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Abstract. Flood damage assessment is usually done with
damage curves only dependent on the water depth. Sev-
eral recent studies have shown that supervised learning tech-
niques applied to a multi-variable data set can produce signif-
icantly better flood damage estimates. However, creating and
applying a multi-variable flood damage model requires an
extensive data set, which is rarely available, and this is cur-
rently holding back the widespread application of these tech-
niques. In this paper we enrich a data set of residential build-
ing and contents damage from the Meuse flood of 1993 in
the Netherlands, to make it suitable for multi-variable flood
damage assessment. Results from 2-D flood simulations are
used to add information on flow velocity, flood duration and
the return period to the data set, and cadastre data are used
to add information on building characteristics. Next, several
statistical approaches are used to create multi-variable flood
damage models, including regression trees, bagging regres-
sion trees, random forest, and a Bayesian network. Validation
on data points from a test set shows that the enriched data set
in combination with the supervised learning techniques de-
livers a 20 % reduction in the mean absolute error, compared
to a simple model only based on the water depth, despite sev-
eral limitations of the enriched data set. We find that with
our data set, the tree-based methods perform better than the
Bayesian network.

1 Introduction

Decision making in flood risk management is increasingly
based on studies that quantify the flood risk rather than only
the flood hazard. Flood damage estimation is therefore be-
coming increasingly important (Merz et al., 2010). Flood

risk assessment supports policy makers in deciding which
flood risk management measures are most efficient in reduc-
ing flood risks and how much investment is cost efficient.
With the European Union Floods Directive (EC, 2007) now
fully in place, national flood risk assessments are being de-
veloped with the final aim to support flood risk management
plans. In the Netherlands, such flood damage assessment has
been used to derive the optimal protection standard for flood
protection (Kind, 2013; van der Most, 2014), using the cur-
rent Dutch standard method for damage modelling (Kok et
al., 2005). Also, for insurance applications, more precise es-
timates of flood damage are required.

Flood risk assessments require flood damage models.
These models typically predict the damage as fraction of
the potential damage, based on the water depth, and average
building repair and replacement costs for different types of
buildings (Messner et al., 2007; Jonkman et al., 2008). Sim-
ilar approaches are also applied to other natural hazards, for
example for landslides (Papathoma-Köhle et al., 2015), and
the software package HAZUS can be used for floods, earth-
quakes and hurricanes (Scawthorn et al., 2006). Alternative
approaches to calculate flood risk also exist, such as vulner-
ability indicators (Papathoma-Köhle, 2016).

Simple flood damage models often do not perform well, as
shown by their validation (e.g. Jongman et al., 2012). This is
because water depth alone cannot explain the full complex-
ity of the flood damaging processes and several studies have
only found low correlation coefficients (typically below 0.5)
between the water depth and the flood damage (e.g. Merz et
al., 2013; Pistrika and Jonkman, 2009). Furthermore, often
no local data are available on flood damage and therefore
a relationship between the water depth and damage either
needs to be estimated or transferred from other areas (Wa-
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genaar et al., 2016). This can cause errors, as simple models
hold many implicit assumptions that may not be valid for the
situation the model is transferred to. For instance, Elmer et
al. (2010) showed that an event with a low flood probabil-
ity could not use the same damage function as a flood event
with a high probability. These implicit assumptions cause
large unexplained differences between flood damage func-
tions (Wagenaar et al., 2016; Gerl et al., 2016). However,
transferability can be improved when a model describes more
variations of the damaging process, and when more variables
are included in the damage models (e.g. flood probability
is explicitly part of the model). Similar problems are also
present in the modelling of other natural hazards. For exam-
ple, Fuchs et al. (2007) found that building materials are very
important for debris flow damage modelling and that models
can therefore not always be transferred in space and time.

Current approaches suffer from two main limitations: first,
they rely on limited information and usually only take into
account water depth as a predictor, and use a determinis-
tic relation between water depth and some fraction of av-
erage maximum damages; second, they are deterministic in
nature, while it has been shown that uncertainties in this
approach are large, but generally not quantified (e.g. in the
Dutch standard method; Egorova et al., 2008). Some of the
multi-variable methods are able to provide probability distri-
butions, rather than deterministic estimates of damage.

Recently, multi-variable flood damage models have been
created with a German data set based on telephone inter-
views. Thieken et al. (2005) found that apart from the water
depth also the contamination of the flood water and precau-
tionary measures were important to estimate the flood dam-
age. In Thieken et al. (2008) these extra variables were in-
cluded in a simple multi-variable flood damage model as a
surcharge. Using information from this same database, Merz
et al. (2013) used regression and bagging trees and Vogel et
al. (2014) used Bayesian networks to predict the flood dam-
age. Spekkers et al. (2014) applied regression trees to esti-
mate pluvial flood damage. Van Oostegem et al. (2015) ap-
plied the Tobit estimation technique to a multi-dimensional
data set in Belgium to estimate pluvial flood damages. These
multi-variable flood damage models have been shown to per-
form better than simple flood damage models by Schröter
et al. (2014) (up to 25 % reduction in mean absolute error,
MAE), both tested on their own data set and on data sets from
other floods (Schröter et al., 2014). Also, some multi-variable
approaches (Bayesian networks, bagging trees and random
forests) generate probability distributions of estimated dam-
age, and thus provide information on uncertainties of the es-
timates. Therefore, multi-variable flood damage models look
like a promising approach to improve flood damage mod-
elling.

The application of multi-variable flood damage models for
flood risk management studies is still difficult because of the
large data requirements. Running a multi-variable flood dam-
age model for a new area requires for every object several

variables on the flood hazard and building characteristics that
are not yet typically collected. Creating new multi-variable
flood damage models is currently rarely done because they
also require records of flood damage at building level.

More commonly available (although still rare) are simple
data sets that hold records with the flood damage that oc-
curred for each building with sometimes a few other vari-
ables (such as location or water depth). Such data sets may
have been created for compensation purposes or to build sim-
ple flood damage models but may miss most of the desired
variables. An example of such a data set is the flood dam-
age data set collected after the Meuse flood of 1993 in the
Netherlands which is used here. Previously this data set has
been described in Wind et al. (1999) and in more detail in WL
Delft (1994). In this paper we explore the use of supervised
learning techniques to build flood damage models based on a
data set that is very different from the data sets used in pre-
vious studies (i.e. the German data set applied by Merz et
al., 2013, and Schröter et al., 2014). The data set in this pa-
per was collected by insurance experts directly after the flood
for compensation purposes and covers all affected buildings.
This is different from the German data set, which was col-
lected a year after the flood for research purposes based on
a sample of the affected buildings. The data are also differ-
ent in that in the original study only a few variables were
collected, in contrast to the German data set, where all vari-
ables (except return period) were based on telephone inter-
view answers. In this study several methods are applied to
enrich the Meuse 1993 flood damage data set with extra flood
hazard and building characteristic variables. We will answer
the question of whether this enriched data set from a differ-
ent source than previous studies is also suitable to build a
multi-variable flood damage model. The expectation is that a
multi-variable model performs better than a model based on
a single variable (water depth) and that even data with limited
quality will improve the results.

Two-dimensional hydraulic simulations of the 1993 flood
on the Meuse are used to enrich the data set with additional
flood characteristics. Cadastre data are used to enrich the
Meuse data set with extra building characteristics. Four dif-
ferent supervised learning techniques are then applied to this
enriched data set: a regression tree, bagging regression trees,
random forest and a Bayesian network. A part of the data set
will be held back and will only be used for validation. This
validation is then used to determine whether the enriched
data set combined with supervised learning techniques per-
forms better than a traditional damage function based on the
original data set of water depths. In this paper we will fo-
cus on predicting absolute flood damages rather than relative
flood damages. This is because the exact building values are
not available.

Nat. Hazards Earth Syst. Sci., 17, 1683–1696, 2017 www.nat-hazards-earth-syst-sci.net/17/1683/2017/



D. Wagenaar et al.: Multi-variable flood damage modelling with limited data 1685

2 Methods and data

2.1 Data sets

2.1.1 Meuse 1993 damage data set

The data set available for this research is based on the Meuse
flood of 22 December 1993 in the province of Limburg in the
Netherlands (WL Delft, 1994). Although no dike breaches
occurred in this event, several towns and urban areas lo-
cated close to the river were affected. The flood caused a
total of 254 million guilder (price level 1993) in direct dam-
ages, which is approximately EUR 180 million today (price
level 2016). The flood inundated 180 km2, which is about
8 % of the province of Limburg. Some 32 % of the damage
pertains to residential buildings and content (furnishings). In
this study only residential damage is considered. Other major
damage categories were business (29 %), government (24 %)
and agriculture (8 %) (WL Delft, 1994). These categories
are not considered because they are more heterogeneous and
fewer data about them are available.

Damage information was collected in the context of a com-
pensation arrangement for flood damage by the national gov-
ernment. All data were collected by sending damage experts
from insurance companies to the affected buildings, several
weeks after the flood event had occurred. Directly after the
damage data were collected in 1994, the data were shared
with WL Delft (now Deltares) to create a flood damage
model. WL Delft received 5780 records for damage to resi-
dential buildings. The damage to privately owned residential
buildings was collected by an organization called “Sticht-
ing Watersnood 1993”. The damage to companies and the
structure of rental residential buildings was collected by an-
other organization called “Stichting Watersnood Bedrijven
1993”. Therefore, in this set-up of damage data collection,
the building structure information of rental residential build-
ings was collected by “Stichting Watersnood Bedrijven”, the
organization that collected data on company damages. This
is different from the organization that collected the rest of the
residential damage information. The data on structural dam-
age to rental residential buildings was only shared with WL
Delft (1994) in a partial aggregated form. WL Delft (1994)
presumably distributed this partially aggregated rental resi-
dential building damage data over the individual rental res-
idential buildings. The exact method for this was, however,
not reported and the original data set is no longer available.
Therefore, we had to work with a data set which includes un-
known manual actions. The structure damage data are there-
fore of inconsistent quality; the content damage, however,
has no such problems. Furthermore, it is believed that the
percentage of rental residential buildings in the affected area
of Limburg is relatively low, limiting the impact of this data
problem.

Another issue with the data set is that for privacy reasons
the exact locations of the buildings were not shared with

Figure 1. Scatter plot showing the relation between water depth and
damage in the original data set.

WL Delft. Only the six-digit postal code was available for
this study, which makes it difficult to enrich the data set, as
between 1 and 20 buildings share the same six-digit postal
codes in the data set.

In the original data set the water depth (relative to the
ground floor level) was estimated by the experts that sur-
veyed the damage. The quality of the water depth estimate
is questioned by WL Delft (1994; report 9) because it was
not the main aim of the survey and the experts visited several
weeks after the water had receded. A plot of the water depth
(see Fig. 1) and the damage does not show an obvious rela-
tion. The correlation between the water depth and the damage
is weak (Pearson correlation coefficient= 0.18).

The final data set also contains information on the number
of inhabitants per building, whether the house has a base-
ment and whether the house was attached to other houses.
However, these data are not described in any of the avail-
able reports so the collection methods are not known, but the
recorded values are clear enough to incorporate in this study.
Two more variables are also included in the WL Delft data
set and also not described in any available report. These are
emergency actions and ownership of the house. The mean-
ing of the values found in the data set for these variables is,
however, not sufficiently clear, and could unfortunately not
be taken into account in this study.

2.1.2 Upgraded Meuse 1993 database

To improve the data set, additional information is required on
both the flood hazard and exposure variables. The results of a
2-D flood simulation and cadastre data were used to upgrade
the data set, in terms of hazard and exposure information,
respectively. Because no observational data are available on
flood characteristics other than the water depth, a simulation
of the flood event was performed. In the 2-D flood simula-
tion tool WAQUA (Rijkswaterstaat, 2013), a verified model
of the state of the Meuse during the 1993 flood was available
(Becker, 2012) and this was applied in this study to get extra
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Figure 2. (a) Simulated water depth for the entire study area in Limburg. (b) Simulated water depth and affected population (in red) for an
example area. (c) The return period at which areas start flooding for the example area. The example area is defined in the box in the left
picture. The scale bar corresponds to the example area.

variables. Using this model, a new simulation was run using
a discharge boundary condition at Eijsden and a water level
boundary condition at Keizersveer for the period 1 November
1993 to 31 January 1994. This simulation was used to create
a maximum water depth map, a flood duration map, a flood
return period and a flow velocity map at a spatial resolution
varying between 10 and 40 m.

The maximum water depth and flow velocity are standard
outputs of WAQUA. Flood duration is, however, not a stan-
dard output and is more difficult to obtain from a 2-D flood
simulation because the drainage also needs to be included
in the schematization (Wagenaar, 2012). During the 1993
Meuse flood, most drainage occurred because of the natural
slope in terrain and therefore the 2-D flood simulation im-
plicitly includes most of the drainage because the discretized
bed level is included. The flood duration can then be calcu-
lated by analysing the time-varying maps of the water depth
and calculating for every cell the time between the moment a
cell is inundated and the moment the cell is dry again. How-
ever, some cells in the digital elevation map in WAQUA are
surrounded by cells that have a higher elevation. These cells
do not drain in the 2-D flood simulation and are still inun-
dated at the end of the simulation. For these cells the flood
duration has been calculated based on the change in water
depth. If the water depth in a cell stays the same in the sim-
ulation for 24 subsequent hours the cell is considered dry at
the moment this stable water depth is first reached.

Simulations were also run with the same Meuse 1993
schematization for design discharges with 1, 10, 50, 100,
250 and 1250 return periods. These discharges are based on

HR2006 (Diermanse, 2004) and have discharges of respec-
tively 1300, 2260, 2869, 3109, 3431 and 4000 m3 s−1. The
results of these simulations were combined to create a flood
return period map for the Meuse 1993 situation. This map
shows for each cell at what return period it first floods. Fig-
ure 2 shows that large water depths occurred and that most
of the area floods frequently. The majority of the houses are,
however, located in the safest areas with the lowest water
depths and highest return periods.

These maps (water depth, flow velocity, flood duration and
return periods) were linked to the original damage records
using cadastre data. The data of the cadastre have exact build-
ing locations, postal codes, living area within the residen-
tial buildings, the building footprint area and the construc-
tion year. The building year was used to filter the data to find
the building stock of 1993. Then, based on the building lo-
cations, the 2-D flood simulation results were linked to the
cadastre data.

This combination of cadastre data and 2-D flood simula-
tion data is then used to make the link with the original flood
damage records. First per postal code a list is made of the
damage records in the postal code area and ranked based on
the water depth in the original damage records. Then another
list is made of the objects per postal code according to the
cadastre and also ranked based on the simulated water depth.
The cadastre objects combined with the 2-D flood simula-
tion data are then linked per postal code based on the water
depth rank. This results in a join between the original damage
records, cadastre data and 2-D flood simulation results. Ta-
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Table 1. Description of the variables in the flood damage data set for the Meuse flood of 1993.

Variable Unit Source Pearson
correlation

on total
damage

td Total damage Guilder (1993 value) Original data seta 1
sd Structure damage Guilder (1993 value) Original data seta 0.85
cd Content damage Guilder (1993 value) Original data seta 0.83
df Water depth relative to floor m Original data seta 0.18
dg Water depth relative to DEM m Flood simulationb 0.18
bs Basement 1= yes, 2= no Original data seta −0.04
dh Detached house 1= yes, 2= no Original data seta 0.08
hs Household size number Original data seta 0.17
fv Flow velocity m s−1 Flood simulationb 0.04
fd Flood duration h Flood simulationb 0.05
rp Return period year Flood simulationb

−0.09
ba Building age year Cadastrec 0.01
la Floor area for living m2 Cadastrec 0.04
fa Footprint area building m2 Cadastrec

−0.02

a WL Delft, 1994. b 2-D flood simulation data using WAQUA. c Basisregistraties Adressen en Gebouwen (BAG), version
2011 (Kadaster: https://www.kadaster.nl/bag).

ble 1 gives an overview of the available records in this com-
bined data set.

The method of joining cadastre objects with damage
records within a postal code area based on water depth rank
is error prone. The modelled water depth is on average 30 cm
larger than the recorded water depth. This is possibly because
of the difference in reference level of both data sources, as
the recorded water depth is relative to the floor level and the
modelled water depth is relative to the digital elevation map.
Not all houses have the same floor elevation and both the
recorded and the modelled water depth are uncertain because
of recording and model imprecisions. It is therefore likely
that some damage records have been linked to the wrong ob-
ject. However, errors will likely be limited because the join
on postal codes is accurate. Object and flood variables are
generally similar for buildings within the same postal code
area (e.g. houses within a street are typically similar to each
other), so these errors are expected not to significantly dis-
turb the general trends in the data. The errors are therefore
considered acceptable given that the purpose of the data set
is only to build a flood damage model. If significant errors
are present this would result in a reduced performance of the
supervised learning algorithms on the test set. A relatively
simple alternative to this water depth rank method is also ap-
plied. In this alternative, the average value at all building lo-
cations in the postal code area was assigned to each of the
objects in the postal code.

2.2 Supervised learning algorithms

Several supervised learning techniques have been applied to
the enriched data set to build multi-variable flood damage

models. The different supervised learning techniques all have
different ways to generalize the training data in such a way
as to give useful predictions of the total damage.

These multi-variable flood damage models are compared
to two different reference models to assess the value of the
enriched data set and to assess the value of multi-variable
flood damage models in general. In what follows, the differ-
ent supervised learning algorithms applied are described in
further detail.

2.2.1 Regression: root function

The first reference model only uses the square root of the
water depth (see Eq. 1) to predict the flood damage. This
model represents the damage functions commonly applied
today in flood risk management studies because many dam-
age functions have approximately the shape of a root function
(e.g. Scawthorn et al., 2006; Thieken et al., 2008; Penning-
Rowsell et al., 2005; Sluijs et al., 2000). Merz et al. (2012)
applied the same method to get a reference damage function.
The purpose of this reference model is to see the benefits of
using more data.

The root function (1) is fitted to the data set in such a way
that the coefficients c1 and c2 are optimized to get the small-
est possible error based on the total damage (td) and water
depth (wdf) data. The values of the coefficients are optimized
for the best fit with the ordinary least-squares method. This
is done with the Python package SciPy:

td= c1+ c2
√

wdf. (1)
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2.2.2 Multi-variable linear regression

The second reference model uses multi-variable linear re-
gression to fit a linear model to the data. This model repre-
sents simpler/traditional techniques to make a multi-variable
model from data. The purpose of this reference model is
to see the benefits of potentially better techniques to build
multi-variable models from data. Multi-variable linear re-
gression is for example used in Islam (1997) to make multi-
variable flood damage models. Linear regression is used
without transformations of the input variables because there
is no clear indication in the data that there are non-linear re-
lationships (for example see Fig. 1).

To ensure that the model captures general trends and does
not fit too strongly to the observed data (overfitting) the
LASSO technique is used. This technique determines the co-
efficients in such a way that a penalty is applied for increas-
ing the coefficients and using the variables more. LASSO
yields sparse models, so some coefficients will become zero,
which means they are not useful for the prediction. There-
fore, the LASSO technique is useful for variable selection.
To make this work correctly the data are normalized before
training the model.

The multi-variable linear regression was carried out with
the Scikit learn library in Python (Pedregosa et al., 2011).
LASSO requires an alpha parameter to be set which deter-
mines the height of the penalty applied. Several alpha values
were tried (0, 0.5, 1 and 10). The model is very insensitive
to the alpha value (all formulations perform about equally
well); an alpha value of zero performed best on all indica-
tors. Therefore, it was not optimized further and the alpha is
set to zero. When alpha is zero the method is equal to the or-
dinary least-squares method and no overfitting prevention is
in place and LASSO is not necessary. This shows that over-
fitting is not an issue for relatively simple techniques such as
linear regression with this data set and number of variables.

2.2.3 Regression tree learning

Decision trees are a way to represent complex relationships
between data and classes in a tree structure. A decision tree
can be seen as a series of binary questions (nodes) leading
to an answer in the form of a class (leaf). A question can be
related to any variable at any value (e.g. is the water depth
smaller than 0.5 m).

A regression tree is similar to decision trees but instead of
classes it results in real numbers. In theory, regression trees
can be very large and have a separate leaf for each unique
value in the data set. However, it is more common to com-
bine several similar unique values inside the same leaf and
represent it with a summary statistic number (mean). In such
a case the regression tree is an approximation of the relation-
ship.

Regression tree learning algorithms can create optimal re-
gression trees based on a data set. In this paper the data set

consists of 4398 flood damage records (incomplete records
are discarded) with 11 variables for each damage record (see
Table 1). The regression tree algorithm aims to split the data
set into subsets in such a way that the mean squared error
(MSE) of the predicted total damage for all observations is
minimized compared to the observed data. It does this by
calculating the reduction for all candidate splitting variables
according to their value and then picking the combination
that maximizes the MSE reduction (1I) – this is shown in
Eq. (2), where n is the total number of observations in the
node, yn is the vector of observed target values in the node
and y is the mean of the target values in the node. ynL and
ynR are vectors with the observed target values of the left
and right group after the split and yL and yR are the mean
observed target value for the left and the right group. The re-
gression tree is grown by repeating this process at each node
of the tree. This has been done with the Scikit learn library
in Python (Pedregosa et al., 2011):

1I =
1
n

(∑
(yn− y)2

−

∑(
ynL− yL

)2
−

∑
(ynR− yR)2

)
. (2)

A regression tree algorithm keeps splitting the data set into
new branches until no more reductions in the MSE can be
made. This can result in overfitting, which results in very
large trees with only one data point per leaf. These very
large trees are not a realistic representation of reality, and
they typically perform badly when they have to predict the
damage for a new data point that was not used for build-
ing the tree. There are several methods to prevent overfit-
ting. The simplest methods require a minimum number of
data points in a leaf or set a maximum number of nodes
that the tree is allowed to contain. The disadvantage of these
methods is that they sometimes do not build out a branch
within the tree which at first does not look promising but
which can make valuable homogeneity improvements deeper
in the tree. A method called pruning is a more sophisticated
method, in which the entire tree is first built with a subset
of the data points, and then cut back based on its perfor-
mance on data points that were not used for building the tree.
The tree is cut back by removing the nodes by their perfor-
mance improvement (least-performing nodes first). The op-
timal pruning depth is than picked by testing the different
pruning depths on the test set. This method was investigated
in this research. This was done using MATLAB’s “Statistics
and Machine Learning Toolbox” (MATLAB website), based
on the work of Breiman et al. (1984), because the Python
libraries do not support pruning. The MAE was applied as
metric to find the optimal pruning depth. The performance
of the pruning algorithm on this data set was similar to a re-
gression tree built with a combination of a minimum data
point requirement per leaf and a maximum number of leaves
(MAE with pruning in MATLAB is 0.55 against 0.56 without
pruning in Python). Therefore, the rest of the study was per-
formed without pruning in the Scikit learn library in Python
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(Pedregosa et al., 2011). Accordingly, the results shown do
not include pruning.

2.2.4 Bagging regression trees

Another method to avoid overfitting and generally improve
the accuracy of decision/regression trees is bootstrap aggre-
gating, also called bagging. The idea behind the method is
to resample the data set multiple times and to build a new
regression tree for each resampled data set. This results in
an ensemble of regression trees. The resulting flood damage
is then the average of the ensemble of regression trees. Re-
sampling is done by building several data sets by randomly
picking records from the original data set (each record is al-
lowed to be used multiple times in the same data set). Every
resampled data set therefore randomly leaves out a fraction of
the observations and puts more weight on other observations
because they are picked multiple times. Bagging regression
trees also lead to probabilistic outcomes because the ensem-
ble of trees can be seen as a probability distribution of the
outcome.

2.2.5 Random forest

A random forest is a more advanced variation of bagging re-
gression trees. Apart from building multiple trees with re-
sampled data sets it also randomly excludes a subset of vari-
ables at each decision split. This will result in an ensemble
of regression trees each based on a different set of damage
records and each leaving out a different number of variables
at each decision split. For this paper the default settings of
Scikit learn are applied. In our case this means that eight vari-
ables are left out at each decision split.

2.2.6 Bayesian network

A Bayesian network is a type of probabilistic graphical
model that represents a set of random variables and their
conditional dependences in a directed acyclic graph (DAG)
structure. Each variable in the network may be observed
or represented as a prior probability distribution and de-
pendences between variables are represented with edges
representing joint probability distributions. The edges in a
Bayesian network are directed, which means there is a direc-
tion in which the influence of one variable flows to the other.
From this network, inference can be used in order to utilize
knowledge of one variable to make predictions about other
variables.

Bayesian networks and probabilistic graphical models in
general are used in many different fields, such as bioinfor-
matics (e.g. Mourad et al., 2011), image processing (e.g.
Sudderth and Freeman, 2008) and speech recognition (e.g.
Bilmes, 2002). Recently, they have also been applied to flood
damage modelling (Vogel et al., 2014; Schröter et al., 2014;
Van Verseveld, 2014). Schröter et al. (2014) found that their
performance is often better than that of the different types of

tree methods. Furthermore, a Bayesian network can give its
result as a probability distribution and does not require infor-
mation about each variable in order to make predictions. If
fewer variables are available, the Bayesian network handles
this by adjusting the probability distribution of the outcome.
This makes it ideal for transfer of models to other locations
where fewer data are available than for the location where the
model was originally based. Furthermore, it returns (for each
object) probability distributions rather than deterministic val-
ues, which is valuable for assessing uncertainties within the
damage model estimates.

A Bayesian network can be discrete, continuous or a com-
bination. In this paper fully discrete Bayesian networks are
used, in which all variables are discretized into bins. Given
a network, the probability of a particular set of discrete vari-
able values can be calculated with the following formula:

P (Xi, . . ., Xn)=

n∏
i=1

P (Xi |parents(Xi)) , (3)

where Xi are the variables and parents(Xi) is the set of vari-
ables directed to Xi . The probability of a single variable
value can be obtained by taking the sum of all the proba-
bilities that contain the variable value of interest. The con-
ditional probabilities are stored in conditional probability ta-
bles (CPTs). These tables show, for each combination of par-
ent variable values, the probability of each possible output
value.

A data-driven Bayesian network can derive all its CPTs
from the data and even derive its graph structure from
the data. For this paper, two Bayesian networks were con-
structed: a data-driven Bayesian network with both the graph
structure and the CPTs derived from the data set and an ex-
pert network in which the graph structure was estimated in
an expert session but the CPTs were derived from the data
set. All calculations were done with a Python library called
libpgm (Cabot, 2012). This library follows the methodology
described in Koller and Friedman (2009).

The CPTs are learned with maximum likelihood estima-
tion. This method estimates the (joint) probability distribu-
tions based on the number of observations. The discretization
assumptions have an impact on the maximum likelihood esti-
mation. If the variables are discretized into a large number of
bins more possible combinations of states are possible. These
combinations of states grow exponentially with the number
of bins of the parent variables. A too-fine discretization there-
fore quickly leads to more possible states than available data
points. This results in a poor performance of the maximum
likelihood estimation. Koller and Friedman (2009) call this
one of the key limiting factors in learning Bayesian networks
from data. A too-coarse discretization, on the other hand,
is also not desirable because it limits the precision of the
Bayesian network. For this study a balance was found by try-
ing several discretization resolutions until the best result was
found based on the MAE criterion.
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Discretization was achieved by splitting the data into bins
with an equal number of data points in each bin. This works
better than making equal-sized bins because of the large
extremes in, especially, the damage data. Equal-sized bins
would either increase the number of bins, which is detrimen-
tal to the maximum likelihood estimation (having bins that
contain no observations), or the bins would be so large that
a majority of the data points would end up in the same bin,
which would limit the Bayesian network performance. The
number of bins per variable was chosen based on the per-
formance of a test set on the MAE criterion. This was done
by varying the discretization of the most important variables
until the smallest error was found. For the Bayesian network
with the data-driven structure the number of bins chosen was
slightly larger because the network is less complex than the
expert network.

The performance of the Bayesian network on the testing
data can be sensitive for discretization. There are two possi-
ble alternatives for the discretization method applied in this
paper: an optimization algorithm could be applied to deter-
mine the optimal discretization, or a continuous Bayesian
network could be used (Friedman and Goldszmidt, 1996).
Apart from solving the discretization problem the advantage
of a continuous Bayesian network is that it would probably
perform better in predicting extreme values but a disadvan-
tage is that the Bayesian network is restricted to specific fam-
ilies of parametric probability distributions (Friedman and
Goldszmidt, 1996). An optimization algorithm for the dis-
cretization can minimize the error produced by the discretiz-
ing but does not solve the fundamental problem of having too
few data points.

The data-driven structure is also learned with the libpgm
Python library. This library is using a constraint-based ap-
proach for structure learning, as is described in Koller and
Friedman (2009). In a constraint-based approach the struc-
ture is learned by calculating dependences and conditional
dependences between the variables. When two variables are
dependent regardless of what they are conditioned by, an
edge (connection) is formed. The algorithm follows this pro-
cedure to create the entire network. The result is shown in
Fig. 4a.

As an alternative to the data-driven structure a struc-
ture was also made in an expert meeting involving sev-
eral Deltares flood damage/Bayesian network experts (see
acknowledgements). In the expert meeting the network
was constructed based on a combination of expert judge-
ment/logic and with the knowledge of Fig. 3 in this paper.
The experts focused mainly on edges that they thought were
relevant for estimating the flood damage. The result is shown
in Fig. 4b.

The relationship between the total, structural and con-
tents damage is known and not probabilistic: total dam-
age= structure damage+ contents damage. Also, in our case
the structure damage, contents damage and total damage are
always dependent variables. Therefore, using a Bayesian net-

Figure 3. Correlation coefficients between the different variables.
See Table 1 for a description of the abbreviations.

Figure 4. Bayesian network learned from data (a) and Bayesian
network constructed by experts (b). Note that not all variables are
used in the network.

work to model this exact definitional relationship could only
introduce extra errors and not add any extra explanation.
Therefore in the expert network it was decided not to use
the total damage variable. Instead the total damage is calcu-
lated as the sum of the expected value of the structure and
the contents damage. In the data-driven network the struc-
ture damage was not included by the algorithm. Therefore,
the total damage variable itself is used for the data-driven
network.

The advantage of an expert-based network is that experts
focus on the connections that matter most rather than on all
possible connections. Furthermore, experts can include con-
nections that are not found in this data set but are expected to
exist in theory or in an independent test set. The advantage of
a learned network is that new and previously unknown rela-
tionships between variables can be discovered. It was antici-
pated that the Bayesian networks in this paper would not be
very sensitive to overfitting during the CPT learning. Koller
and Friedman (2009) only mentions overfitting in the maxi-
mum likelihood estimation of Bayesian networks in relation
to discretization that is too fine and offers no techniques to
counter overfitting in the maximum likelihood estimation.
This expectation that overfitting is not an issue was tested
by testing the Bayesian network on its own training data. If
overfitting were an issue the model would do much better
in predicting its own data than in predicting new data. This is
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not the case (for the expert model) – the MAE is even slightly
worse when calculated on its own data (0.622), the correla-
tion coefficient and R2 are only slightly better (0.24 and 0.04)
and only the mean bias error (MBE) is significantly better
(−0.015). See results section for comparison.

2.3 Variable importance

In order to investigate the value of more data it is interest-
ing to study the contribution of the different variables to the
prediction accuracy. This can be done with bagging trees and
the random forest methods. This importance can be calcu-
lated as the (normalized) total reduction of the mean square
error brought by the different variables as achieved during
the training of the models. This can be used to compare the
relative importance of the variables between each other. This
feature importance can be calculated for all the regression
trees in the ensemble and a general importance is computed
by the Scikit learn library by taking the average of the feature
importances in the tree. This was applied in this study for the
bagging trees. The variable importance has been separated
for predicting the importance of the total damage, structural
damage and the content damage. For the calculation of the
variable importance the data set is used in which the average
per postal code is used for the new variables. The water depth
rank is not used because it could transfer some of the impor-
tance of the original water depth value to the new variables.

Another way to study variable importance is with
the LASSO technique in multi-variable linear regression.
LASSO can drop unimportant variable coefficients to zero.
If a variable is dropped to zero it means that the variable is
less important.

3 Results

3.1 Model comparison

The different models were tested on a test set that was not
used for training the models. Four indicators are used to rate
the performance of the models: MAE, MBE, the Pearson cor-
relation coefficient and the coefficient of determination (R2).
The MAE indicator is the mean absolute error divided by
the average damage, so a smaller MAE is a better model.
The MBE indicator is the average error; this differs from the
MAE in that an overestimation is able to correct for an under-
estimation and vice versa. A low MBE shows that the sum of
a large number of predictions will probably be very accurate.
The Pearson correlation coefficient is a measure of the linear
dependence between two variables. This measure is used to
compare the predicted damage with the actual damage in the
test set. A Pearson correlation of 1 means a perfect correla-
tion, 0 means no correlation and −1 means a perfect inverse
correlation. R2 is the predictive capacity of a model com-
pared to just using the average damage as a prediction. If the
R2 is 0 it means that the independent variables add no predic-

Table 2. Results of different models for four indicators: MAE,
MBE, R2 and correlation coefficient. The models had access to all
variables (except for the root function). The version of the data set
with the water depth rank join between the old and the new variables
is used.

Calculation MAE MBE R2 Correlation
coefficient

Root function 0.612 0.194 0 0.15
Multi-variable 0.578 0.055 0.07 0.27
linear
regression
Regression tree 0.561 0.065 0.03 0.31
Bagging regression 0.504 0.061 0.15 0.38
tree
Random forest 0.508 0.054 0.16 0.39
Data-driven 0.629 0.525 0 0.21
Bayesian network
Expert Bayesian 0.607 −0.08 0.03 0.21
network

tive capacity compared to just using the average. When R2 is
1 it means that the independent variables can explain all vari-
ation in the dependent variable. Table 2 shows the results for
the different models.

Table 2 shows that given that the models can use all data,
random forest and bagging regression trees perform best and
equally well. These two methods reduce the MAE by 12 %
compared to a reference model using the same data (multi-
variable linear regression). Bagging regression trees and ran-
dom forest perform significantly better than normal regres-
sion trees, as was also noted by Merz et al. (2013) for flood
damage in Germany. Random forest and bagging regression
trees also outperform the Bayesian networks. The normal re-
gression tree also works better than the Bayesian networks.
This contradicts the findings of Schröter et al. (2014), that in
most cases Bayesian networks outperformed the regression
trees. Schröter et al. (2014), however, had a very different
data set from the one applied in this study.

Many explanations are possible for the relatively poor per-
formance of the Bayesian networks. The discretization of the
data is a possible problem. Some trends could be too subtle to
be captured by the rough discretization, but not enough data
points are available for a more precise discretization. Per-
haps there still is some space for improving the discretiza-
tion, for example by applying an optimization algorithm to
pick bin definitions in such a way that the available infor-
mation is applied optimally (Vogel et al., 2012, applied such
an algorithm). Another possible reason is that Bayesian net-
works might be more sensitive to low-quality data in combi-
nation with a small data set. Some of the CPTs applied in the
Bayesian networks here are large, and conditional probabil-
ities are based on a relatively small number of observations.
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Table 3. The best-performing model based on the MAE indicator with different number of variables.

Variables Method MAE MBE R2 Correlation
coefficient

Only water depth Regression tree 0.564 0.071 0.08 0.306
Only original variables
(water depth, household size,
detached house, basement)

Bagging trees 0.551 0.052 0.07 0.345

All variables (water depth
rank join)

Random forest 0.508 0.054 0.16 0.394

All variables (average
postal code join)

Random forest 0.488 0.035 0.17 0.41

Figure 5. Variable importance: the contribution of different variables in reducing the error in the bagging regression trees (the chart follows
the order of the legend).

Some wrong observations may then have a relatively large
impact on the damage prediction.

In the data-driven network the variable of interest (total
damage) in our test is only influenced by the water depth.
This is because the water depth relative to the ground floor is
known while the content damage is not known, so the known
water depth blocks all the influence of other variables and
the unknown content damage has no influence because it is
unknown (it is a target variable). The data-driven Bayesian
network is therefore in our test in practice only dependent on
the water depth. Hence, the structure learning decides to ig-
nore the other variables when the water depth relative to the
ground floor is available. This is probably because the data-
driven structure algorithm finds all variables equally impor-
tant and therefore draws only the most important edges (con-

nections) regarding the total damage. Other methods (e.g. as
described by Riggelsen, 2008) for structure learning might
be able to give better results.

The multi-variable linear regression reference model does
a good job on the MBE but is clearly weaker on the other per-
formance indicators, which shows that for predicting aggre-
gate damage for, for instance, policy studies, the more com-
plex methods are less beneficial. This is different in cases
where individual building damages are important, for in-
stance for insurance rating purposes. The reference root func-
tion has a very large bias compared to the other models. This
is probably because the shape of the root function is inappro-
priate for this flood event.
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3.2 Benefits of more data

The models were trained with different numbers of variables
to see whether the additional data are valuable. As expected,
the best-performing model with a high number of variables
always performs significantly better than the best-performing
model with fewer variables (see Table 3). More data therefore
seem to add potential value to the damage prediction despite
the possible quality issues in the additional data. The MAE of
the best-performing model with only the water depth (regres-
sion tree) can be reduced by a further 14 % by the best model
using all data (random forest). The MAE of the root func-
tion fitted to the data (representing common practice) can be
reduced by about 20 % using the random forest with all data.

The method to join the extra data with the original data
based on water depth rank is not effective. Just taking the av-
erage value per postal code appears to work better. The water
depth rank probably sometimes assigns extreme variable val-
ues to the wrong objects which disturbs some correlations in
the data.

3.3 Variable importance

The total importance of variables that were added in this
study is about 30 % (Fig. 5), which means that 30 % of the er-
ror reduction during the training of bagging tree model orig-
inates from variables that were added to the data set. The
added variables therefore clearly help to improve the predic-
tion accuracy. This assessment was done without the water
depth ranking join because this could assign some of the im-
portance of the original water depth to the modelled water
depth. The original water depth is by far the most important
variable. Construction year is an important variable for the
structure damage but not for content damage. This is as ex-
pected. Household size is quite important for the structural
damage but insignificant for the content damage. This is less
obvious, but it could be that large families live on average
in larger houses but do not have much more valuable con-
tents on the ground floor. Return period is an important vari-
able for both the structure and the content damage. This was
also expected because the population in areas that flood more
frequently are expected to have more flood experience, thus
resulting in better preparedness and therefore less damage.
This effect is visible in the data, with return period having an
importance of about 10 %.

For the best-fitting multi-variable linear regression model
(LASSO alpha= 0) no variables are dropped. Only when al-
pha is increased to 10 are five variables dropped; however,
this also causes a slight drop in model performance (MAE
goes from 0.578 to 0.588). The dropped variables are build-
ing footprint, building age, living area, flood duration and
flow velocity. Of these dropped variables, two have a signif-
icant importance in the bagging tree variable importance as-
sessment. These are building age and living area. It could be
that these variables are more important in non-linear models.

4 Discussion and conclusion

Additional data improve flood damage modelling relative to
a test set, even if these data come from a collection of dif-
ferent sources and are of limited quality (error prone). The
supervised learning algorithm is also important. Given the
same data there are large differences between the algorithms.
Random forests and bagging regression trees perform signif-
icantly better than normal regression trees and multi-variable
linear regression. The Bayesian networks perform poorly
compared to any of the tree-based methods.

Our current approach does not show that the additional
variables are beneficial for the Bayesian networks. However,
because the tree methods can benefit from the additional data
it is likely that in some cases Bayesian networks could also.
The poor performance of the Bayesian networks contradicts
earlier studies (Schröter et al., 2014) and could be due to the
discretization method, quality of the expert network, network
learning algorithm or problems with data quantity or quality.

The test set that was applied in this paper for the valida-
tion of the model was randomly selected from the data and
consistently applied among all models. The accuracy of the
indicators for model performance could perhaps be further
improved through some form of cross-validation. Also, the
tweaking of different models could become more accurate if
cross-validation was used instead of validation on a single
test set only. For example, the optimization of the stop crite-
ria for tree-based models and the alpha value in the LASSO
method for the multi-variable linear regression could be im-
proved in that way. Expectations are that this would cause
minor improvements in results but that it would not influence
the conclusions of this paper.

This paper did not address another benefit of Bayesian net-
works, random forest and bagging trees, which is the incor-
poration of uncertainty. Bayesian networks do this explicitly
in the method and for bagging trees or random forest each
tree can be seen as a possible damage estimate, and together
the trees represent a probability distribution.

The methods applied in this paper provide an uncertainty
estimate for a single object. For policy decision making it is
often useful to aggregate these uncertainty estimates into a
total uncertainty for the entire flood event. This can be done
with the assumption that all objects are perfectly correlated
with each other (one tree will apply to the entire event but
what tree is uncertain), or with the assumption that all objects
are independent of each other (each object will have a dif-
ferent tree but what tree is uncertain). Both assumptions are,
however, not completely correct (Wagenaar et al., 2016). The
Bayesian network framework might offer a middle way to
model this correctly. If each object has a copy of the original
Bayesian network, and these Bayesian networks are linked
together based on the location of the objects, it can be explic-
itly taken into account that nearby objects are more likely to
have similar damages. This could be an argument in support
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Figure 6. Box plots of the Meuse flood of 1993 per water depth class. The box shows the 25–75 % interval and the lines show the 5–95 %
interval. The line in the middle of the box shows the median value. The labels on top of the plots show the number of observations per water
depth class.

of preferring Bayesian networks over tree-based methods in
the future.

The data set applied in this paper had many limitations.
The most important limitation is that the exact locations of
the objects are unknown. Because of this, it was difficult to
link building and flood characteristics to damage records. An
attempt to do this by using water depth rank performed worse
than just using the average variable values per postal code.
Despite this limitation, the added data still produced signif-
icantly better damage estimates. Another problem with the
data set is the unknown manual adjustment to an unknown
share of data (rental residential buildings) for the structural
damage records. These actions may have introduced a rela-
tionship between structural damage and some of the origi-
nally recorded variables that was not there in reality. This
could in theory cause a slight overestimation in the predic-
tion performance of the models on the test set. This effect
on the results is, however, expected to be small because most
of the prediction improvements came from adding variables
that were not available for doing the manual actions in 1994.

This study applied absolute damages rather than relative
damages. This requires the supervised learning algorithms to
implicitly also predict information about the values at risk be-
sides the vulnerability. The algorithms can do this with vari-
ables such as living area, footprint area, building year and
household size. This seems less error prone and better than
estimating such values at risk with general rules of thumb
based on assumptions about construction costs and content
value. Such assumptions could cause extra errors, and there-
fore in this study absolute damages were used.

This paper trained flood damage models on just a single
flood event. Ideally training data should consist of multiple
events so that the spectrum of possible damages which the
model is trained upon is larger. This would be important es-
pecially for the transfer to other areas. Models that are trained
on a single event could overfit on this event and this problem
would not show up if the model were tested with data from
that same event (even if these specific data were not used
for training the model). A good example of this appears in
the good performance of the regression tree based on only
the water depth versus the fitted root function based on only
the water depth. The root shape of a damage function which
many expert models use (see Sect. 2.2.1) and which makes
physical sense performs much worse than a more flexible
model that can adjust to other relationships between dam-
age and water depth. This is explained by Fig. 6, which
shows a downward-sloping damage function after 90 cm of
water depth, a shape very different from damage functions
normally found in the literature. The root function model
therefore starts producing large errors after 90 cm, while the
regression tree can capture this trend well. This downward
slope makes no sense physically but could be explained by
other variables such as return period. Return period could be
a proxy for flood experience and better preparation because
houses that experienced large flood depths in 1993 are prob-
ably on lower ground and also experience floods in general
more often. This relationship is probably not true for other
types of events, for example large flood depths due to dike
breaches. Thus, in that sense, the regression tree is overfit-
ting on this single flood event.
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Supervised learning can help to create and improve flood
damage models. They have many theoretical advantages over
deterministic damage functions based on only water depth.
The application of supervised learning in flood damage mod-
elling remains challenging in practice because of limited
data availability. In this paper we utilized different data
sources compared to previous studies to acquire these data
and showed that also on this data set the methods are ben-
eficial, especially the tree-based methods. Future work may
merge available data sets from different events and from dif-
ferent countries in order to develop a model that can be ap-
plied using several hazard variables, and which also works in
circumstances outside areas for which flood damage data are
available.

Data availability. The dataset “Observed flood damages from the
1993 Meuse flood in the Netherlands with added flood and building
characteristics” is given in the supplement below.

The Supplement related to this article is available
online at https://doi.org/10.5194/nhess-17-1683-2017-
supplement.
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