Articles | Volume 19, issue 11
Nat. Hazards Earth Syst. Sci., 19, 2339–2358, 2019
Nat. Hazards Earth Syst. Sci., 19, 2339–2358, 2019

Research article 30 Oct 2019

Research article | 30 Oct 2019

Numerical modeling using an elastoplastic-adhesive discrete element code for simulating hillslope debris flows and calibration against field experiments

Adel Albaba et al.

Related authors

Introducing SlideforMap; a probabilistic finite slope approach for modelling shallow landslide probability in forested situations
Feiko Bernard van Zadelhoff, Adel Albaba, Denis Cohen, Chris Phillips, Bettina Schaefli, Lucas Karel Agnes Dorren, and Massimiliano Schwarz
Nat. Hazards Earth Syst. Sci. Discuss.,,, 2021
Preprint under review for NHESS
Short summary

Related subject area

Landslides and Debris Flows Hazards
Main Ethiopian Rift landslides formed in contrasting geological settings and climatic conditions
Karel Martínek, Kryštof Verner, Tomáš Hroch, Leta A. Megerssa, Veronika Kopačková, David Buriánek, Ameha Muluneh, Radka Kalinová, Miheret Yakob, and Muluken Kassa
Nat. Hazards Earth Syst. Sci., 21, 3465–3487,,, 2021
Short summary
Investigating causal factors of shallow landslides in grassland regions of Switzerland
Lauren Zweifel, Maxim Samarin, Katrin Meusburger, and Christine Alewell
Nat. Hazards Earth Syst. Sci., 21, 3421–3437,,, 2021
Short summary
Debris flow event on Osorno volcano, Chile, during summer 2017: new interpretations for chain processes in the southern Andes
Ivo Janos Fustos-Toribio, Bastian Morales-Vargas, Marcelo Somos-Valenzuela, Pablo Moreno-Yaeger, Ramiro Muñoz-Ramirez, Ines Rodriguez Araneda, and Ningsheng Chen
Nat. Hazards Earth Syst. Sci., 21, 3015–3029,,, 2021
Short summary
Integrating empirical models and satellite radar can improve landslide detection for emergency response
Katy Burrows, David Milledge, Richard J. Walters, and Dino Bellugi
Nat. Hazards Earth Syst. Sci., 21, 2993–3014,,, 2021
Short summary
Evaluating methods for debris-flow prediction based on rainfall in an Alpine catchment
Jacob Hirschberg, Alexandre Badoux, Brian W. McArdell, Elena Leonarduzzi, and Peter Molnar
Nat. Hazards Earth Syst. Sci., 21, 2773–2789,,, 2021
Short summary

Cited articles

Albaba, A.: Discrete element modeling of the impact of granular debris flows on rigid and flexible structures, PhD thesis, Université Grenoble Alpes, Grenoble 2015. a
Albaba, A., Lambert, S., Nicot, F., and Chareyre, B.: Relation between microstructure and loading applied by a granular flow to a rigid wall using DEM modeling, Granular Matter, 17, 603–616,, 2015. a, b, c, d, e, f, g
Albaba, A., Lambert, S., Kneib, F., Chareyre, B., and Nicot, F.: DEM Modeling of a Flexible Barrier Impacted by a Dry Granular Flow, Rock Mech. Rock Eng., 50, 3029–3048,, 2017. a
Albaba, A., Lambert, S., and Faug, T.: Dry granular avalanche impact force on a rigid wall: Analytic shock solution versus discrete element simulations, Phys. Rev. E, 97, 052903,, 2018. a, b
Andres, N. and Badoux, A.: Unwetterschäden in der Schweiz im Jahre 2017, Wasser Energie Luft, 110, 67–74, 2018. a
Short summary
We present a discrete-element-based model which is adapted and used to produce hillslope debris flows. The model parameters were calibrated using field experiments, and a very good agreement was found in terms of pressure and flow velocity. Calibration results suggested that a link might exist between the model parameters and the initial conditions of the granular material. However, to better understand this link, further investigations are required by conducting detailed lab-scale experiments.
Final-revised paper