Articles | Volume 15, issue 3
https://doi.org/10.5194/nhess-15-417-2015
https://doi.org/10.5194/nhess-15-417-2015
Research article
 | 
05 Mar 2015
Research article |  | 05 Mar 2015

Linking local wildfire dynamics to pyroCb development

R. H. D. McRae, J. J. Sharples, and M. Fromm

Related authors

Measurement report: Violent biomass burning and volcanic eruptions – a new period of elevated stratospheric aerosol over central Europe (2017 to 2023) in a long series of observations
Thomas Trickl, Hannes Vogelmann, Michael D. Fromm, Horst Jäger, Matthias Perfahl, and Wolfgang Steinbrecht
Atmos. Chem. Phys., 24, 1997–2021, https://doi.org/10.5194/acp-24-1997-2024,https://doi.org/10.5194/acp-24-1997-2024, 2024
Short summary
Microwave Limb Sounder (MLS) observations of biomass burning products in the stratosphere from Canadian forest fires in August 2017
Hugh C. Pumphrey, Michael J. Schwartz, Michelle L. Santee, George P. Kablick III, Michael D. Fromm, and Nathaniel J. Livesey
Atmos. Chem. Phys., 21, 16645–16659, https://doi.org/10.5194/acp-21-16645-2021,https://doi.org/10.5194/acp-21-16645-2021, 2021
Short summary
Evolution of a pyrocumulonimbus event associated with an extreme wildfire in Tasmania, Australia
Mercy N. Ndalila, Grant J. Williamson, Paul Fox-Hughes, Jason Sharples, and David M. J. S. Bowman
Nat. Hazards Earth Syst. Sci., 20, 1497–1511, https://doi.org/10.5194/nhess-20-1497-2020,https://doi.org/10.5194/nhess-20-1497-2020, 2020
Short summary
Vertical aerosol distribution in the southern hemispheric midlatitudes as observed with lidar in Punta Arenas, Chile (53.2° S and 70.9° W), during ALPACA
Andreas Foth, Thomas Kanitz, Ronny Engelmann, Holger Baars, Martin Radenz, Patric Seifert, Boris Barja, Michael Fromm, Heike Kalesse, and Albert Ansmann
Atmos. Chem. Phys., 19, 6217–6233, https://doi.org/10.5194/acp-19-6217-2019,https://doi.org/10.5194/acp-19-6217-2019, 2019
Short summary
Estimating grassland curing with remotely sensed data
Wasin Chaivaranont, Jason P. Evans, Yi Y. Liu, and Jason J. Sharples
Nat. Hazards Earth Syst. Sci., 18, 1535–1554, https://doi.org/10.5194/nhess-18-1535-2018,https://doi.org/10.5194/nhess-18-1535-2018, 2018
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Improving the fire weather index system for peatlands using peat-specific hydrological input data
Jonas Mortelmans, Anne Felsberg, Gabriëlle J. M. De Lannoy, Sander Veraverbeke, Robert D. Field, Niels Andela, and Michel Bechtold
Nat. Hazards Earth Syst. Sci., 24, 445–464, https://doi.org/10.5194/nhess-24-445-2024,https://doi.org/10.5194/nhess-24-445-2024, 2024
Short summary
Brief communication: The Lahaina Fire disaster – how models can be used to understand and predict wildfires
Timothy W. Juliano, Fernando Szasdi-Bardales, Neil P. Lareau, Kasra Shamsaei, Branko Kosović, Negar Elhami-Khorasani, Eric P. James, and Hamed Ebrahimian
Nat. Hazards Earth Syst. Sci., 24, 47–52, https://doi.org/10.5194/nhess-24-47-2024,https://doi.org/10.5194/nhess-24-47-2024, 2024
Short summary
Prediction of natural dry-snow avalanche activity using physics-based snowpack simulations
Stephanie Mayer, Frank Techel, Jürg Schweizer, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 23, 3445–3465, https://doi.org/10.5194/nhess-23-3445-2023,https://doi.org/10.5194/nhess-23-3445-2023, 2023
Short summary
Modelling the vulnerability of urban settings to WUI fires in Chile
Paula Aguirre, Jorge León, Constanza González-Mathiesen, Randy Román, Manuela Penas, and Alonso Ogueda
EGUsphere, https://doi.org/10.5194/egusphere-2023-2130,https://doi.org/10.5194/egusphere-2023-2130, 2023
Short summary
Automated Avalanche Terrain Exposure Scale (ATES) mapping – Local validation and optimization in Western Canada
John Sykes, Håvard Toft, Pascal Haegeli, and Grant Statham
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-112,https://doi.org/10.5194/nhess-2023-112, 2023
Revised manuscript accepted for NHESS
Short summary

Cited articles

AFAC: Bushfire Glossary, AFAC Limited, Melbourne, Australia, 36 pp., 2012.
American Meteorological Society: Glossary of Meteorology, available at: http://glossary.ametsoc.org/wiki/Pyrocumulonimbus (last access: 24 April 2014), 2013.
Arnold, R. K. and Buck, C. C.: Blow-Up fires – Silviculture or Weather Problems? J. Forestry, 52, 408–411, 1954.
Byram, G. M.: Atmospheric Conditions Related to Blowup Fires, Southeastern Forest Experimental Station Paper, Asheville, NC, Station Paper 35, 33 pp., 1954.
Cook, R., Walker, A., and Wilkes, S.: Airborne fire intelligence, in: Innovations in remote sensing and photogrammetry, edited by: Jones, S. and Reinke, K., Springer, Heidelberg, Germany, 239–254, 2009.
Download
Short summary
In this paper we have used remote sensing data to analyse the atypical dynamics of a wildfire in the Grose Valley of the Blue Mountains of New South Wales in November 2006. We show that these dynamics included fire channelling. We link the fire's dynamics to the formation of pyrocumulonimbus cloud in its plume. We have thus shown that prediction of pyroCb formation may be improved by understanding atypical fire behaviour.
Altmetrics
Final-revised paper
Preprint