.5194/nhess-20-1931-2020, 2020
Short summary
Short summary
On 6 March 2019, during an atmospheric river (AR) event, over 8000 lightning flashes were recorded near southern California in under 24 h, resulting in a unique meteorological event for this region. This study examines the characteristics of this AR compared to previous landfalling ARs in Santa Barbara and explores how the conditions led to the formation of hail and enhanced electrification in a region that sees little to no lightning.
Kuo Li and Gyilbag Amatus
Nat. Hazards Earth Syst. Sci., 20, 1889–1901, https://doi.org/10.5194/nhess-20-1889-2020, https://doi.org/10.5194/nhess-20-1889-2020, 2020
Short summary
Short summary
In recent years, heat waves have become more frequent in the world, e.g., in Europe, Australia, China and the US, at huge detriment to human health and natural resources. Thus we establish an integrated index of heat waves and extreme-temperature days to provide unified standards for assessing heat waves and hot years. It provides a clear picture of the evolution and spatial distribution of heat waves and hot years in China.
Michael Kunz, Jan Wandel, Elody Fluck, Sven Baumstark, Susanna Mohr, and Sebastian Schemm
Nat. Hazards Earth Syst. Sci., 20, 1867–1887, https://doi.org/10.5194/nhess-20-1867-2020, https://doi.org/10.5194/nhess-20-1867-2020, 2020
Short summary
Short summary
Severe convective storms are major loss drivers across Europe. We reconstructed several thousand storm tracks from radar reflectivity over a 10-year period for parts of Europe. The tracks were additionally combined with hail reports, reanalysis data, and front detections based on ERA-Interim (ECMWF Reanalysis). It is found that frontal hailstorms on average produce larger hailstones and have longer tracks and that wind shear is important not only for the hail diameter but also for track length.
Anita Verpe Dyrrdal, Ketil Isaksen, Jens Kristian Steen Jacobsen, and Irene Brox Nilsen
Nat. Hazards Earth Syst. Sci., 20, 1847–1865, https://doi.org/10.5194/nhess-20-1847-2020, https://doi.org/10.5194/nhess-20-1847-2020, 2020
Short summary
Short summary
We have studied changes in winter weather known to trigger road closures and isolation of small seaside communities in northern Norway. We find that snow amounts and heavy snowfall events have increased in the past, while future projections for 2040–2100 show a decrease in snow-related indices. Events of heavy water supply and zero crossings are expected to increase. Our results imply fewer dry-snow-related access disruptions in the future, while wet-snow avalanches and slushflows may increase.
Rogert Sorí, Marta Vázquez, Milica Stojanovic, Raquel Nieto, Margarida L. R. Liberato, and Luis Gimeno
Nat. Hazards Earth Syst. Sci., 20, 1805–1832, https://doi.org/10.5194/nhess-20-1805-2020, https://doi.org/10.5194/nhess-20-1805-2020, 2020
Emanuele Bevacqua, Michalis I. Vousdoukas, Theodore G. Shepherd, and Mathieu Vrac
Nat. Hazards Earth Syst. Sci., 20, 1765–1782, https://doi.org/10.5194/nhess-20-1765-2020, https://doi.org/10.5194/nhess-20-1765-2020, 2020
Short summary
Short summary
Coastal compound flooding (CF), caused by interacting storm surges and high water runoff, is typically studied based on concurring storm surge extremes with either precipitation or river discharge extremes. Globally, these two approaches show similar CF spatial patterns, especially where the CF potential is the highest. Deviations between the two approaches increase with the catchment size. The precipitation-based analysis allows for considering
local-rainfall-driven CF and CF in small rivers.
Genshen Fang, Lin Zhao, Shuyang Cao, Ledong Zhu, and Yaojun Ge
Nat. Hazards Earth Syst. Sci., 20, 1617–1637, https://doi.org/10.5194/nhess-20-1617-2020, https://doi.org/10.5194/nhess-20-1617-2020, 2020
Short summary
Short summary
Coastal regions of China feature high population densities as well as flexible structures and are therefore vulnerable to tropical cyclone (TC) damage. A TC is a moving rotating storm with a small occurrence rate at a specific site. Wind anemometers are usually damaged during strong typhoon events, making the record of observed winds an unreliable predictor for design wind speed. This study uses the Monte Carlo simulation to investigate the typhoon wind hazards in coastal regions of China.
Christina Kagkara, Wolfram Wobrock, Céline Planche, and Andrea I. Flossmann
Nat. Hazards Earth Syst. Sci., 20, 1469–1483, https://doi.org/10.5194/nhess-20-1469-2020, https://doi.org/10.5194/nhess-20-1469-2020, 2020
Short summary
Short summary
Over the Cévennes–Vivarais region in southern France, 5 h intensive rainfall covering an area of 1000 km2 with more than 50 mm rain accumulation was observed during IOP7a of HyMeX. This study evaluates the performance of a bin-resolved cloud model for simulating this heavy-precipitation event. The simulation results were compared with observations of rain accumulation, radar reflectivity, temporal and spatial evolution of precipitation, 5 min rain rates, and raindrop size distributions.
Diego Cerrai, Qing Yang, Xinyi Shen, Marika Koukoula, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 20, 1463–1468, https://doi.org/10.5194/nhess-20-1463-2020, https://doi.org/10.5194/nhess-20-1463-2020, 2020
Short summary
Short summary
On 1 September 2019 Hurricane Dorian made landfall on Great Abaco, unleashing unprecedented destruction on the northern Bahamas. Dorian was characterized by extreme winds, extensive coastal flooding, and impressive precipitation. We studied the event through images acquired by the synthetic aperture radars (SARs) mounted on European Space Agency satellites to derive flooding maps showing the extent of the devastation. We found that the flooded area in the Bahamas was at least 3000 km2.
Matteo Ponzano, Bruno Joly, Laurent Descamps, and Philippe Arbogast
Nat. Hazards Earth Syst. Sci., 20, 1369–1389, https://doi.org/10.5194/nhess-20-1369-2020, https://doi.org/10.5194/nhess-20-1369-2020, 2020
Short summary
Short summary
We assess a methodology to evaluate and improve intense precipitation forecasting in the southeastern French region. This methodology is based on the use of a 30-year dataset of past forecasts which are analysed using a spatial verification approach. We found that precipitation forecasting is qualitatively driven by the deep-convection parametrization. Locally the model is able to reproduce the distribution of spatially integrated rainfall patterns of the most intense precipitation.
Christoph P. Gatzen, Andreas H. Fink, David M. Schultz, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 20, 1335–1351, https://doi.org/10.5194/nhess-20-1335-2020, https://doi.org/10.5194/nhess-20-1335-2020, 2020
Short summary
Short summary
Derechos are widespread, convectively induced severe wind events. A climatology of derechos in Germany is presented. It shows that derechos are not uncommon across the country. Two seasonal peaks indicate a comparable derecho risk in summer and winter. At the same time, we found two different derecho types, a warm- and a cold-season type. We present characteristics of both derecho types that can help forecasters to estimate the potential derecho threat in a given weather situation.
Marco Tedesco, Steven McAlpine, and Jeremy R. Porter
Nat. Hazards Earth Syst. Sci., 20, 907–920, https://doi.org/10.5194/nhess-20-907-2020, https://doi.org/10.5194/nhess-20-907-2020, 2020
Short summary
Short summary
Quantifying the exposure of house property to extreme weather events is crucial to study their impact on economy. Here, we show that value of property exposed to Hurricane Florence in September 2018 was USD 52 billion vs. USD 10 billion that would have occurred at the beginning of the 19th century due to urban expansion that increased after 1950s and the increasing number of houses built near water, showing the importance of accounting for the distribution of new buildings in risk and exposure.
Seyedabdolhossein Mehvar, Kathelijne Wijnberg, Bas Borsje, Norman Kerle, Jan Maarten Schraagen, Joanne Vinke de Kruijf, Karst Geurs, Andreas Hartmann, Rick Hogeboom, and Suzanne Hulscher
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-12, https://doi.org/10.5194/nhess-2020-12, 2020
Revised manuscript accepted for NHESS
Short summary
Short summary
This review synthesizes and complements existing knowledge in designing resilient Vital Infrastructure Systems (VIS). Results from a systematic literature review and expert interviews indicate that: (i) VIS are still being built without taking resilience explicitly into account; and (ii) measures to enhance the resilience of VIS have not been widely applied in practice. Main pressing topic to address is the integration of the combined social, ecological and technical resilience of these systems.
James M. Done, Ming Ge, Greg J. Holland, Ioana Dima-West, Samuel Phibbs, Geoffrey R. Saville, and Yuqing Wang
Nat. Hazards Earth Syst. Sci., 20, 567–580, https://doi.org/10.5194/nhess-20-567-2020, https://doi.org/10.5194/nhess-20-567-2020, 2020
Short summary
Short summary
Assessing tropical cyclone (TC) wind risk is challenging due to a lack of historical TC wind data. This paper presents a novel approach to simulating landfalling TC winds anywhere on Earth. It captures local features such as high winds over coastal hills and lulls over rough terrain. A dataset of over 700 global historical wind footprints has been generated to provide new views of historical events. This dataset can be used to advance our understanding of overland TC wind risk.
Omar Roberto Valverde-Arias, Paloma Esteve, Ana María Tarquis, and Alberto Garrido
Nat. Hazards Earth Syst. Sci., 20, 345–362, https://doi.org/10.5194/nhess-20-345-2020, https://doi.org/10.5194/nhess-20-345-2020, 2020
Short summary
Short summary
We designed an index-based insurance (IBI) for drought and flood in rice crops in Babahoyo (Ecuador). We assessed Babahoyo's soil, climatic and topographic variability, finding two homogeneous zones inside this area. We set differentiated insurance premiums according to the particular risk status of each zone. Results demonstrate that this IBI is an efficient risk transfer tool for policyholders. This insurance design could contribute to stabilizing farmers' incomes and rice production.
Marc Mandement and Olivier Caumont
Nat. Hazards Earth Syst. Sci., 20, 299–322, https://doi.org/10.5194/nhess-20-299-2020, https://doi.org/10.5194/nhess-20-299-2020, 2020
Short summary
Short summary
The number of connected personal weather stations has dramatically increased in the last years. These weather stations produce a high number of data that need a thorough quality control to unleash their potential. A novel quality-control algorithm now allows us to take full advantage of these data and observe thunderstorms with fine-scale details that cannot be caught by standard networks. These results pave the way for tremendous advances in both understanding and forecasting thunderstorms.
Doug Richardson, Hayley J. Fowler, Christopher G. Kilsby, Robert Neal, and Rutger Dankers
Nat. Hazards Earth Syst. Sci., 20, 107–124, https://doi.org/10.5194/nhess-20-107-2020, https://doi.org/10.5194/nhess-20-107-2020, 2020
Short summary
Short summary
Models are not particularly skilful at forecasting rainfall more than 15 d in advance. However, they are often better at predicting atmospheric variables such as mean sea-level pressure (MSLP). Comparing a range of models, we show that UK winter and autumn rainfall and drought prediction skill can be improved by utilising forecasts of MSLP-based weather patterns (WPs) and subsequently estimating rainfall using the historical WP–precipitation relationships.
Peter Stucki, Paul Froidevaux, Marcelo Zamuriano, Francesco Alessandro Isotta, Martina Messmer, and Andrey Martynov
Nat. Hazards Earth Syst. Sci., 20, 35–57, https://doi.org/10.5194/nhess-20-35-2020, https://doi.org/10.5194/nhess-20-35-2020, 2020
Short summary
Short summary
In 1876, 1910, and 2005, Switzerland was impacted by extreme rainfall and floods. All events were linked to a Vb cyclone. We test a range of weather model setups (short spinup and standard physics are best) to understand the sensitivity of atmospheric dynamics. The simulated Vb cyclones are (not) well defined for 2005 and 1910 (1876). To reproduce the events, intense moisture flux from the right direction is needed. Storms that slightly deviate from an ideal path produce erroneous precipitation.
Maria Cortès, Marco Turco, Philip Ward, Josep A. Sánchez-Espigares, Lorenzo Alfieri, and Maria Carmen Llasat
Nat. Hazards Earth Syst. Sci., 19, 2855–2877, https://doi.org/10.5194/nhess-19-2855-2019, https://doi.org/10.5194/nhess-19-2855-2019, 2019
Short summary
Short summary
The main objective of this paper is to estimate changes in the probability of damaging flood events with global warming of 1.5, 2 and 3 °C above pre-industrial levels and taking into account different socioeconomic scenarios in two western Mediterranean regions. The results show a general increase in the probability of a damaging event, with larger increments when higher warming is considered. Moreover, this increase is higher when both climate and population change are included.
Andreia F. S. Ribeiro, Ana Russo, Célia M. Gouveia, Patrícia Páscoa, and Carlos A. L. Pires
Nat. Hazards Earth Syst. Sci., 19, 2795–2809, https://doi.org/10.5194/nhess-19-2795-2019, https://doi.org/10.5194/nhess-19-2795-2019, 2019
Short summary
Short summary
This work investigates the dependence between drought hazard and yield anomalies of rainfed cropping systems in the Iberian Peninsula using the copula theory. The applied methodology allows us to estimate the likelihood of wheat and barley loss under drought conditions, and a dependence among extreme values is suggested. From the decision-making point of view this study aims to contribute to the mitigation of drought-related crop failure.
Yoav Yair, Yifat Yair, Baruch Rubin, Ronit Confino-Cohen, Yosef Rosman, Eduardo Shachar, and Menachem Rottem
Nat. Hazards Earth Syst. Sci., 19, 2715–2725, https://doi.org/10.5194/nhess-19-2715-2019, https://doi.org/10.5194/nhess-19-2715-2019, 2019
Short summary
Short summary
During severe thunderstorms, cold outflows can eject pollen and dust particles from the surface, releasing allergens and causing
thunderstorm asthmaepidemics in sensitive populations. We report the first case in Israel that occurred on 25 October 2015. The emergency room presentation records from three hospitals in central Israel showed a clear increase in patients with respiratory complaints immediately after the passage of a massive super-cell thunderstorm in the area.
Carlos D. Hoyos, Lina I. Ceballos, Jhayron S. Pérez-Carrasquilla, Julián Sepúlveda, Silvana M. López-Zapata, Manuel D. Zuluaga, Nicolás Velásquez, Laura Herrera-Mejía, Olver Hernández, Gisel Guzmán-Echavarría, and Mauricio Zapata
Nat. Hazards Earth Syst. Sci., 19, 2635–2665, https://doi.org/10.5194/nhess-19-2635-2019, https://doi.org/10.5194/nhess-19-2635-2019, 2019
Short summary
Short summary
On the morning of 18 May 2015, a flash flood in the La Liboriana river basin inundated the town of Salgar, killing more than 100 people. The ultimate goal of science, regarding risk management, is to be able to reduce the number of people affected by severe storms. Our goal is to identify the meteorological conditions that led to the flood, assess the characteristics of the rainfall events before the disaster, and identify lessons for vulnerable regions settled in complex terrains.
Cited articles
Antonescu, B., Schultz, D. M., Lomas, F., and Kühne, T.: Tornadoes in Europe: Synthesis of the observational datasets, Mon. Weather Rev., 144, 2445–2480, https://doi.org/10.1175/MWR-D-15-0298.1, 2016. a
Antonescu, B., Schultz, D. M., Holzer, A., and Groenemeijer, P.: Tornadoes in Europe: An underestimated threat, B. Am. Meteorol. Soc., 98, 713–728, https://doi.org/10.1175/BAMS-D-16-0171.1, 2017. a
Ashley, W. S., Strader, S., Rosencrants, T. D., and Krmenec, A. J.: Spatiotemporal Changes in Tornado Hazard Exposure: The Case of the Expanding Bull’s-Eye Effect in Chicago, Illinois, Weather Clim. Soc., 6, 175–193, https://doi.org/10.1175/WCAS-D-13-00047.1, 2014. a
Bai, L., Meng, Z., Huang, L., Yan, L., Li, Z., Mai, X., Huang, Y., Yao, D., and Wang, X.: An Integrated Damage, Visual, and Radar Analysis of the 2015 Foshan, Guangdong, EF3 Tornado in China Produced by the Landfalling Typhoon Mujigae (2015), B. Am. Meteorol. Soc., 98, 2619–2640, https://doi.org/10.1175/BAMS-D-16-0015.1, 2017. a
Bech, J., Pascual, R., Rigo, T., Pineda, N., López, J. M., Arús, J., and Gayà, M.: An observational study of the 7 September 2005 Barcelona tornado outbreak, Nat. Hazards Earth Syst. Sci., 7, 129–139, https://doi.org/10.5194/nhess-7-129-2007, 2007. a
Bech, J., Gayà, M., Aran, M., Figuerola, F., Amaro, J., and Arús, J.: Tornado damage analysis of a forest area using site survey observations, radar data and a simple analytical vortex model, Atmos. Res., 93, 118–130, https://doi.org/10.1016/j.atmosres.2008.10.016, 2009. a, b, c, d, e, f, g, h, i, j, k
Bech, J., Pineda, N., Rigo, T., Aran, M., Amaro, J., Gayà, M., Arús, J., Montanyà, J., and van der Velde, O.: A Mediterranean nocturnal heavy rainfall and tornadic event. Part I: Overview, damage survey and radar analysis, Atmos. Res., 100, 621–637, https://doi.org/10.1016/j.atmosres.2010.12.024, 2011. a, b, c, d
Bech, J., Pineda, N., Rigo, T., and Aran, M.: Remote sensing analysis of a Mediterranean thundersnow and low-altitude heavy snowfall event, Atmos. Res., 123, 305–322, https://doi.org/10.1016/j.atmosres.2012.06.021, 2013. a
Bech, J., Arús, J., Castán, C., Pineda, N., Rigo, T., Montanyà, J., and van der Velde, O.: A study of the 21 March 2012 tornadic quasi linear convective system in Catalonia, Atmos. Res., 158–159, 192–209, https://doi.org/10.1016/j.atmosres.2014.08.009, 2015. a, b, c, d
Beck, V., and Dotzek, N.: Reconstruction of Near-Surface Tornado Wind Fields from Forest Damage, J. Appl. Meteorol. Clim., 49, 1517–1537, https://doi.org/10.1175/2010JAMC2254.1, 2010. a, b
Beven, K. J., Aspinall, W. P., Bates, P. D., Borgomeo, E., Goda, K., Hall, J. W., Page, T., Phillips, J. C., Simpson, M., Smith, P. J., Wagener, T., and Watson, M.: Epistemic uncertainties and natural hazard risk assessment – Part 2: What should constitute good practice?, Nat. Hazards Earth Syst. Sci., 18, 2769–2783, https://doi.org/10.5194/nhess-18-2769-2018, 2018. a, b
Burgess, D., Ortega, K., Stumpf, G., Garfield, G., Kartens, C., Meyer, T., and Smith, B.: 20 May 2013 Moore, Oklahoma, Tornado: Damage Survey and Analysis, Weather Forecast., 29, 1229–1237, https://doi.org/10.1175/WAF-D-14-00039.1, 2014. a, b, c
Cannon, J. B., Hepinstall-Cymerman, J., Godfrey, C. M., and Peterson, C. J.: Landscape-scale characteristics of forest tornado damage in mountainous terrain, Landscape Ecol., 31, 2097–2114, https://doi.org/10.1007/s10980-016-0384-8, 2016. a
Chernokulsky, A. and Shikhov, A.: 1984 Ivanovo tornado outbreak: Determination of actual tornado tracks with satellite data, Atmos. Res., 207, 111–121, https://doi.org/10.1016/j.atmosres.2018.02.011, 2018. a, b
Chmielewski, T., Szer, J., and Bobra, P.: Derecho wind storm in Poland on 11–12 August 2017: results of the post-disaster investigation, Environ. Hazards, 0, 1–21, https://doi.org/10.1080/17477891.2020.1730154, 2020. a
De Groeve, T., Poljansek, K., and Ehrlich, D.: Recording disasters losses: recommendation for a European approach. JRC Scientific and Policy Report, available at: http://publications.jrc.ec.europa.eu/repository/bitstream/111111111/29296/1/lbna26111enn.pdf (last access: 2 December 2019), 2013. a
De Groeve, T., Poljansek, K., Ehrlich D., and Corbane C.: Current status and best practices for disaster loss data recording in EU Member States. JRC Scientific and Policy Report, available at: http://publications.jrc.ec.europa.eu/repository/bitstream/JRC92290/lbna26879enn.pdf (last access: 2 December 2019), 2014. a, b, c
Doswell III, C. A.: A guide to F-scale damage assessment, NOAA Rep., 101 pp., available at: http://www.wdtb.noaa.gov/courses/ef-scale/lesson2/FinalNWSF-scaleAssessmentGuide.pdf (last access: 19 March 2020), 2003. a
Doswell III, C. A., Brooks, H. E., and Dotzek, N.: On the implementation of the enhanced Fujita scale in the USA, Atmos. Res., 93, 554–563, https://doi.org/10.1016/j.atmosres.2008.11.003, 2009. a, b
Dotzek, N., Groenemeijer, P., Feuerstein, B., and Holzer, A. M.: Overview of ESSL’s severe convective storms research using the European Severe Weather Database ESWD, Atmos. Res., 93, 575–586, https://doi.org/10.1016/j.atmosres.2008.10.020, 2009. a, b, c
Edwards, R.: Frequently Asked Questions about Tornadoes, Storm Prediction Center (NOAA), available at: https://www.spc.noaa.gov/faq/tornado/index.html, last access: 19 March 2020. a
Edwards, R., LaDue, J. G., Ferree, J. T., Scharfenberg, K., Maier, C., and Coulbourne, W. L.: Tornado Intensity Estimation: Past, Present, and Future, B. Am. Meteorol. Soc., 94, 641–653, https://doi.org/10.1175/BAMS-D-11-00006.1, 2013. a, b
Environment Canada: Enhanced Fujita Scale Damage Indicators and Degrees Of Damage, available at: https://www.canada.ca/en/environment-climate-change/services/seasonal-weather-hazards/enhanced-fujita-scale-wind-damage.html (last access: 11 August 2019), 2013. a
Farnell, C., Busto, M., Aran, M., Andrés, A., Pineda, N., and Torà, M.: Study of the hailstorm of 17 September 2007 at the Pla d'Urgell. Part one: fieldwork and analysis of hailpads, Tethys, 6, 67–79, https://doi.org/10.3369/tethys.2009.6.05, 2009. a
Feuerstein, B., Groenemeijer, P., Dirksen, E., Hubrig, M., Holzer, A. M., and Dotzek, N.: Towards an improved wind speed scale and damage description adapted for Central Europe, Atmos. Res., 100, 547–564, https://doi.org/10.1016/j.atmosres.2010.12.026, 2011. a, b, c
Forbes, G. S. and Wakimoto, R. M.: A Concentrated Outbreak of Tornadoes, Downbursts and Microbursts, and Implications Regarding Vortex Classification, Mon. Weather Rev., 111, 220–236, https://doi.org/10.1175/1520-0493(1983)111<0220:ACOOTD>2.0.CO;2, 1983. a
Foster, D. R.: Species and stand response to catastrophic wind in Central New England, USA, J. Ecol., 76, 135–151, https://doi.org/10.2307/2260458, 1988. a
Fujita, T. T.: Tornadoes and downbursts in the context of generalized planetary scales, J. Atmos. Sci., 38, 1511–1534, https://doi.org/10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2, 1981. a, b, c
Gayà, M.: The 1886 tornado of Madrid, Atmos. Res., 83, 201–210, https://doi.org/10.1016/j.atmosres.2005.10.017, 2007. a
Gayà, M., Llasat, M.-C., and Arús, J.: Tornadoes and waterspouts in Catalonia (1950–2009), Nat. Hazards Earth Syst. Sci., 11, 1875–1883, https://doi.org/10.5194/nhess-11-1875-2011, 2011. a
Godfrey, C. M. and Peterson, C. J.: Estimating Enhanced Fujita Scale Levels Based on Forest Damage Severity, Weather Forecast., 32, 243–252, https://doi.org/10.1175/WAF-D-16-0104.1, 2017. a
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031, 2017. a
Groenemeijer, P., Holzer, A. M., Hubrig, M., Kühne, T., Kaltenberger, R., Soriano, J. D., Bock, L., Guitiérrez, D., van de Ploeg, B., Strommer, G., and Schreiner, T.: The International Fujita Scale: A Globally Applicable Scale for Tornado and Wind Damage Classification, 10th European Conference on Severe Storms, 4–8 November 2019, Kraków, Poland, 2019. a
Holland, A. P., Riordan, A. J., and Franklin, E. C.: A simple model for simulating tornado damage in forests, J. Appl. Meteorol. Clim., 45, 1597–1611, https://doi.org/10.1175/JAM2413.1, 2006. a, b, c, d
Hyvärinen, O. and Saltikoff, E.: Social Media as a Source of Meteorological Observations, Mon. Weather Rev., 138, 3175–3184, https://doi.org/10.1175/2010MWR3270.1, 2010. a
IRDR: Peril Classification and Hazard Glossary, Integrated Research on Disaster Risk, 28 pp., available at: http://www.irdrinternational.org/2014/03/28/irdr-peril-classification-and-hazard-glossary/ (last access: 27 December 2019), 2014. a
Japan Meteorological Agency (JMA): Guidelines for the Japanese Enhanced Fujita Scale, 113 pp., available at: https://www.data.jma.go.jp/obd/stats/data/bosai/tornado/kaisetsu/jefscale_en.html (last access: 11 August 2019), 2015. a
Karstens, C. D., Samaras, T. M., Lee, B. D., Gallus, W. A., and Finley, C. A.: Near-Ground Pressure and Wind Measurements in Tornadoes, Mon. Weather Rev., 138, 2570–2588, https://doi.org/10.1175/2010MWR3201.1, 2010. a
Karstens, C. D., Gallus, W. A., Lee, B. D., and Finley, C. A.: Analysis of Tornado-Induced Tree Fall Using Aerial Photography from the Joplin, Missouri, and Tuscaloosa–Birmingham, Alabama, Tornadoes of 2011, J. Appl. Meteorol. Clim., 52, 1049–1068, https://doi.org/10.1175/JAMC-D-12-0206.1, 2013. a
KERAUNOS: Les tornades en France (Tornadoes in France, in French), available at: http://www.keraunos.org/climatologie/les-tornades-en-france.html, last access: 17 April 2020. a
Knox, J. A., Rackley, J. A., Black, A. W., Gensini, V. A., Butler, M., Dunn, C., Gallo, T., Hunter, M. R., Lindsey, L., Phan, M., Scroggs, R., and Brustad, S.: Tornado Debris Characteristics And Trajectories During The 27 April 2011 Super Outbreak As Determined Using Social Media Data, B. Am. Meteorol. Soc., 94, 1371–1380, https://doi.org/10.1175/BAMS-D-12-00036.1, 2013. a, b
Kryvasheyeu, Y., Chen, H., Obradovich, N., Moro, E., Van Hentenryck, P., Fowler, J., and Cebrian M.: Rapid assessment of disaster damage using social media activity, Sci. Adv., 3, e1500779, https://doi.org/10.1126/sciadv.1500779, 2016. a
Lemon, L. R., Stan-Sion, A., Soci, C., and Cordoneanu, E.: A strong, long-track, Romanian tornado, Atmos. Res., 67–68, 391–416, https://doi.org/10.1016/S0169-8095(03)00063-2, 2003. a
Letchford, C. W. and Chay, M. T.: Pressure distributions on a cube in a simulated thunderstorm downburst. Part B: moving downburst observations, J. Wind. Eng. Ind. Aerodyn., 90, 733–753, https://doi.org/10.1016/S0167-6105(02)00163-0, 2002. a
Li, L., Yang, J., Lin, C.-Y., Chua, C. T., Wang, Y., Zhao, K., Wu, Y.-T., Liu, P. L.-F., Switzer, A. D., Mok, K. M., Wang, P., and Peng, D.: Field survey of Typhoon Hato (2017) and a comparison with storm surge modeling in Macau, Nat. Hazards Earth Syst. Sci., 18, 3167–3178, https://doi.org/10.5194/nhess-18-3167-2018, 2018. a
Llasat, M. C., Turco, M., Quintana-Seguí, P., and Llasat-Botija, M.: The snow storm of 8 March 2010 in Catalonia (Spain): a paradigmatic wet-snow event with a high societal impact, Nat. Hazards Earth Syst. Sci., 14, 427–441, https://doi.org/10.5194/nhess-14-427-2014, 2014. a
Mahieu, P. and Wesolek, E.: Tornado Rating in Europe with the EF-scale, KERAUNOS, 65 pp., available at: http://www.keraunos.org/tornado-rating-in-europe-with-the-enhanced-fujita-scale.pdf (last access: 11 August 2019), 2016. a
Marshall, T. P.: Tornado damage survey at Moore, Oklahoma, Weather Forecast., 17, 582–598, https://doi.org/10.1175/1520-0434(2002)017<0582:TDSAMO>2.0.CO;2, 2002. a
Marshall, T. P., Davis, W., and Runnels, S.: Damage survey of the Joplin tornado, 26th Conference on Severe Local Storm, 5–8 November 2012, Nashville, TN, USA, 6.1, available at: https://ams.confex.com/ams/26SLS/webprogram/Manuscript/Paper211662/Joplinmerger.pdf (last access: 11 August 2019), 2012. a, b, c
Mateo, J., Ballart, D., Brucet, C., Aran, M., and Bech, J.: A study of a heavy rainfall event and a tornado outbreak during the passage of a squall line over Catalonia, Atmos. Res., 93, 131–146, https://doi.org/10.1016/j.atmosres.2008.09.030, 2009. a
Meaden, G. T., Kochev, S., Kolendowicz, L., Kosa-Kiss, A., Marcinoniene, I., Sioutas, M., Tooming, H., and Tyrrell, J.: Comparing the theoretical versions of the Beaufort scale, the T-Scale and the Fujita scale, Atmos. Res., 83, 446–449, https://doi.org/10.1016/j.atmosres.2005.11.014, 2007. a
Meng, Z. and Yao, D.: Damage Survey, Radar, and Environment Analyses on the First-Ever Documented Tornado in Beijing during the Heavy Rainfall Event of 21 July 2012, Weather Forecast., 29, 702–724, https://doi.org/10.1175/WAF-D-13-00052.1, 2014. a
Miller, P. W. and Mote, T. L.: Characterizing severe weather potential in synoptically weakly forced thunderstorm environments, Nat. Hazards Earth Syst. Sci., 18, 1261–1277, https://doi.org/10.5194/nhess-18-1261-2018, 2018. a
Molinari, D., Menoni, S., Aronica, G. T., Ballio, F., Berni, N., Pandolfo, C., Stelluti, M., and Minucci, G.: Ex post damage assessment: an Italian experience, Nat. Hazards Earth Syst. Sci., 14, 901–916, https://doi.org/10.5194/nhess-14-901-2014, 2014. a
Molthan, A. L., Bell, J. R., Cole, T. A., and Burks, J. E.: Satellite-based identification of tornado damage tracks from the 27 April 2011 severe weather outbreak, J. Oper. Meteor., 2, 191–208, https://doi.org/10.15191/nwajom.2014.0216, 2014. a, b
NOAA/SPC: U.S. tornadoes (1950–2018), available at: https://www.spc.noaa.gov/wcm (last access: 17 April 2020), 2019. a
Orf, L., Kantor, E., and Savory, E.: Simulation of a downburst-producing thunderstorm using a very high-resolution three-dimensional cloud model, J. Wind Eng. Ind. Aerodyn., 104–106, 547–557, https://doi.org/10.1016/j.jweia.2012.02.020, 2012. a
Paulikas, M. J., Schmidlin, T. W., and Marshall, T. P.: The Stability of Passenger Vehicles at Tornado Wind Intensities of the (Enhanced) Fujita Scale, Weather Clim. Soc., 8, 85–91, https://doi.org/10.1175/WCAS-D-15-0051.1, 2016. a
Peterson, C. J.: Damage diversity as a metric of structural complexity after forest wind disturbance, Forests, 10, 85, https://doi.org/10.3390/f10020085, 2019. a
Peterson, R. E.: Johannes Letzmann: a pioneer in the study of tornadoes, Weather Forecast., 7, 166–184, https://doi.org/10.1175/1520-0434(1992)007<0166:JLAPIT>2.0.CO;2, 1992. a
Pipinato, A.: Recent northeast Italian tornado events: lesson learned for improving structures, Nat. Hazards, https://doi.org/10.1007/s11069-018-3380-2, 2018. a
Rasmussen, E. N., Davies-Jones, R., and Holle, R. L.: Terrestrial Photogrammetry of Weather Images Acquired in Uncontrolled Circumstances, J. Atmos. Ocean. Tech., 20, 1790–1803, https://doi.org/10.1175/1520-0426(2003)020<1790:TPOWIA>2.0.CO;2, 2003. a
Rhee, D. M. and Lombardo, F. T.: Improved near-surface wind speed characterization using damage patterns, J. Wind. Eng. Ind. Aerodyn., 180, 288–297, https://doi.org/10.1016/j.jweia.2018.07.017, 2018. a, b, c, d
Riesco, J., Polvorinos, F., Núñez, J. A., Soriano, J. D., and Jiménez, C.: Climatología de tornados en España Peninsular y Baleares (Tornado Climatology in the Peninsular Spain and Balearic Islands, in Spanish), Spanish Meteorological Agency (AEMet), 83 pp., available at: http://www.aemet.es/documentos/es/conocermas/publicaciones/Climatologia_tornados/Climatologia_tornados.pdf (last access: 11 August 2019), 2015. a
Ripoll, R., del Amo, X., and Vendrell, R.: The weather observers network of the Meteorological Service of Catalonia, WMO Technical Conference on Meteorological and Environmental Instruments and Methods of Observation (CIMO TECO 2016), 27–30 September 2016, Madrid, Spain, P2(57), 2016. a
Rodríguez, O. and Bech, J.: Sounding-derived parameters associated with tornadic storms in Catalonia, Int. J. Climatol., 38, 2400–2414, https://doi.org/10.1002/joc.5343, 2018. a
Rosencrants, T. D. and Ashley, W. S.: Spatiotemporal analysis of tornado exposure in five US metropolitan areas, Nat. Hazards, 78, 121–140, https://doi.org/10.1007/s11069-015-1704-z, 2015. a, b
Roueche, D. B. and Prevatt, D. O.: Residential Damage Patterns Following the 2011 Tuscaloosa, AL and Joplin, MO Tornadoes, J. Disaster Res., 8, 1061–1067, 2013. a
Sánchez-Laulhé, J. M.: El tornado de Málaga del 1 de Febrero de 2009 (The 1 February 2009 tornado of Malaga), Spanish Meteorological Agency (AEMet), 3 pp., available at: https://repositorio.aemet.es/bitstream/20.500.11765/2724/1/TyC_2009_24_03.pdf (last access: 11 August 2019), 2013 (in Spanish). a
Shikhov, A. and Chernokulsky, A.: A satellite-derived climatology of unreported tornadoes in forested regions of northeast Europe, Remote Sens. Environ., 204, 553–567, https://doi.org/10.1016/j.rse.2017.10.002, 2018. a
Shikhov, A. N., Perminova, E. S., and Perminov, S. I.: Satellite-based analysis of the spatial patterns of fire-and storm-related forest disturbances in the Ural region, Russia, Nat. Hazards, 97, 283–308, https://doi.org/10.1007/s11069-019-03642-z, 2019. a
Strader, S. M., Ashley, W., Irizarry, A., and Hall, S.: A climatology of tornado intensity assessments, Meteorol. Appl., 22, 513–524, https://doi.org/10.1002/met.1482, 2015. a
Taszarek, M., Brooks, H. E., and Czernecki, B.: Sounding-Derived Parameters Associated with Convective Hazards in Europe, Mon. Weather Rev., 145, 1511–1528, https://doi.org/10.1175/MWR-D-16-0384.1, 2017. a
Verbout, S. M., Brooks, H. E., Leslie, L. M., and Schultz, D. M.: Evolution of the US tornado database: 1954–2003, Weather Forecast., 21, 86–93, https://doi.org/10.1175/WAF910.1, 2006. a
Wakimoto, R. M. and Lew, J. K.: Observations of a Florida Waterspout during CaPE, Weather Forecast., 8, 412–423, https://doi.org/10.1175/1520-0434(1993)008<0412:OOAFWD>2.0.CO;2, 1993.
a
Wakimoto, R. M. and Liu, C.: The Garden City, Kansas, Storm during VORTEX 95. Part II: The Wall Cloud and Tornado, Mon. Wea. Rev., 126, 393–408, https://doi.org/10.1175/1520-0493(1998)126<0393:TGCKSD>2.0.CO;2, 1998. a
Wakimoto, R. M., Wienhoff, Z., Bluestein, H. B., and Reif, D.: The Dodge City Tornadoes on 24 May 2016: Damage Survey, Photogrammetric Analysis Combined with Mobile Polarimetric Radar Data, Mon. Weather Rev., 146, 3735–3771, https://doi.org/10.1175/MWR-D-18-0125.1, 2018. a
Wesolek, E. and Mahieu, P.: The F4 tornado of August 3, 2008, in Northern France: Case study of a tornadic storm in a low CAPE environment, Atmos. Res., 100, 649–656, https://doi.org/10.1016/j.atmosres.2010.09.003, 2011. a
Wurman, J., Kosiba, K., and Robinson, P.: In situ, Doppler radar, and video observations of the interior structure of a tornado and the wind–damage relationship, B. Am. Meteorol. Soc., 94, 835–846, https://doi.org/10.1175/BAMS-D-12-00114.1, 2013. a
Zanini, M. A., Hofer, L., Faleschini, F., and Pellegrino, C.: Building damage assessment after the Riviera del Brenta tornado, northeast Italy, Nat. Hazards, 86, 1247–1273, https://doi.org/10.1007/s11069-017-2741-6, 2017. a, b
Zehnder, J. A., Hu, J., and Razdan, A.: A Stereo Photogrammetric Technique Applied to Orographic Convection, Mon. Weather Rev., 135, 2265–2277, https://doi.org/10.1175/MWR3401.1, 2007. a
Short summary
Post-event damage assessment data are used to study the consequences of natural hazards, such as strong convective winds (i.e. tornadoes, downbursts). The information gathered during fieldwork can be used to characterize those events, which is necessary to build up and maintain robust and homogeneous databases of severe weather cases and high-impact weather events. Accordingly, a methodology to carry out damage surveys of strong-convective-wind events is presented in this article.
Post-event damage assessment data are used to study the consequences of natural hazards, such as...
Altmetrics
Final-revised paper
Preprint