Articles | Volume 18, issue 3
https://doi.org/10.5194/nhess-18-869-2018
https://doi.org/10.5194/nhess-18-869-2018
Research article
 | 
19 Mar 2018
Research article |  | 19 Mar 2018

Modeling the influence of snow cover temperature and water content on wet-snow avalanche runout

Cesar Vera Valero, Nander Wever, Marc Christen, and Perry Bartelt

Related authors

Modelling wet snow avalanche runout to assess road safety at a high-altitude mine in the central Andes
Cesar Vera Valero, Nander Wever, Yves Bühler, Lukas Stoffel, Stefan Margreth, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 16, 2303–2323, https://doi.org/10.5194/nhess-16-2303-2016,https://doi.org/10.5194/nhess-16-2303-2016, 2016
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Simulation of cold-powder snow avalanches considering daily snowpack and weather situations
Julia Glaus, Katreen Wikstrom Jones, Perry Bartelt, Marc Christen, Lukas Stoffel, Johan Gaume, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 25, 2399–2419, https://doi.org/10.5194/nhess-25-2399-2025,https://doi.org/10.5194/nhess-25-2399-2025, 2025
Short summary
Supershear crack propagation in snow slab avalanche release: new insights from numerical simulations and field measurements
Grégoire Bobillier, Bertil Trottet, Bastian Bergfeld, Ron Simenhois, Alec van Herwijnen, Jürg Schweizer, and Johan Gaume
Nat. Hazards Earth Syst. Sci., 25, 2215–2223, https://doi.org/10.5194/nhess-25-2215-2025,https://doi.org/10.5194/nhess-25-2215-2025, 2025
Short summary
The effect of slab touchdown on anticrack arrest in propagation saw tests
Philipp L. Rosendahl, Johannes Schneider, Grégoire Bobillier, Florian Rheinschmidt, Bastian Bergfeld, Alec van Herwijnen, and Philipp Weißgraeber
Nat. Hazards Earth Syst. Sci., 25, 1975–1991, https://doi.org/10.5194/nhess-25-1975-2025,https://doi.org/10.5194/nhess-25-1975-2025, 2025
Short summary
Proglacial lake development and outburst flood hazard at Fjallsjökull glacier, southeast Iceland
Greta H. Wells, Þorsteinn Sæmundsson, Finnur Pálsson, Guðfinna Aðalgeirsdóttir, Eyjólfur Magnússon, Reginald L. Hermanns, and Snævarr Guðmundsson
Nat. Hazards Earth Syst. Sci., 25, 1913–1936, https://doi.org/10.5194/nhess-25-1913-2025,https://doi.org/10.5194/nhess-25-1913-2025, 2025
Short summary
Assessing the performance and explainability of an avalanche danger forecast model
Cristina Pérez-Guillén, Frank Techel, Michele Volpi, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 25, 1331–1351, https://doi.org/10.5194/nhess-25-1331-2025,https://doi.org/10.5194/nhess-25-1331-2025, 2025
Short summary

Cited articles

Bartelt, P. and Buser, O.: Avalanche dynamics by Newton. Reply to comments on avalanche flow models based on the concept of random kinetic energy, J. Glaciol., 64, 165–170, https://doi.org/10.1017/jog.2018.1, 2018.
Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss avalanche warning Part I: Numerical model, Cold Reg. Sci. Technol., 35, 123–145, https://doi.org/10.1016/S0165-232X(02)00074-5, 2002.
Bartelt, P. and McArdell, B.: Granulometric investigations of snow avalanches, J. Glaciol., 55, 829–833, 2009.
Bartelt P., Buser, O., and Martin K.:Dissipated work, stability and the internal flow structure of granular snow avalanches, J. Glaciol., 51, 125–138, 2005.
Bartelt P., Buser, O., and Platzer K.:Fluctuation-dissipation relations for granular snow avalanches, J. Glaciol., 52, 631–643, 2006.
Download
Short summary
Snow avalanche motion is strongly dependent on the temperature and water content of the snow cover. In this paper we use a snow cover model, driven by measured meteorological data, to set the initial and boundary conditions for wet-snow avalanche calculations. The snow cover model provides estimates of snow depth, density, temperature and liquid water content. These initial conditions are used to drive an avalanche dynamics model. The runout results are compared using a contigency analysis.
Share
Altmetrics
Final-revised paper
Preprint