Articles | Volume 25, issue 4
https://doi.org/10.5194/nhess-25-1481-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-25-1481-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Prediction of the volume of shallow landslides due to rainfall using data-driven models
Jérémie Tuganishuri
Department of Civil and Environmental Engineering, Gangneung–Wonju National University, Gangneung, Gangwon 25457, South Korea
Chan-Young Yune
Department of Civil and Environmental Engineering, Gangneung–Wonju National University, Gangneung, Gangwon 25457, South Korea
Gihong Kim
Department of Civil and Environmental Engineering, Gangneung–Wonju National University, Gangneung, Gangwon 25457, South Korea
Seung Woo Lee
Department of Civil and Environmental Engineering, Gangneung–Wonju National University, Gangneung, Gangwon 25457, South Korea
Manik Das Adhikari
Department of Civil and Environmental Engineering, Gangneung–Wonju National University, Gangneung, Gangwon 25457, South Korea
Sang-Guk Yum
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, Gangneung–Wonju National University, Gangneung, Gangwon 25457, South Korea
Related authors
Tuganishuri Jérémie, Chan-Young Yune, Gihong Kim, Seung Woo Lee, Manik Adhikari, and Sang-Guk Yum
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-73, https://doi.org/10.5194/nhess-2023-73, 2023
Manuscript not accepted for further review
Short summary
Short summary
The prediction of the size of rainfall-induced debris in South Korea was analyzed. The model suitability was carried out and Random forest was the most suitable for the Size of debris prediction. The most contributing factor in the model was slope length and the most vulnerable region to higher frequency and severe debris was Gangwon province. The findings may be used for rainfall induced-debris prevention policies and post-disaster rehabilitation planning.
Jae-Joon Lee, Manik Das Adhikari, Moon-Soo Song, and Sang-Guk Yum
EGUsphere, https://doi.org/10.5194/egusphere-2025-1169, https://doi.org/10.5194/egusphere-2025-1169, 2025
Preprint archived
Short summary
Short summary
1. A total of 112 landslide locations were identified in the Jecheon-si region, South Korea, based on aerial photos, dronographs and Google Earth imagery. 2. GIS-based statistical models (i.e., FR, IV, CF and LR) were used for landslide susceptibility mapping. 3. The ROC curve, R-index, MAE, MSE, RMSE, and precision were used to assess the model's. 4. The LSI predicted using an integrated model exhibited good agreement with topographic and landslide characteristics.
Sang-Guk Yum, Moon-Soo Song, and Manik Das Adhikari
Nat. Hazards Earth Syst. Sci., 23, 2449–2474, https://doi.org/10.5194/nhess-23-2449-2023, https://doi.org/10.5194/nhess-23-2449-2023, 2023
Short summary
Short summary
This study performed analysis on typhoon-induced coastal morphodynamics for the Mokpo coast. Wetland vegetation was severely impacted by Typhoon Soulik, with 87.35 % of shoreline transects experiencing seaward migration. This result highlights the fact that sediment resuspension controls the land alteration process over the typhoon period. The land accretion process dominated during the pre- to post-typhoon periods.
Tuganishuri Jérémie, Chan-Young Yune, Gihong Kim, Seung Woo Lee, Manik Adhikari, and Sang-Guk Yum
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-73, https://doi.org/10.5194/nhess-2023-73, 2023
Manuscript not accepted for further review
Short summary
Short summary
The prediction of the size of rainfall-induced debris in South Korea was analyzed. The model suitability was carried out and Random forest was the most suitable for the Size of debris prediction. The most contributing factor in the model was slope length and the most vulnerable region to higher frequency and severe debris was Gangwon province. The findings may be used for rainfall induced-debris prevention policies and post-disaster rehabilitation planning.
Seok Bum Hong, Hong Sik Yun, Sang Guk Yum, Seung Yeop Ryu, In Seong Jeong, and Jisung Kim
Nat. Hazards Earth Syst. Sci., 22, 3435–3459, https://doi.org/10.5194/nhess-22-3435-2022, https://doi.org/10.5194/nhess-22-3435-2022, 2022
Short summary
Short summary
This study advances previous models through machine learning and multi-sensor-verified results. Using spatial and meteorological data from the study area (Suncheon–Wanju Highway in Gurye-gun), the amount and location of black ice were modelled based on system dynamics to predict black ice and then simulated with the geographic information system (m2). Based on the model results, multiple sensors were buried at four selected points in the study area, and the model was compared with sensor data.
Ji-Myong Kim, Sang-Guk Yum, Hyunsoung Park, and Junseo Bae
Nat. Hazards Earth Syst. Sci., 22, 2131–2144, https://doi.org/10.5194/nhess-22-2131-2022, https://doi.org/10.5194/nhess-22-2131-2022, 2022
Short summary
Short summary
Insurance data has been utilized with deep learning techniques to predict natural disaster damage losses in South Korea.
Moon-Soo Song, Hong-Sik Yun, Jae-Joon Lee, and Sang-Guk Yum
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-118, https://doi.org/10.5194/nhess-2022-118, 2022
Manuscript not accepted for further review
Short summary
Short summary
In this study, emerging engineering techniques such as machine learning and deep learning technique was applied to predict heavy snowfall prediction in the Korean Peninsula. More specifically, it was observed that the predictive model using the RFR algorithm had the best performance based on a comparison between the observed and predicted data. In addition, it was observed that the performance of the ensemble models (RFR and XGB) was better than that of the single regression models.
Sang-Guk Yum, Hsi-Hsien Wei, and Sung-Hwan Jang
Nat. Hazards Earth Syst. Sci., 21, 2611–2631, https://doi.org/10.5194/nhess-21-2611-2021, https://doi.org/10.5194/nhess-21-2611-2021, 2021
Short summary
Short summary
Developed statistical models to predict the non-exceedance probability of extreme storm surge-induced typhoons. Various probability distribution models were applied to find the best fitting to empirical storm-surge data.
Cited articles
Alcantara, A. L. and Ahn, K. H.: Probability distribution and characterization of daily precipitation related to tropical cyclones over the Korean Peninsula, Water, 12, 1214, https://doi.org/10.3390/w12041214, 2020.
Alcántara-Ayala, I. and Sassa, K.: Landslide risk management: from hazard to disaster risk reduction, Landslides, 20, 2031–2037, https://doi.org/10.1007/s10346-023-02140-5, 2023.
Amesoeder, C., Hartig, F., and Pichler, M.: cito: An R package for training neural networks using torch, Ecography, 2024, e07143, https://doi.org/10.1111/ecog.07143, 2024.
Armstrong, J. S.: Combining forecasts, Springer US, 417–439, https://doi.org/10.1007/978-0-306-47630-3_19, 2001.
Asada, H. and Minagawa, T.: Impact of vegetation differences on shallow landslides: a case study in Aso, Japan, Water, 15, 3193, https://doi.org/10.3390/w15183193, 2023.
Bernardie, S., Desramaut, N., Malet, J.-P., Gourlay, M., and Grandjean, G.: Prediction of changes in landslide rates induced by rainfall, Landslides, 12, 481–494, https://doi.org/10.1007/s10346-014-0495-8, 2014.
Bonamutial, M. and Prasetyo, S. Y.: Exploring the Impact of Feature Data Normalization and Standardization on Regression Models for Smartphone Price Prediction, in: 2023 International Conference on Information Management and Technology (ICIMTech), 24–25 August 2023, Malang, Indonesia, IEEE, 294–298, https://doi.org/10.1109/ICIMTech59029.2023.10277860, 2023.
Borup, D., Christensen, B. J., Mühlbach, N. S., and Nielsen, M. S.: Targeting predictors in random forest regression, Int. J. Forecast., 39, 841–868, https://doi.org/10.1016/j.ijforecast.2022.02.010, 2023.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Breiman, L.: Classification and regression trees, Routledge, https://doi.org/10.1201/9781315139470, 2017.
Caine, N.: The rainfall intensity-duration control of shallow landslides and debris flows, Geogr. Ann. A, 62, 23–27, https://doi.org/10.1080/04353676.1980.11879996, 1980.
Cellek, S.: The effect of aspect on landslide and its relationship with other parameters, Landslides, IntechOpen, https://doi.org/10.5772/intechopen.99389, 2021.
Chang, K. T. and Chiang, S. H.: An integrated model for predicting rainfall-induced landslides, Geomorphology, 105, 366–373, https://doi.org/10.1016/j.geomorph.2008.10.012, 2009.
Chang, K. T., Chiang, S. H., and Lei, F.: Analysing the relationship between typhoon-triggered landslides and critical rainfall conditions, Earth Surf. Process. Landf., 33, 1261–1271, https://doi.org/10.1002/esp.1611, 2008.
Chatra, A. S., Dodagoudar, G. R., and Maji, V. B.: Numerical modelling of rainfall effects on the stability of soil slopes, Int. J. Geotech. Eng., 13, 425–437, https://doi.org/10.1080/19386362.2017.1359912, 2019.
Chen, C. W., Oguchi, T., Hayakawa, Y. S., Saito, H., and Chen, H.: Relationship between landslide size and rainfall conditions in Taiwan, Landslides, 14, 1235–1240, https://doi.org/10.1007/s10346-016-0790-7, 2017.
Chen, L., Guo, Z., Yin, K., Shrestha, D. P., and Jin, S.: The influence of land use and land cover change on landslide susceptibility: a case study in Zhushan Town, Xuan'en County (Hubei, China), Nat. Hazards Earth Syst. Sci., 19, 2207–2228, https://doi.org/10.5194/nhess-19-2207-2019, 2019.
Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K., Mitchell, R., Cano, I., Zhou, T., Li, M., Xie, J., Lin, M., Geng, Y., Li, Y., and Yuan, J.: xgboost: Extreme Gradient Boosting, R package version 1.6.0.1, https://CRAN.R-project.org/package=xgboost (last access: 25 January 2025), 2022.
Chen, X., Zhang, L., Zhang, L., Zhou, Y., Ye, G., and Guo, N.: Modelling rainfall-induced landslides from initiation of instability to post-failure, Comput. Geotech., 129, 103877, https://doi.org/10.1016/j.compgeo.2020.103877, 2021.
Chen, Z., Luo, R., Huang, Z., Tu, W., Chen, J., Li, W., Chen, S., Xiao, J. and Ai, Y.: Effects of different backfill soils on artificial soil quality for cut slope revegetation: Soil structure, soil erosion, moisture retention and soil C stock, Ecol. Eng., 83, 5–12, https://doi.org/10.1016/j.ecoleng.2015.05.048, 2015.
Cheung, R. W.: Landslide risk management in Hong Kong, Landslides, 18, 3457–3473, https://doi.org/10.1007/s10346-020-01587-0, 2021.
Chicco, D., Warrens, M. J., and Jurman, G.: The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation, PeerJ Comput. Sci., 7, e623, https://doi.org/10.7717/peerj-cs.623, 2021.
Chowdhury, M. Z. I., Leung, A. A., Walker, R. L., Sikdar, K. C., O'Beirne, M., Quan, H., and Turin, T. C.: A comparison of machine learning algorithms and traditional regression-based statistical modeling for predicting hypertension incidence in a Canadian population, Sci. Rep., 13, 13, https://doi.org/10.1038/s41598-022-27264-x, 2023.
Chung, C. J. F. and Fabbri, A. G.: Validation of spatial prediction models for landslide hazard mapping, Nat. Hazards, 30, 451–472, https://doi.org/10.1023/B:NHAZ.0000007172.62651.2b, 2003.
Cohen, D. and Schwarz, M.: Tree-root control of shallow landslides, Earth Surf. Dynam., 5, 451–477, https://doi.org/10.5194/esurf-5-451-2017, 2017.
Culler, E. S., Livneh, B., Rajagopalan, B., and Tiampo, K. F.: A data-driven evaluation of post-fire landslide susceptibility, Nat. Hazards Earth Syst. Sci., 23, 1631–1652, https://doi.org/10.5194/nhess-23-1631-2023, 2023.
Dahal, B. K. and Dahal, R. K.: Landslide hazard map: tool for optimization of low-cost mitigation, Geoenvironmental Disasters, 4, 1–9, https://doi.org/10.1186/s40677-017-0071-3, 2017.
Dai, F. C. and Lee, C. F.: Frequency–volume relation and prediction of rainfall-induced landslides, Eng. Geol., 59, 253–266, https://doi.org/10.1016/S0013-7952(00)00077-6, 2001.
Darlington, R. B.: Regression and linear models, Mcgraw-Hill, New York, USA, ISBN 9780070153721, 1990.
Dinno, A.: Nonparametric pairwise multiple comparisons in independent groups using Dunn's test, Stata J., 15, 292–300, https://doi.org/10.1177/1536867X1501500117, 2015.
Dobson, A. J. and Barnett, A. G.: An introduction to generalized linear models, CRC press, New York, USA, ISBN 9781315182780, https://doi.org/10.1201/9781315182780, 2018.
Donnarumma, A., Revellino, P., Grelle, G., and Guadagno, F. M.: Slope angle as indicator parameter of landslide susceptibility in a geologically complex area, Landslide Science and Practice: Volume 1: Landslide Inventory and Susceptibility and Hazard Zoning, Springer, Berlin, 425–433, https://doi.org/10.1007/978-3-642-31325-7_56, 2013.
Duc, D. M.: Rainfall-triggered large landslides on 15 December 2005 in Van Canh district, Binh Dinh province, Vietnam, Landslides, 10, 219–230, https://doi.org/10.1007/s10346-012-0362-4, 2013.
Dudley, R.: The Shapiro–Wilk test for normality, MIT Mathematics, https://math.mit.edu/~rmd/46512/shapiro.pdf (last access: 25 January 2025), 2023.
Evans, S., Mugnozza, G. S., Strom, A., Hermanns, R., Ischuk, A., and Vinnichenko, S.: Landslides From Massive Rock Slope Failure And Associated Phenomena, in: Landslides from Massive Rock Slope Failure, NATO Science Series, vol. 49, Springer, Dordrecht, https://doi.org/10.1007/978-1-4020-4037-5_1, 2006.
Friedman, J. H., Hastie, T., and Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent, J. Stat. Softw., 33, 1–22, https://pmc.ncbi.nlm.nih.gov/articles/PMC2929880/ (last access: 25 January 2025), 2010.
Gariano, S. L., Rianna, G., Petrucci, O., and Guzzetti, F.: Assessing future changes in the occurrence of rainfall-induced landslides at a regional scale, Sci. Total Environ., 596, 417–426, https://doi.org/10.1016/j.scitotenv.2017.03.103, 2017.
Gelman, A. and Hill, J.: Data analysis using regression and multilevel/hierarchical models, Cambridge University Press, New York, ISBN 0-521-86706-1, 2007.
Glade, T., Anderson, M. G., and Crozier, M. J.: Landslide hazard and risk, Vol. 807, John Wiley & Sons, ISBN 9780470012659, https://doi.org/10.1002/9780470012659, 2005.
Gong, Q., Wang, J., Zhou, P., and Guo, M.: A regional landslide stability analysis method under the combined impact of rainfall and vegetation roots in south China, Adv. Civ. Eng., 2021, 5512281, https://doi.org/10.1155/2021/5512281, 2021.
Gonzalez-Ollauri, A. and Mickovski, S. B.: Hydrological effect of vegetation against rainfall-induced landslides, J. Hydrol., 549, 374–387, https://doi.org/10.1016/j.jhydrol.2017.04.014, 2017.
Greenwood, J. R., Norris, J. E., and Wint, J.: Assessing the contribution of vegetation to slope stability, Proc. Inst. Civil Eng. Geotech. Eng., 157, 199–207, https://doi.org/10.1680/geng.2004.157.4.199, 2004.
Gutierrez-Martin, A.: A GIS-physically-based emergency methodology for predicting rainfall-induced shallow landslide zonation, Geomorphology, 359, 107121, https://doi.org/10.1016/j.geomorph.2020.107121, 2020.
Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P.: The rainfall intensity–duration control of shallow landslides and debris flows: an update, Landslides, 5, 3–17, https://doi.org/10.1007/s10346-007-0112-1, 2008.
Ha, K. M.: Predicting typhoon tracks around Korea, Nat. Hazards, 113, 1385–1390, https://doi.org/10.1007/s11069-022-05335-6, 2022.
Hastie, T.: The elements of statistical learning: data mining, inference, and prediction, 2nd edn., Springer, New York, ISBN 9780387848570, https://doi.org/10.1111/j.1541-0420.2010.01516.x, 2009.
Highland, L. and Bobrowsky, P.: The Landslide Handbook: A Guide to Understanding Landslides, USGS, Reston, VA, Circular 1325, https://pubs.usgs.gov/circ/1325/ (last access: 25 January 2025), 2008.
Holcombe, E. A., Beesley, M. E., Vardanega, P. J., and Sorbie, R.: Urbanisation and landslides: hazard drivers and better practices, Proc. Inst. Civ. Eng. Civ. Eng., Thomas Telford Ltd, 169, 137–144, https://doi.org/10.1680/jcien.15.00044, 2016.
Hovius, N., Stark, C. P., and Allen, P. A.: Sediment flux from a mountain belt derived by landslide mapping, Geology, 25, 231–234, https://doi.org/10.1130/0091-7613(1997)025<0231:SFFAMB>2.3.CO;2, 1997.
Huang, J., Hales, T. C., Huang, R., Ju, N., Li, Q., and Huang, Y.: A hybrid machine-learning model to estimate potential debris-flow volumes, Geomorphology, 367, 107333, https://doi.org/10.1016/j.geomorph.2020.107333, 2020.
Hyde, K. D., Riley, K., and Stoof, C.: Uncertainties in predicting debris flow hazards following wildfire, in: Natural hazard uncertainty assessment: Modeling and decision support, edited by: Riley, K., Webley, P., and Thompson, M., Geophysical Monograph 223, John Wiley and Sons, Inc., 287–299, https://doi.org/10.1002/9781119028116.ch19, 2016.
Hyndman, R. J. and Koehler, A. B.: Another look at measures of forecast accuracy, Int. J. Forecast., 22, 679–688, https://doi.org/10.1016/j.ijforecast.2006.03.001, 2006.
Hyun, Y. K., Kar, S. K., Ha, K. J., and Lee, J. H.: Diurnal and spatial variabilities of monsoonal CG lightning and precipitation and their association with the synoptic weather conditions over South Korea, Theor. Appl. Climatol., 102, 43–60, https://doi.org/10.1007/s00704-009-0235-5, 2010.
Intrieri, E., Carlà, T., and Gigli, G.: Forecasting the time of failure of landslides at slope-scale: A literature review, Earth-Sci. Rev., 193, 333–349, https://doi.org/10.1016/j.earscirev.2019.03.019, 2019.
Jaboyedoff, M., Choffet, M., Derron, M. H., Horton, P., Loye, A., Longchamp, C., Mazotti, B., Michoud, C., and Pedrazzini, A.: Preliminary slope mass movement susceptibility mapping using DEM and LiDAR DEM, in: Terrigenous mass movements: Detection, modelling, early warning and mitigation using geoinformation technology, Springer, Berlin Heidelberg, 109–170, https://doi.org/10.1007/978-3-642-25495-6_5, 2012.
Jin, H. G., Lee, H., and Baik, J. J.: Characteristics and possible mechanisms of diurnal variation of summertime precipitation in South Korea, Theor. Appl. Climatol., 148, 551–568, https://doi.org/10.1007/s00704-022-03965-1, 2022.
Ju, L. Y., Zhang, L. M., and Xiao, T.: Power laws for accurate determination of landslide volume based on high-resolution LiDAR data, Eng. Geol., 312, 106935, https://doi.org/10.1016/j.enggeo.2022.106935, 2023.
Jung, M. J., Jeong, Y. J., Shin, W. J., and Cheong, A. C. S.: Isotopic distribution of bioavailable Sr, Nd, and Pb in Chungcheongbuk-do Province, Korea, J. Anal. Sci. Technol., 15, 46, https://doi.org/10.1186/s40543-024-00460-2, 2024.
Jung, Y., Shin, J. Y., Ahn, H., and Heo, J. H.: The spatial and temporal structure of extreme rainfall trends in South Korea, Water, 9, 809, https://doi.org/10.3390/w9100809, 2017.
Kafle, L., Xu, W. J., Zeng, S. Y., and Nagel, T.: A numerical investigation of slope stability influenced by the combined effects of reservoir water level fluctuations and precipitation: A case study of the Bianjiazhai landslide in China, Eng. Geol., 297, 106508, https://doi.org/10.1016/j.enggeo.2021.106508, 2022.
Kang, M. W., Yibeltal, M., Kim, Y. H., Oh, S. J., Lee, J. C., Kwon, E. E., and Lee, S. S.: Enhancement of soil physical properties and soil water retention with biochar-based soil amendments, Sci. Total Environ., 836, 155746, https://doi.org/10.1016/j.scitotenv.2022.155746, 2022.
Keefer, R. F.: Handbook of soils for landscape architects, Oxford University Press, ISBN 0-19-51202-3, 2000.
Khan, M. A., Basharat, M., Riaz, M. T., Sarfraz, Y., Farooq, M., Khan, A. Y., Pham, Q. B., Ahmed, K. S., and Shahzad, A.: An integrated geotechnical and geophysical investigation of a catastrophic landslide in the Northeast Himalayas of Pakistan, Geol. J., 56, 4760–4778, https://doi.org/10.1002/gj.4209, 2021.
Khan, Y. A., Lateh, H., Baten, M. A., and Kamil, A. A.: Critical antecedent rainfall conditions for shallow landslides in Chittagong City of Bangladesh, Environ. Earth Sci., 67, 97–106, https://doi.org/10.1007/s12665-011-1483-0, 2012.
Kim, D. E., Seong, Y. B., Weber, J., and Yu, B. Y.: Unsteady migration of Taebaek Mountain drainage divide, Cenozoic extensional basin margin, Korean Peninsula, Geomorphology, 352, 107012, https://doi.org/10.1016/j.geomorph.2019.107012, 2020.
Kim, H. G. and Park, C. Y.: Landslide susceptibility analysis of photovoltaic power stations in Gangwon-do, Republic of Korea, Geomat. Nat. Hazards Risk., 12, 2328–2351, https://doi.org/10.1080/19475705.2021.1950219, 2021.
Kim, J., Lee, K., Jeong, S., and Kim, G.: GIS-based prediction method of landslide susceptibility using a rainfall infiltration-groundwater flow model, Eng. Geol., 182, 63–78, https://doi.org/10.1016/j.enggeo.2014.09.001, 2014.
Kim, M. S., Onda, Y., Kim, J. K., and Kim, S. W.: Effect of topography and soil parameterisation representing soil thicknesses on shallow landslide modelling, Quat. Int., 384, 91–106, https://doi.org/10.1016/j.quaint.2015.03.057, 2015.
Kim, S. W., Chun, K. W., Kim, M., Catani, F., Choi, B., and Seo, J. I.: Effect of antecedent rainfall conditions and their variations on shallow landslide-triggering rainfall thresholds in South Korea, Landslides, 18, 569–582, https://doi.org/10.1007/s10346-020-01505-4, 2021.
Kitutu, M. G., Muwanga, A., Poesen, J., and Deckers, J. A.: Influence of soil properties on landslide occurrences in Bududa district, Eastern Uganda, Afr. J. Agric. Res., 4, 611–620, https://lirias.kuleuven.be/retrieve/78489 (last access: 25 January 2025), 2009.
Korup, O.: Geomorphometric characteristics of New Zealand landslide dams, Eng. Geol., 73, 13–35, https://doi.org/10.1016/j.enggeo.2003.11.003, 2004.
Korup, O., Clague, J. J., Hermanns, R. L., Hewitt, K., Strom, A. L., and Weidinger, J. T.: Giant landslides, topography, and erosion, Earth Planet. Sci. Lett., 261, 578–589, https://doi.org/10.1016/j.epsl.2007.07.025, 2007.
Kotsakis, C.: Ordinary Least Squares, in: Encyclopedia of Mathematical Geosciences, Springer, Cham, 1032–1038, https://doi.org/10.1007/978-3-030-85040-1_237, 2023.
Kramer, O. and Kramer, O.: K-nearest neighbors, Dimensionality reduction with unsupervised nearest neighbors, Intelligent Systems Reference Library, Springer, Berlin, Heidelberg, 51, 13–23, https://doi.org/10.1007/978-3-642-38652-7_2, 2013.
Krizhevsky, A., Sutskever, I., and Hinton, G. E.: Imagenet classification with deep convolutional neural networks, Adv. Neural Inf. Process. Syst., 25, 1097–1105, https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf (last access: 25 January 2025), 2012.
Kuhn, M.: caret: Classification and Regression Training, R package, version 6.0-92, Comprehensive R Archive Network (CRAN), https://CRAN.R-project.org/package=caret (last access: 25 January 2025), 2022.
Kunz, M. and Kottmeier, C.: Orographic enhancement of precipitation over low mountain ranges, Part II: Simulations of heavy precipitation events over southwest Germany, J. Appl. Meteorol. Clim., 45, 1041–1055, https://doi.org/10.1175/JAM2390.1, 2006.
Lacerda, W. A., Palmeira, E. M., Netto, A. L. C., and Ehrlich, M. (Eds.): Extreme rainfall induced landslides: an international perspective, Oficina de Textos, ISBN 978-85-7975-150-9, 2014.
Lann, T., Bao, H., Lan, H., Zheng, H., and Yan, C.: Hydro-mechanical effects of vegetation on slope stability: A review, Sci. Total Environ., 926, 171691, https://doi.org/10.1016/j.scitotenv.2024.171691, 2024.
LeCun, Y., Bengio, Y., and Hinton, G.: Deep learning, Nature, 521, 436–444, https://doi.org/10.1038/nature14539, 2015.
Lee, D. B., Kim, Y. N., Sonn, Y. K., and Kim, K. H.: Comparison of Soil Taxonomy (2022) and WRB (2022) Systems for classifying Paddy Soils with different drainage grades in South Korea, Land, 12, 1204, https://doi.org/10.3390/land12061204, 2023.
Lee, D. H., Kim, Y. T., and Lee, S. R.: Shallow landslide susceptibility models based on artificial neural networks considering the factor selection method and various non-linear activation functions, J. Remote Sens., 12, 1194, https://doi.org/10.3390/rs12071194, 2020.
Lee, D. H., Cheon, E., Lim, H. H., Choi, S. K., Kim, Y. T., and Lee, S. R.: An artificial neural network model to predict debris-flow volumes caused by extreme rainfall in the central region of South Korea, Eng. Geol., 281, 105979, https://doi.org/10.1016/j.enggeo.2020.105979, 2021.
Lee, J. U., Cho, Y. C., Kim, M., Jang, S. J., Lee, J., and Kim, S.: The effects of different geological conditions on landslide-triggering rainfall conditions in South Korea, Water, 14, 2051, https://doi.org/10.3390/w14132051, 2022.
Lee, M. J.: Rainfall and landslide correlation analysis and prediction of future rainfall base on climate change, in: Geohazards Caused by Human Activity, IntechOpen, https://doi.org/10.5772/64694, 2016.
Lee, S. W., Kim, G., Yune, C. Y., and Ryu, H. J.: Development of landslide-risk assessment model for mountainous regions in eastern Korea, Disaster Adv., 6, 70–79, 2013.
Li, C. J., Guo, C. X., Yang, X. G., Li, H. B., and Zhou, J. W.: A GIS-based probabilistic analysis model for rainfall-induced shallow landslides in mountainous areas, Environ. Earth Sci., 81, 432, https://doi.org/10.1007/s12665-022-10562-y, 2022.
Liaw, A. and Wiener, M.: Classification and regression by randomForest, R News 2, 18–22, https://journal.r-project.org/articles/RN-2002-022/RN-2002-022.pdf (last access: 24 January 2025), 2002.
Liu, Y., Deng, Z., and Wang, X.: The effects of rainfall, soil type and slope on the processes and mechanisms of rainfall-induced shallow landslides, Appl. Sci., 11, 11652, https://doi.org/10.3390/app112411652, 2021a.
Liu, Z., Gilbert, G., Cepeda, J. M., Lysdahl, A. O. K., Piciullo, L., Hefre, H., and Lacasse, S.: Modelling of shallow landslides with machine learning algorithms, Geosci. Front., 12, 385–393, https://doi.org/10.1016/j.gsf.2020.04.014, 2021b.
Luino, F., De Graff, J., Biddoccu, M., Faccini, F., Freppaz, M., Roccati, A., Ungaro, F., D'Amico, M., and Turconi, L.: The Role of soil type in triggering shallow landslides in the alps (Lombardy, Northern Italy), Land, 11, 1125, https://doi.org/10.3390/land11081125, 2022.
Martinović, K., Gavin, K., Reale, C., and Mangan, C.: Rainfall thresholds as a landslide indicator for engineered slopes on the Irish Rail network, Geomorphology, 306, 40–50, https://doi.org/10.1016/j.geomorph.2018.01.006, 2018.
McKenna, J. P., Santi, P. M., Amblard, X., and Negri, J.: Effects of soil-engineering properties on the failure mode of shallow landslides, Landslides, 9, 215–228, https://doi.org/10.1007/s10346-011-0295-3, 2012.
McKight, P. E. and Najab, J.: Kruskal-wallis test, The corsini encyclopedia of psychology, 1, 1–10, https://doi.org/10.1002/9780470479216.corpsy0491, 2010.
Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., and Leisch, F.: e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien, R package version 1.7-9, https://doi.org/10.32614/CRAN.package.e1071, 2021.
Miao, F., Wu, Y., Xie, Y., and Li, Y.: Prediction of landslide displacement with step-like behavior based on multialgorithm optimization and a support vector regression model, Landslides, 15, 475–488, https://doi.org/10.1007/s10346-017-0883-y, 2018.
Montgomery, D. R., Schmidt, K. M., Dietrich, W. E., and McKean, J.: Instrumental record of debris flow initiation during natural rainfall: Implications for modeling slope stability, J. Geophys. Res.-Earth Surf., 114, F01031, https://doi.org/10.1029/2008JF001078, 2009.
Nguyen, Q. H., Ly, H. B., Ho, L. S., Al-Ansari, N., Le, H. V., Tran, V. Q., Prakash, I., and Pham, B. T.: Influence of data splitting on performance of machine learning models in prediction of shear strength of soil, Math. Probl. Eng., 2021, 4832864, https://doi.org/10.1155/2021/4832864, 2021.
O'Brien, R. M.: A caution regarding rules of thumb for variance inflation factors, Qual. Quant., 41, 673–690, https://doi.org/10.1007/s11135-006-9018-6, 2007.
Omwega, A. K.: Crop cover, rainfall energy and soil erosion in Githunguri (Kiambu District), Kenya, The University of Manchester (United Kingdom), https://www.proquest.com/openview/dd7c169f804775d18041ec262d03e4c1/1?cbl=2026366&diss=y&pq-origsite=gscholar (last access: 24 Janurary 2025), 1989.
Panday, S. and Dong, J. J.: Topographical features of rainfall-triggered landslides in Mon State, Myanmar, August 2019: Spatial distribution heterogeneity and uncommon large relative heights, Landslides, 18, 3875–3889, https://doi.org/10.1007/s10346-021-01758-7, 2021.
Park, C. Y.: The classification of extreme climate events in the Republic of Korea, J. Korean Assoc. Regional Geograp., 21, 394–410, https://koreascience.kr/article/JAKO201507740043627.page (last access: 25 January 2025), 2015.
Park, S. J. and Lee, D. K.: Predicting susceptibility to landslides under climate change impacts in metropolitan areas of South Korea using machine learning, Geomat. Nat. Hazards Risk. Risk, 12, 2462–2476, https://doi.org/10.1080/19475705.2021.1963328, 2021.
Pham, B. T., Tien Bui, D., and Prakash, I.: Bagging based support vector machines for spatial prediction of landslides, Environ. Earth Sci., 77, 1–17, https://doi.org/10.1007/s12665-018-7268-y, 2018.
Phillips, C., Hales, T., Smith, H., and Basher, L.: Shallow landslides and vegetation at the catchment scale: A perspective, Ecol. Eng., 173, 106436, https://doi.org/10.1016/j.ecoleng.2021.106436, 2021.
Pisner, D. A. and Schnyer, D. M.: Support vector machine, in: Machine learning, Academic Press, 101–121, https://doi.org/10.1016/B978-0-12-815739-8.00006-7, 2020.
Pourghasemi, H. R. and Rahmati, O.: Prediction of the landslide susceptibility: Which algorithm, which precision?, Catena, 162, 177–192, https://doi.org/10.1016/j.catena.2017.11.022, 2018.
Qiu, H., Regmi, A. D., Cui, P., Cao, M., Lee, J., and Zhu, X.: Size distribution of loess slides in relation to local slope height within different slope morphologies, Catena, 145, 155–163, https://doi.org/10.1016/j.catena.2016.06.005, 2016.
Rahman, M. S., Ahmed, B., and Di, L.: Landslide initiation and runout susceptibility modeling in the context of hill cutting and rapid urbanization: a combined approach of weights of evidence and spatial multi-criteria, J. Mt. Sci., 14, 1919–1937, https://doi.org/10.1007/s11629-016-4220-z, 2017.
Ran, Q., Wang, J., Chen, X., Liu, L., Li, J., and Ye, S.: The relative importance of antecedent soil moisture and precipitation in flood generation in the middle and lower Yangtze River basin, Hydrol. Earth Syst. Sci., 26, 4919–4931, https://doi.org/10.5194/hess-26-4919-2022, 2022.
Rathore, S. S. and Kumar, S.: A decision tree regression-based approach for the number of software faults prediction, ACM SIGSOFT, 41, 1–6, https://doi.org/10.1145/2853073.2853083, 2016.
Razakova, M., Kuzmin, A., Fedorov, I., Yergaliev, R., and Ainakulov, Z.: Methods of calculating landslide volume using remote sensing data, in: E3S Web of Conferences, EDP Sciences, 149, 02009, https://doi.org/10.1051/e3sconf/202014902009, 2020.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 24 January 2025), 2022.
Rosi, A., Peternel, T., Jemec-Auflič, M., Komac, M., Segoni, S., and Casagli, N.: Rainfall thresholds for rainfall-induced landslides in Slovenia, Landslides, 13, 1571–1577, https://doi.org/10.1007/s10346-016-0733-3, 2016.
Rotaru, A., Oajdea, D., and Răileanu, P.: Analysis of the landslide movements, Int. J. Coal Geol., 1, 70–79, https://naun.org/multimedia/NAUN/geology/ijgeo-10.pdf (last access: 24 January 2025), 2007.
Saito, H., Korup, O., Uchida, T., Hayashi, S., and Oguchi, T.: Rainfall conditions, typhoon frequency, and contemporary landslide erosion in Japan, Geology, 42, 999–1002, https://doi.org/10.1130/G35680.1, 2014.
Saleh, A. M. E., Arashi, M., and Kibria, B. G.: Theory of ridge regression estimation with applications, John Wiley and Sons, ISBN 9781118644614, 2019.
Sato, T., Katsuki, Y., and Shuin, Y.: Evaluation of influences of forest cover change on landslides by comparing rainfall-induced landslides in Japanese artificial forests with different ages, Sci. Rep., 13, 14258, https://doi.org/10.1038/s41598-023-41539-x, 2023.
Scheidl, C., Heiser, M., Kamper, S., Thaler, T., Klebinder, K., Nagl, F., Lechner, L., Markart, G., Rammer, W., and Seidl, R.: The influence of climate change and canopy disturbances on landslide susceptibility in headwater catchments, Sci. Total Environ., 742, 140588, https://doi.org/10.1016/j.scitotenv.2020.140588, 2020.
Seger, C.: An investigation of categorical variable encoding techniques in machine learning: binary versus one-hot and feature hashing, Kth Royal Institute of Technology, Sweden, https://www.diva-portal.org/smash/get/diva2:1259073/FULLTEXT01.pdf (last access: 24 January 2025), 2018.
Shirzadi, A., Shahabi, H., Chapi, K., Bui, D. T., Pham, B. T., Shahedi, K., and Ahmad, B. B.: A comparative study between popular statistical and machine learning methods for simulating volume of landslides, Catena, 157, 213–226, https://doi.org/10.1016/j.catena.2017.05.016, 2017.
Singh, D. and Singh, B.: Feature wise normalization: An effective way of normalizing data, Pattern Recogn., 122, 108307, https://doi.org/10.1016/j.patcog.2021.108307, 2022.
Smith, H. G., Neverman, A. J., Betts, H., and Spiekermann, R.: The influence of spatial patterns in rainfall on shallow landslides, Geomorphology, 437, 108795, https://doi.org/10.1016/j.geomorph.2023.108795, 2023.
Stoof, C. R., Vervoort, R. W., Iwema, J., van den Elsen, E., Ferreira, A. J. D., and Ritsema, C. J.: Hydrological response of a small catchment burned by experimental fire, Hydrol. Earth Syst. Sci., 16, 267–285, https://doi.org/10.5194/hess-16-267-2012, 2012.
Sun, H. Y., Wong, L. N. Y., Shang, Y. Q., Shen, Y. J., and Lü, Q.: Evaluation of drainage tunnel effectiveness in landslide control, Landslides, 7, 445–454, https://doi.org/10.1007/s10346-010-0210-3, 2010.
Székely, G. J., Rizzo, M. L., and Bakirov, N. K.: Measuring and testing dependence by correlation of distances, Ann. Statist., 35, 2769–2794, https://doi.org/10.1214/009053607000000505, 2007.
Tacconi Stefanelli, C., Casagli, N., and Catani, F.: Landslide damming hazard susceptibility maps: a new GIS-based procedure for risk management, Landslides, 17, 1635–1648, https://doi.org/10.1007/s10346-020-01395-6, 2020.
Tsai, T. L. and Chen, H. F.: Effects of degree of saturation on shallow landslides triggered by rainfall, Environ. Earth Sci., 59, 1285–1295, https://doi.org/10.1007/s12665-009-0116-3, 2010.
Turner, T. R., Duke, S. D., Fransen, B. R., Reiter, M. L., Kroll, A. J., Ward, J. W., Bach, J. L., Justice, T. E., and Bilby, R. E.: Landslide densities associated with rainfall, stand age, and topography on forested landscapes, southwestern Washington, USA, For. Ecol. Manag., 259, 2233–2247, https://doi.org/10.1016/j.foreco.2010.01.051, 2010.
Um, M. J., Yun, H., Cho, W., and Heo, J. H.: Analysis of orographic precipitation on Jeju-Island using regional frequency analysis and regression, Water Resour. Manag., 24, 1461–1487, https://doi.org/10.1007/s11269-009-9509-z, 2010.
Van Westen, C. J.: The modelling of landslide hazards using GIS, Surv. Geophys., 21, 241–255, https://doi.org/10.1023/A:1006794127521, 2000.
Wang, D., Hollaus, M., Schmaltz, E., Wieser, M., Reifeltshammer, D., and Pfeifer, N.: Tree stem shapes derived from TLS data as an indicator for shallow landslides, Proced. Earth Plan. Sc., 16, 185–194, https://doi.org/10.1016/j.proeps.2016.10.020, 2016.
Wei, Z. L., Shang, Y. Q., Sun, H. Y., Xu, H. D., and Wang, D. F.: The effectiveness of a drainage tunnel in increasing the rainfall threshold of a deep-seated landslide, Landslides, 16, 1731–1744, https://doi.org/10.1007/s10346-019-01241-4, 2019.
Wieczorek, G.: Debris flows/avalanches: process, recognition, and mitigation, Volume VII, GSA, Boulder, Colorado, ISBN 0-8137-4107-6, 1987.
Willmott, C. J. and Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance, Climate Res., 30, 79–82, https://doi.org/10.3354/cr030079, 2005.
Yan, L., Xu, W., Wang, H., Wang, R., Meng, Q., Yu, J., and Xie, W. C.: Drainage controls on the Donglingxing landslide (China) induced by rainfall and fluctuation in reservoir water levels, Landslides, 16, 1583–1593, https://doi.org/10.1007/s10346-019-01202-x, 2019.
Yoon, S. S. and Bae, D. H.: Optimal rainfall estimation by considering elevation in the Han River Basin, South Korea, J. Appl. Meteorol. Clim., 52, 802–818, https://doi.org/10.1175/JAMC-D-11-0147.1, 2013.
Yun, H. S., Um, M. J., Cho, W. C., and Heo, J. H.: Orographic precipitation analysis with regional frequency analysis and multiple linear regression, Korea Water Resour. Assoc., 42, 465–480, https://doi.org/10.3741/JKWRA.2009.42.6.465, 2009.
Yune, C. Y., Jun, K. J., Kim, K. S., Kim, G. H., and Lee, S. W.: Analysis of slope hazard-triggering rainfall characteristics in Gangwon Province by database construction, J. Korean Geotech. Soc., 26, 27–38, https://doi.org/10.7843/kgs.2010.26.10.27, 2010.
Zaruba, Q. and Mencl, V.: Landslides and their control, Elsevier, ISBN 9780444600769, 2014.
Zhang, K., Wang, S., Bao, H., and Zhao, X.: Characteristics and influencing factors of rainfall-induced landslide and debris flow hazards in Shaanxi Province, China, Nat. Hazards Earth Syst. Sci., 19, 93–105, https://doi.org/10.5194/nhess-19-93-2019, 2019.
Short summary
To reduce the consequences of landslides due to rainfall, such as loss of life, economic losses, and disruption to daily living, this study describes the process of building a machine learning model which can help to estimate the volume of landslide material that can occur in a particular region, taking into account antecedent rainfall, soil characteristics, type of vegetation, etc. The findings can be useful for land use management, infrastructure design, and rainfall disaster management.
To reduce the consequences of landslides due to rainfall, such as loss of life, economic losses,...
Altmetrics
Final-revised paper
Preprint