Articles | Volume 18, issue 11
https://doi.org/10.5194/nhess-18-3063-2018
https://doi.org/10.5194/nhess-18-3063-2018
Research article
 | 
19 Nov 2018
Research article |  | 19 Nov 2018

Flood depth estimation by means of high-resolution SAR images and lidar data

Fabio Cian, Mattia Marconcini, Pietro Ceccato, and Carlo Giupponi

Related authors

A spatial Bayesian network model to assess the benefits of early warning for urban flood risk to people
Stefano Balbi, Ferdinando Villa, Vahid Mojtahed, Karin Tessa Hegetschweiler, and Carlo Giupponi
Nat. Hazards Earth Syst. Sci., 16, 1323–1337, https://doi.org/10.5194/nhess-16-1323-2016,https://doi.org/10.5194/nhess-16-1323-2016, 2016
Short summary
Does EO NDVI seasonal metrics capture variations in species composition and biomass due to grazing in semi-arid grassland savannas?
J. L. Olsen, S. Miehe, P. Ceccato, and R. Fensholt
Biogeosciences, 12, 4407–4419, https://doi.org/10.5194/bg-12-4407-2015,https://doi.org/10.5194/bg-12-4407-2015, 2015
Short summary

Related subject area

Hydrological Hazards
Precursors and pathways: dynamically informed extreme event forecasting demonstrated on the historic Emilia-Romagna 2023 flood
Joshua Dorrington, Marta Wenta, Federico Grazzini, Linus Magnusson, Frederic Vitart, and Christian M. Grams
Nat. Hazards Earth Syst. Sci., 24, 2995–3012, https://doi.org/10.5194/nhess-24-2995-2024,https://doi.org/10.5194/nhess-24-2995-2024, 2024
Short summary
Demonstrating the use of UNSEEN climate data for hydrological applications: case studies for extreme floods and droughts in England
Alison L. Kay, Nick Dunstone, Gillian Kay, Victoria A. Bell, and Jamie Hannaford
Nat. Hazards Earth Syst. Sci., 24, 2953–2970, https://doi.org/10.5194/nhess-24-2953-2024,https://doi.org/10.5194/nhess-24-2953-2024, 2024
Short summary
Exploring the use of seasonal forecasts to adapt flood insurance premiums
Viet Dung Nguyen, Jeroen Aerts, Max Tesselaar, Wouter Botzen, Heidi Kreibich, Lorenzo Alfieri, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 24, 2923–2937, https://doi.org/10.5194/nhess-24-2923-2024,https://doi.org/10.5194/nhess-24-2923-2024, 2024
Short summary
Are 2D shallow-water solvers fast enough for early flood warning? A comparative assessment on the 2021 Ahr valley flood event
Shahin Khosh Bin Ghomash, Heiko Apel, and Daniel Caviedes-Voullième
Nat. Hazards Earth Syst. Sci., 24, 2857–2874, https://doi.org/10.5194/nhess-24-2857-2024,https://doi.org/10.5194/nhess-24-2857-2024, 2024
Short summary
Water depth estimate and flood extent enhancement for satellite-based inundation maps
Andrea Betterle and Peter Salamon
Nat. Hazards Earth Syst. Sci., 24, 2817–2836, https://doi.org/10.5194/nhess-24-2817-2024,https://doi.org/10.5194/nhess-24-2817-2024, 2024
Short summary

Cited articles

Amadio, M., Mysiak, J., Carrera, L., and Koks, E.: Improving flood damage assessment models in Italy, Nat. Hazards, 82, 1–14, https://doi.org/10.1007/s11069-016-2286-0, 2016.
ArcPy: “What is ArcPy?”, http://pro.arcgis.com/en/pro-app/arcpy/get-started/what-is-arcpy-.htm, last access: 15 November 2018.
ARPAV: Report of the “Agenzia Regionale Per la Prevenzione e Protezione Ambientale del Veneto” (ARPAV), Scheda Evento “Pluvio”, (Figura 2), Veneto Region, 1–16, 2010.
Brown, K. M. and Brownett, J. M.: Progress in operational flood mapping using satellite synthetic aperture radar (SAR) and airborne light detection and ranging (LiDAR) data, 40, 196–214, https://doi.org/10.1177/0309133316633570, 2016.
Brisco, B., Schmitt, A., Murnaghan, K., Kaya, S., and Roth, A.: SAR polarimetric change detection for flooded vegetation, Int. J. Digit. Earth, 6, 1–12, 2011.
Download
Altmetrics
Final-revised paper
Preprint