Articles | Volume 17, issue 9
Nat. Hazards Earth Syst. Sci., 17, 1683–1696, 2017
https://doi.org/10.5194/nhess-17-1683-2017

Special issue: Damage of natural hazards: assessment and mitigation

Nat. Hazards Earth Syst. Sci., 17, 1683–1696, 2017
https://doi.org/10.5194/nhess-17-1683-2017
Research article
29 Sep 2017
Research article | 29 Sep 2017

Multi-variable flood damage modelling with limited data using supervised learning approaches

Dennis Wagenaar et al.

Related authors

Invited perspectives: How machine learning will change flood risk and impact assessment
Dennis Wagenaar, Alex Curran, Mariano Balbi, Alok Bhardwaj, Robert Soden, Emir Hartato, Gizem Mestav Sarica, Laddaporn Ruangpan, Giuseppe Molinario, and David Lallemant
Nat. Hazards Earth Syst. Sci., 20, 1149–1161, https://doi.org/10.5194/nhess-20-1149-2020,https://doi.org/10.5194/nhess-20-1149-2020, 2020
Short summary
Uncertainty in flood damage estimates and its potential effect on investment decisions
D. J. Wagenaar, K. M. de Bruijn, L. M. Bouwer, and H. de Moel
Nat. Hazards Earth Syst. Sci., 16, 1–14, https://doi.org/10.5194/nhess-16-1-2016,https://doi.org/10.5194/nhess-16-1-2016, 2016
Short summary

Related subject area

Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Surveying the surveyors to address risk perception and adaptive-behaviour cross-study comparability
Samuel Rufat, Mariana Madruga de Brito, Alexander Fekete, Emeline Comby, Peter J. Robinson, Iuliana Armaş, W. J. Wouter Botzen, and Christian Kuhlicke
Nat. Hazards Earth Syst. Sci., 22, 2655–2672, https://doi.org/10.5194/nhess-22-2655-2022,https://doi.org/10.5194/nhess-22-2655-2022, 2022
Short summary
Comparison of sustainable flood risk management by four countries – the United Kingdom, the Netherlands, the United States, and Japan – and the implications for Asian coastal megacities
Faith Ka Shun Chan, Liang Emlyn Yang, Gordon Mitchell, Nigel Wright, Mingfu Guan, Xiaohui Lu, Zilin Wang, Burrell Montz, and Olalekan Adekola
Nat. Hazards Earth Syst. Sci., 22, 2567–2588, https://doi.org/10.5194/nhess-22-2567-2022,https://doi.org/10.5194/nhess-22-2567-2022, 2022
Short summary
Projected impact of heat on mortality and labour productivity under climate change in Switzerland
Zélie Stalhandske, Valentina Nesa, Marius Zumwald, Martina S. Ragettli, Alina Galimshina, Niels Holthausen, Martin Röösli, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 22, 2531–2541, https://doi.org/10.5194/nhess-22-2531-2022,https://doi.org/10.5194/nhess-22-2531-2022, 2022
Short summary
Full-scale experiments to examine the role of deadwood in rockfall dynamics in forests
Adrian Ringenbach, Elia Stihl, Yves Bühler, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Guang Lu, Andreas Stoffel, Martin Kistler, Sandro Degonda, Kevin Simmler, Daniel Mader, and Andrin Caviezel
Nat. Hazards Earth Syst. Sci., 22, 2433–2443, https://doi.org/10.5194/nhess-22-2433-2022,https://doi.org/10.5194/nhess-22-2433-2022, 2022
Short summary
Predicting drought and subsidence risks in France
Arthur Charpentier, Molly James, and Hani Ali
Nat. Hazards Earth Syst. Sci., 22, 2401–2418, https://doi.org/10.5194/nhess-22-2401-2022,https://doi.org/10.5194/nhess-22-2401-2022, 2022
Short summary

Cited articles

Becker, A.: Maas-modellen 5de generatie: Modelopzet, kalibratie en verificatie, Deltares rapport 1204280-000-ZWS-0011, 2012 (in Dutch).
Bilmes, J.: Graphical models and automatic speech recognition, J. Acoust. Soc. Am., 112, 2278, https://doi.org/10.1121/1.4779134, 2002.
Breiman, L., Friedman, J., Olshen, R. A., and Stone, C. J.: CART: Classification and Regression Trees, Wadsworth, Belmont, CA, 1984.
Cabot, C.: Libpgm Python library, pythonhosted.org/libpgm, available at: http://pythonhosted.org/libpgm/, (last access: 10 August 2016), 2012.
Diermanse, F. L. M.: HR2006 – herberekening werklijn Maas, Delft Hydraulics Q3623.00, 2004 (in Dutch).
Download
Short summary
Flood damage models are an important component of cost–benefit analyses for flood protection measures. Currently flood damage models predict the flood damage often only based on water depth. Recently, some progress has been made in also including other variables for this prediction. Data-intensive approaches (machine learning) have been applied to do this. In practice the required data for this are rare. We apply these new approaches on a new type of dataset (combination of different sources).
Altmetrics
Final-revised paper
Preprint