Articles | Volume 19, issue 11
https://doi.org/10.5194/nhess-19-2339-2019
https://doi.org/10.5194/nhess-19-2339-2019
Research article
 | 
30 Oct 2019
Research article |  | 30 Oct 2019

Numerical modeling using an elastoplastic-adhesive discrete element code for simulating hillslope debris flows and calibration against field experiments

Adel Albaba, Massimiliano Schwarz, Corinna Wendeler, Bernard Loup, and Luuk Dorren

Related authors

Introducing SlideforMAP: a probabilistic finite slope approach for modelling shallow-landslide probability in forested situations
Feiko Bernard van Zadelhoff, Adel Albaba, Denis Cohen, Chris Phillips, Bettina Schaefli, Luuk Dorren, and Massimiliano Schwarz
Nat. Hazards Earth Syst. Sci., 22, 2611–2635, https://doi.org/10.5194/nhess-22-2611-2022,https://doi.org/10.5194/nhess-22-2611-2022, 2022
Short summary

Related subject area

Landslides and Debris Flows Hazards
Lessons learnt from a rockfall time series analysis: data collection, statistical analysis, and applications
Sandra Melzner, Marco Conedera, Johannes Hübl, and Mauro Rossi
Nat. Hazards Earth Syst. Sci., 23, 3079–3093, https://doi.org/10.5194/nhess-23-3079-2023,https://doi.org/10.5194/nhess-23-3079-2023, 2023
Short summary
The concept of event-size-dependent exhaustion and its application to paraglacial rockslides
Stefan Hergarten
Nat. Hazards Earth Syst. Sci., 23, 3051–3063, https://doi.org/10.5194/nhess-23-3051-2023,https://doi.org/10.5194/nhess-23-3051-2023, 2023
Short summary
Coastal earthquake-induced landslide susceptibility during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand
Colin K. Bloom, Corinne Singeisen, Timothy Stahl, Andrew Howell, Chris Massey, and Dougal Mason
Nat. Hazards Earth Syst. Sci., 23, 2987–3013, https://doi.org/10.5194/nhess-23-2987-2023,https://doi.org/10.5194/nhess-23-2987-2023, 2023
Short summary
Characteristics of debris flows recorded in the Shenmu area of central Taiwan between 2004 and 2021
Yi-Min Huang
Nat. Hazards Earth Syst. Sci., 23, 2649–2662, https://doi.org/10.5194/nhess-23-2649-2023,https://doi.org/10.5194/nhess-23-2649-2023, 2023
Short summary
Semi-automatic mapping of shallow landslides using free Sentinel-2 images and Google Earth Engine
Davide Notti, Martina Cignetti, Danilo Godone, and Daniele Giordan
Nat. Hazards Earth Syst. Sci., 23, 2625–2648, https://doi.org/10.5194/nhess-23-2625-2023,https://doi.org/10.5194/nhess-23-2625-2023, 2023
Short summary

Cited articles

Albaba, A.: Discrete element modeling of the impact of granular debris flows on rigid and flexible structures, PhD thesis, Université Grenoble Alpes, Grenoble 2015. a
Albaba, A., Lambert, S., Nicot, F., and Chareyre, B.: Relation between microstructure and loading applied by a granular flow to a rigid wall using DEM modeling, Granular Matter, 17, 603–616, https://doi.org/10.1007/s10035-015-0579-8, 2015. a, b, c, d, e, f, g
Albaba, A., Lambert, S., Kneib, F., Chareyre, B., and Nicot, F.: DEM Modeling of a Flexible Barrier Impacted by a Dry Granular Flow, Rock Mech. Rock Eng., 50, 3029–3048, https://doi.org/10.1007/s00603-017-1286-z, 2017. a
Albaba, A., Lambert, S., and Faug, T.: Dry granular avalanche impact force on a rigid wall: Analytic shock solution versus discrete element simulations, Phys. Rev. E, 97, 052903, https://doi.org/10.1103/PhysRevE.97.052903, 2018. a, b
Andres, N. and Badoux, A.: Unwetterschäden in der Schweiz im Jahre 2017, Wasser Energie Luft, 110, 67–74, 2018. a
Download
Short summary
We present a discrete-element-based model which is adapted and used to produce hillslope debris flows. The model parameters were calibrated using field experiments, and a very good agreement was found in terms of pressure and flow velocity. Calibration results suggested that a link might exist between the model parameters and the initial conditions of the granular material. However, to better understand this link, further investigations are required by conducting detailed lab-scale experiments.
Altmetrics
Final-revised paper
Preprint