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Abstract. Landslides due to rainfall are among the most de-
structive natural disasters and cause property damage, huge
financial losses, and human deaths in different parts of the
world. To plan for mitigation and resilience and to under-
stand the relationship between the volume of soil materi-
als debris and their associated predictors, prediction of the
volume of rainfall-induced landslides is essential. The ob-
jectives of this research are to construct a model using ad-
vanced data-driven algorithms (i.e., ordinary least squares or
linear regression (OLS), random forest (RF), support vector
machine (SVM), extreme gradient boosting (EGB), gener-
alized linear model (GLM), decision tree (DT), deep neu-
ral network (DNN), k-nearest-neighbor (KNN), and ridge
regression (RR) algorithms) for the prediction of the vol-
ume of landslides due to rainfall, considering geological,
geomorphological, and environmental conditions. Models
were trained and tested on a South Korean landslide dataset,
with the EGB predictions yielding the highest coefficient
of determination (R2

= 0.8841) and the lowest mean abso-
lute error (MAE= 146.6120 m3), followed by RF predictions
(R2
= 0.8435, MAE= 330.4876 m3), on the holdout set. The

DNN, EGB, and RF models exhibited R2> 0.8 on both the
training and the test sets. The differences in the coefficient
of determination R2 on the training and holdout set were
1.75 %, 7.72 %, and 12.17 % for RF, EGB, and DNN, re-
spectively, signifying that these models could yield reliable
volume estimates in adjacent areas with similar geomorpho-
logical and environmental settings. The volume of landslides
was strongly influenced by slope length, maximum hourly
rainfall, slope angle, aspect, and altitude. The anticipated vol-
ume of landslides can be important for land use allocation
and efficient landslide risk management.

1 Introduction

Landslides due to rainfall are phenomena that dislocate a
mass of soil from its natural position, which then slides
downward along a slope due to gravity forces. Intense or
long-duration rainfall infiltrates the soil and increases the
pore pressure, resulting in soil saturation that leads to slope
failure. The saturated soil becomes weak and loses cohesion,
and the slope fails when rainfall crosses a certain threshold
(Bernardie et al., 2014; Martinović et al., 2018; Lee et al.,
2021). The heavy rainfall saturates a slope and triggers a
landslide due to the reduction in the soil’s shear strength and
the increase in pore water pressure (Tsai and Chen, 2010;
Lacerda et al., 2014; Chatra et al., 2019; Chen et al., 2021;
Luino et al., 2022). For example, steep slopes with loose soils
and even moderate rainfall can lead to the displacement of
an enormous quantity of soil mass. On the contrary, in slopes
with more stable, cohesive soils, the surface failure might be
smaller (Tsai and Chen, 2010). The rainfall quantity and du-
ration influence the volume of the landslides; the higher the
intensity and the longer the duration of rainfall, the larger the
resulting surface failure (Chang and Chiang, 2009; Bernardie
et al., 2014; Chen et al., 2017). The landslide occurrences can
also be influenced by human activities that weaken the slope,
such as excavation at the slope toe and loading caused by
construction and land use such as agriculture or mining (Rosi
et al., 2016). Rapid-urbanization activities in mountainous
regions affect topography through hill cutting, deforestation,
and water drainage (Rahman et al., 2017); these activities
disturb the slope structure and change the water flow, which
exacerbates the effect of landslides in regions where human
engineering activities are mostly located (Holcombe et al.,
2016; Chen et al., 2019). Therefore, to mitigate landslide-
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induced risks in runout regions, estimation of the volume of
landslides due to rainfall (VLDR) plays a crucial role.

The quantification of VLDR is essential for effective risk
management (Tacconi Stefanelli et al., 2020), emergency re-
sponse, engineering design (Cheung, 2021), economic as-
sessment, and environmental protection (Alcántara-Ayala
and Sassa, 2023). With estimates of VLDR, morphologists
can update hazard maps (Van Westen, 2000) to reflect the
scale of potential mass movement in various regions and ob-
tain regions with similar likelihoods of landslides of similar
soil mass, highlighting risk zone levels, i.e., low, moderate,
and high. These classifications help engineers to apply appro-
priate slope stabilization techniques depending on the level
of risk (Dahal and Dahal, 2017). Additionally, enhancing
the precision of VLDR estimations and improving predictive
capabilities are essential for understanding and monitoring
landscape evolution. Montgomery et al. (2009) emphasized
that the volume of landslides is a key factor in determining
the extent of downstream damage, particularly for large de-
bris flows or rock avalanches, which can drastically alter the
landscape and affect surrounding ecosystems and infrastruc-
ture. Similarly, Korup (2004) further explored the long-term
geomorphological effects of large-volume landslides, high-
lighting their importance in reshaping mountainous terrains
and influencing sediment transport, which is critical for un-
derstanding both immediate and future landscape changes.
However, the existing landslide susceptibility models, which
are mostly used for the identification of regions suscepti-
ble to landslides (i.e., landslide zonation) (Kim et al., 2014;
Gutierrez-Martin, 2020; Chen et al., 2021; Li et al., 2022),
are essential in emergency management because they pro-
vide a general overview of zones with a higher probability
of landslide occurrence, but they do not emphasize the deter-
mination of the approximate value of the volume of failing
mass in relation to excessive-rainfall events.

Numerous researchers have used landslide inventories, re-
mote sensing data, and numerical techniques to establish the
relationship between landslide geometry and influencing fac-
tors to determine landslide volumes quantitatively. For ex-
ample, Saito et al. (2014) studied the relationship between
rainfall-triggered landslides to test whether the volume of
landslides across Japan that occurred between 2001 and 2011
could be directly predicted from rainfall metrics. The find-
ings revealed that larger landslides occurred when rainfall
exceeded certain thresholds, but there were significant dis-
crepancies between the peaks of rainfall metrics and maxi-
mum landslide volumes, and total rainfall was found to be
a suitable predictor of landslides. Dai and Lee (2001) estab-
lished the frequency–volume relation for landslides in Hong
Kong SAR and noticed that the relation for shallow land-
slides above 4 m3 followed the power law. The 12 h rolling
rainfall contributed most to the prediction of the volume of
landslides. Jaboyedoff et al. (2012) contributed by demon-
strating the value of remote sensing technologies such as
light detection and ranging (lidar) in conjunction with field

data to improve the accuracy of volume estimates and capture
the geomorphological changes associated with landslides. Ju
et al. (2023) constructed an area–volume power law model
for the estimation of the volume of landslides using high-
resolution lidar data collected between 2010 and 2020 in
Hong Kong SAR. Their aim was to accurately estimate the
volume of small-scale landslides. Their reliance on local-
ized datasets limits the model’s applicability in regions with
different geological settings, and the model does not con-
sider all variabilities in landslide characteristics. Razakova et
al. (2020) calculated landslide volume using remote sensing
data to assess the efficiency of aerial photographs in environ-
mental impact assessment and ground-based measurement.
The study did not consider the effect of vegetation and topog-
raphy and only focused on a single landslide case, which may
be a source of bias due to differences in soil composition and
environmental factors. Hovius et al. (1997) analyzed multi-
ple sets of aerial photos and frequency–magnitude relations
for landslides in Aotearoa / New Zealand. Their findings pre-
cisely determined that the landslide frequency–magnitude re-
lationship followed a power law and their infrequent large
magnitude contributed to landscape change. The study high-
lighted the importance of soil composition for landslide size,
but the reliance on aerial photos, which may be inaccurate
in dense forest areas, and the omission of climatic factors
limit the generality of the findings. Guzzetti et al. (2008) ap-
plied statistical methods to regional landslide inventories and
antecedent rainfall data ranging between 10 min and 35 d.
Their findings revealed that the slope angle and soil type
significantly influence landslide volume estimates and that
the rainfall intensity is more important than duration. Chatra
et al. (2019) applied numerical methods to study the effect
of rainfall duration and intensity on the generation of pore
pressure in the soil; their findings revealed higher instabil-
ity in loose soil compared to medium-compacted soil slopes.
Huang et al. (2020) introduced a hybrid machine learning
model combining support vector regression (SVR) with a ge-
netic algorithm to estimate debris-flow volumes. The model
was tested on real-world case studies, showing improved ac-
curacy in volume predictions compared to traditional meth-
ods. However, it was noticed that the study relied on a lim-
ited dataset, which may reduce the model’s generalizability
to other regions of different geomorphology and environ-
mental settings. Shirzadi et al. (2017) compared the effec-
tiveness of statistical and machine learning models in sim-
ulating landslide volume–areal relations, demonstrating that
machine learning techniques outperform traditional statisti-
cal methods in terms of accuracy. The study did not consider
the climatic and geomorphic factors such as rainfall, vegeta-
tion, or soil type that trigger and influence factors in landslide
occurrence. It was noted that existing models only treated the
interaction of soil and rainfall without considering environ-
mental factors, human activity, and the non-linear behavior
of the triggering and influencing factors.
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In the present study, the volume of landslides due to rain-
fall is predicted using ordinary least-squares or linear re-
gression (OLS), random forest (RF), support vector ma-
chine (SVM), extreme gradient boosting (EGB), generalized
linear model (GLM), decision tree (DT), deep neural net-
work (DNN), k-nearest-neighbor (KNN), and ridge regres-
sion (RR) algorithms, considering the details of triggering
factors (i.e., rainfall) and predisposing factors (i.e., geomor-
phological, soil, and environmental). Here, we aim to con-
struct a data-driven algorithm that combines input parame-
ters for physically based and empirical models and incorpo-
rates more complex non-linear features of input variables to
predict the occurrence of associated events more accurately.
The main assumption behind the data-driven algorithm is that
the considered feature input of the model produces a similar
volume of landslides due to rainfall and follows the same
pattern in a particular region with the same features under
the same quantity of rainfall. Here, we examine different
machine learning (ML) algorithms and compare their per-
formance using the coefficient of determination (R2), mean
square error (MAE), root mean square error (RMSE), mean
absolute percentage error (MAPE), and symmetric mean ab-
solute percentage error (SMAPE) of the predicted volume of
landslides. The focus is to optimize the predictions of the
volume of landslides due to rainfall, taking into account trig-
gering and influencing factors with higher accuracy.

2 Data and study region

2.1 Study region

The region for testing the model is South Korea, character-
ized by mountainous (63 % of total land) relief, especially in
the eastern part of the country (Lee et al., 2022). South Ko-
rea is located on the southern part of the Korean Peninsula,
bordered by the Yellow Sea to the west and the East Sea (Sea
of Japan) to the east. According to the Korea Meteorological
Administration (https://www.kma.go.kr/, last access: 25 Jan-
uary 2025), the country has a temperate climate character-
ized by four distinct seasons: hot and humid summers, cold
winters, and springs and falls with moderate temperatures.
The annual rainfall varies between 1000–1400 and 1000–
1800 mm for the central region and southern region, respec-
tively (Jung et al., 2017; Alcantara and Ahn, 2020). During
the summer, heavy rainfall from June to September leads to
significant surface runoff, increases landslide risk, and causes
approximately 95 % of all landslides each year (Lee et al.,
2020; Park and Lee, 2021). In addition, the landslides may
be aggravated by typhoons, which mostly occur in August
and September, and it is anticipated that their frequency will
increase due to climate change (Kim and Park, 2021). The
rainfall trend analysis from 1971 to 2100 predicted an in-
crease in rainfall of 271.23 mm, which indicates the growing
risk of landslides associated with climate change (Lee, 2016).

Temperature variations are influenced by South Korea’s ge-
ographical location; the average summer temperatures vary
between 25 and 30 °C, while winter temperatures can drop to
−10 °C in some parts of the country (https://web.kma.go.kr/,
last access: 25 January 2025). Geologically, South Korea is
mainly composed of granitic and metamorphic rocks, such
as gneiss, schist, and granite, which influence the stability
of the landscape (Jung et al., 2024). The geomorphology is
characterized by rugged mountains, river valleys, and coastal
plains, with the Taebaek Mountains running along the east-
ern edge (Kim et al., 2020). The influence of rainfall, en-
vironmental, geomorphological, and geological factors in-
creases the vulnerability to landslides across the country, es-
pecially in the northeastern mountainous region, as depicted
in Fig. 1. The predominant soil types in South Korea include
clay, sandy, and loamy soils, each with different characteris-
tics that affect water infiltration, retention, and erosion (Kang
et al., 2022; Lee et al., 2023). Clay soils, being more sta-
ble, can become highly saturated, increasing landslide risk
during heavy rains. On the other hand, sandy soils are loose
and more prone to shallow landslides during light rainfall.
Regions with steep topography and poorly consolidated soil
(loose) are mostly at risk, especially after prolonged rainfall
(Kim et al., 2015).

The combination of heavy summer rainfall, geological
composition, and geomorphological factors makes South Ko-
rea particularly vulnerable to shallow landslides. Thus, con-
tinuous monitoring and research are vital to understand-
ing the complex interactions between climate, geology, soil
types, and landslide occurrences in this region. Understand-
ing the collective effects of meteorology, environment, geo-
logical stability, and geomorphological features is crucial for
developing effective disaster management strategies and en-
hancing public safety in landslide-prone areas. As climate
change continues to impact rainfall patterns, South Korea
faces ongoing challenges in mitigating landslide risks and
protecting vulnerable communities.

2.2 Data

The landslide inventory dataset contains 455 landslide
records from 2011 to 2012, collected from different loca-
tions in South Korea through field surveys, and vegetation
and forest fire features were obtained from the Korea Forest
Service database. The combined dataset tabulates informa-
tion on landslide geometry, such as runout length, width, and
depth and volume of the affected area, along with geomor-
phological composition, vegetation, and antecedent rainfall
prior to landslide events. Details regarding landslide predis-
posing and triggering factors are summarized in Table 1.

The majority of landslides in this region were shallow,
translational slope failures (Kim et al., 2021). The land-
slides that occurred had a volume varying between 1.5 and
12 663 m3 and predominantly occurred in the northeastern
and southeastern regions (Fig. 1a, c–d). The landslides exhib-
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Figure 1. (a) Spatial distribution of landslides in South Korea; (b) temporal variation in rainfall – A, maximum hourly rainfall; B, 4-
week rainfall; C, 3 h rainfall; D, 3 d rainfall; and E, 2-week rainfall; (c) cumulative frequency distribution of the volume of landslides; and
(d) box plot of the volume of landslides (The elevation data presented in Fig. 1a are sourced from the SRTM DEM, downloaded from
https://earthexplorer.usgs.gov/ (last access: 25 January 2025)).

ited a hollowed morphology and a rightward skew in the dis-
tribution of their volumes, with 2570.7 m3 as the 95th quan-
tile, 12 663 m3 as the largest volume, and 276 986.62 m3 as
the aggregate mass of landslide due to rainfall. The estima-
tion of the volume of removed material by landslides is im-
portant as it helps to assess the estimated damage that can be
caused at the toe of the failed slope, such as blocking trans-
portation networks, burying crops or farmland, and damag-
ing the built environment near landslide risk areas, and it also
helps in post-disaster recovery planning (Evans et al., 2006;
Rotaru et al., 2007; Intrieri et al., 2019).

Location parameters such as altitude, latitude, and longi-
tude are essential elements that determine the microclimate
of a given region, influencing rainfall patterns (Hyun et al.,
2010; Yoon and Bae, 2013; Park, 2015). The northeastern
region is characterized by high-elevation terrain, including
the Taebaek and Sobaek ranges, which experience dry air

and orographic precipitation (Yun et al., 2009). The wind-
ward mountain versants receive a substantial amount of rain-
fall, which can increase the likelihood of landslides (Jin et
al., 2022). This variation in rainfall with respect to direction
highlights the importance of including slope aspect variables
in landslide studies (Kunz and Kottmeier, 2006). Figure 2a
depicts the relationship between the volume of landslides and
slope aspect, altitude, and fire history and shows that larger
volumes were localized in regions that faced forest fire and
with altitudes between 500 and 1000 m. Additionally, topo-
graphical features such as slope length and slope angle af-
fect the size of the landslide (Panday and Dong, 2021) and
slope failure due to over-saturation from groundwater and
rainfall infiltration, which destabilize the slope (Kafle et al.,
2022). Furthermore, the slope length, slope angle, and slope
aspect play an important role in the determination of the vol-
ume of geological material uprooted by landslides (Zaruba
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Table 1. Landslide influencing and triggering factors.

Group Features Feature relevance References

Vegetation Fire history The burning of the vegetation intensifies the mass movement of soil
near the uncovered burned trunks of trees and free movement on
uncovered soil due to post-fire rainfall and storms. Sliding may also be
due to loss of vegetation and altered soil properties and structure.
These lead to soil degradation and higher infiltration, which increase
the pore pressure, and changes in hydrology by concentrating water
flow in places that exacerbate landslides.

Highland and
Bobrowsky (2008),
Stoof et al. (2012),
Hyde et al. (2016),
Culler et al. (2023)

Age of tree Mature forests have more resistance to shallow landslides due to highly
developed roots, which improve soil cohesion and leaves that prevent
direct contact of raindrops with the soil surface.

Sato et al. (2023), Lann
et al. (2024)

Forest
density

The presence of forest reduces the likelihood of landslides about 3-fold
compared to grassland. Grassland has been revealed to be 3 times more
vulnerable to shallow landslides than broadleaf, coniferous, and
secondary forests.

Greenwood et al.
(2004), Turner et al.
(2010), Scheidl et al.
(2020), Asada and
Minagawa (2023),
Lann et al. (2024)

Timber
diameter
(m)

Tree spacing and size were used to investigate the effect of roots and
trees in shallow-landslide control. High root density generally
enhances slope stability, and specific tree placement and root sizes
between 5 and 20 mm effectively prevent landslides.

Wang et al. (2016),
Cohen and Schwarz
(2017

Geomorphology Drainage The drainage significantly affects slope stability and promotes efficient
control of rainfall’s influence on groundwater fluctuation. The presence
of drainage increases the threshold of landslides due to rainfall.

Korup et al. (2007),
Sun et al. (2010), Yan
et al. (2019), Wei et al.
(2019)

Slope angle
(°)

Steeper slopes have a lower presence of landslides due to low levels of
transportable materials. Slopes between 20–40° are most vulnerable to
greater landslides as rainfall intensity and duration increase. Generally,
the average angle of the terrain at the landslide location provides
valuable insight into the region’s overall steepness and geomorphic
characteristics, which are crucial factors for landslide susceptibility
and risk modeling.

Donnarumma et al.
(2013), Duc (2013),
Qiu et al. (2016)

Slope aspect The effect of rainfall on the slope differs by slope angle and slope
aspect, which leads to unevenly distributed landslides.

Panday and Dong
(2021), Cellek (2021)

Slope length
(m)

The volume increases as the slope length increases. Complex interplay
exists between rainfall, the length of slope, and the slope angle in the
occurrence of landslides.

Turner et al. (2010)

Soil depth
(m)

Soil properties, depth, and texture cause significant differences in
infiltration rates, which have different influences on the occurrence of
landslides.

Kitutu et al. (2009),
McKenna et al. (2012)

Soil type Soil types, namely sandy loam, silt loam, and loam, with their
coefficients of permeability of 1.7, 1.65, and 1.5, respectively, retain
water differently, leading to different saturation times. Soil with higher
permeability tends to drain water more efficiently, making it less prone
to saturation. In contrast, for soil with lower permeability, the pore
pressure may rapidly increase, leading to shallow-landslide initiation
during intense-rainfall events.

Chen et al. (2015), Liu
et al. (2021a)

Location Altitude Regional variability in elevation and mountain steepness affects the
quantity of rainfall and associated landslides.

Um et al. (2010), Hyun
et al. (2010), Yoon and
Bae (2013), Park
(2015)
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Table 1. Continued.

Group Features Feature relevance References

Maximum
hourly
rainfall

The rainfall infiltrates the slope and increases pore water pressure,
which reduces soil shear strength and leads to soil saturation, which in
turn causes surface failure.

Wieczorek (1987), Dai
and Lee (2001), Smith
et al. (2023)

Rainfall Continuous
rainfall

Sudden intense rainfall concentrated in short periods is responsible for
shallow landslides and debris flow.

Zhang et al. (2019)

3 h rainfall

3 d rainfall Antecedent rainfall increases moisture in the soil and weakens soil
cohesion.

Bernardie et al. (2014),
Chen et al. (2015),

2-week
rainfall

Gariano et al. (2017),
Zhang et al. (2019),

4-week
rainfall

Ran et al. (2022)

Figure 2. (a) Scatterplot showing the variation in landslide volumes with respect to slope aspect, fire history, and altitude and (b–g) his-
tograms of rainfall distribution.
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and Mencl, 2014; Khan et al., 2021). The slope stability
depends on soil composition properties, including soil per-
meability indices that affect water infiltration and the satu-
ration level (Chen et al., 2015). In the study regions, three
main soil types, namely sandy loam, loam, and silt loam,
were observed, and their coefficient of permeability was 1.7,
1.65, and 1.5, respectively (Lee et al., 2013). To reduce in-
filtration, the drainage network channels rainwater, drains
the soil, and reduces saturation, which minimizes the like-
lihood of landslide occurrence due to groundwater discharge
and surface runoff (Hovius et al., 1997; Wei et al., 2019).
The vegetation protects the topsoil from the direct impact
of raindrops hitting the ground, which causes erosion due to
the force of gravity and reduces infiltration (Omwega, 1989;
Keefer, 2000). The absence of vegetation allows rainwater
to cause fine topsoil to seep away, in turn causing shallow
landslides (Gonzalez-Ollauri and Mickovski, 2017). On the
contrary, vegetation improves soil cohesion and prevents po-
tential shallow landslides due to soil–root interaction (Gong
et al., 2021; Phillips et al., 2021). The density of vegetation
(forest) and leafage type (broadleaf, pine, or a mixture) di-
rectly affect the quantity of raindrops intercepted and pre-
vented from directly hitting the soil, which emphasizes the
contributions of vegetation in the mitigation of landslides.
Further, the occurrence of forest fires can contribute to the
occurrence of landslides due to the burning of vegetation
covering the area, changing soil properties and increasing
soil pH (Lee et al., 2013).

Rainfall, a triggering factor of landslides, is the immedi-
ate cause of slope instability and failure due to infiltration
and leads to saturation resulting from increased pore water
pressure that reduces soil shear strength (Yune et al., 2010;
Khan et al., 2012; Kim et al., 2021; Lee et al., 2021). The
antecedent rainfall increases the moisture in the soil, which
accelerates the soil saturation; the cumulative effect is essen-
tial to understanding the saturation levels (Ran et al., 2022).
In this study, rainfall variables are grouped based on time,
namely continuous rainfall, which is the cumulative value of
rainfall on the day of a landslide from the rainfall start hour
to the landslide event; maximum hourly rainfall; and rain-
fall during a fixed period such as 3 h, 1 d, 3 d, or 2 weeks
(Fig. 1b). The histograms for rainfall considered in this study
are depicted in Fig. 2b–g. Descriptive statistics for all contin-
uous variables are given in Table 2.

3 Methods

In this paper, we consider nine data-driven models, namely
OLS, RF, SVM, EGB, GLM, DT, DNN, KNN, and RR, to
predict the volume of landslides due to rainfall. The model
is tested on South Korean landslide inventories and predis-
posing factors coupled with triggering factors, i.e., rainfall
data. Our detailed workflow is summarized in Fig. 3. The
steps for construction of these models can be briefly summa-

rized as follows: (a) the dataset for landslide inventories is
cleaned and combined with the rainfall dataset; (b) collinear-
ity analysis is performed using the variance inflation factor;
(c) continuous features are scaled (Z score) (Bonamutial and
Prasetyo, 2023) to facilitate algorithms in fast convergence;
(d) the dataset is split into training and test set; (e) all models
are tested on the same training set and the model is evaluated
on the test set using mean absolute error (MAE), coefficient
of determination (R2), root mean square error (RMSE), sym-
metric mean absolute percentage error (SMAPE), and mean
absolute percentage error (MAPE) for the comparison of ac-
tual and predicted volume by each model; (f) variable impor-
tance is calculated for the optimal model; and (g) the distance
correlation is calculated for each continuous feature and the
Kruskal–Wallis and Dunn tests are conducted to examine the
similarity of the effects of each category on the landslide vol-
ume.

3.1 Model construction

In the present investigation, we aimed to predict landslide
volume using models that minimize error with interpretabil-
ity and scalability. Since one model cannot have all proper-
ties simultaneously, we selected some widely used models
due to their inherent interpretability and scalability proper-
ties. OLS, GLM, and DT are widely used for their high in-
terpretability, which helps us to understand the influence of
individual features on predictions (Gelman and Hill, 2007;
Breiman, 2017). On the other hand, EGB, RF, SVM, RR,
and KNN are used due to their robust performance in cap-
turing complex patterns in data, which is essential for ac-
curate predictions of landslide volumes (Liaw and Wiener,
2002; Hastie, 2009; Chen et al., 2022). Additionally, consid-
ering that the model will be used on a regional scale, which
will require big data, EGB, RF, and DNN are designed to
efficiently handle large datasets, making them suitable for
regional-scale analysis. These last models can be scaled to in-
corporate more data from different geographical areas with-
out significant adjustments, enhancing their applicability in
future research (Krizhevsky et al., 2012). Accordingly, nine
data-driven methods were selected and tested on a South Ko-
rean dataset to predict VLDR.

The first method considered is OLS, which is applied to
estimate parameters of multilinear regression that yield the
minimum residual sum of squares errors from the data (Kot-
sakis, 2023) under assumptions of no correlation in inde-
pendent variables and error terms, constant variance in er-
ror terms, the non-linear collinearity of predictors, and the
normal distribution of error terms. RF regression is a su-
pervised data-driven technique based on ensemble learning,
which constructs many decision trees during the training time
of a model by combining multiple decision trees to produce
an improved overall result of the model outcome. RF regres-
sion is more efficient in the analysis of multidimensional
datasets (Borup et al., 2023). RF is an effective predictive
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Table 2. Summary statistics for continuous variables.

Variables Units N Min Mean Median Max SD

Max hourly rain mm 455 0 48 48 78 20
Continuous rainfall mm 455 0 285 327 550 106
3 h rainfall mm 455 0 88 80 171 60
12 h rainfall mm 455 0 150 99 447 95
1 d rainfall mm 455 0 202 162 538 112
3 d rain mm 455 0 280 284 550 86
7 d rain mm 455 0.5 323 330 634 88
2-week rain mm 455 0.5 385 400 663 90
3-week rain mm 455 86 504 533 914 115
4-week rain mm 455 108 587 561 1135 160
Soil depth m 455 0.2 0.6 0.75 0.75 0.19
Soil type – 455 1.5 1.6 1.5 1.7 0.087
Timber diameter m 455 0.15 0.27 0.23 0.35 0.086
Age of tree Years 455 10 34 35 60 14
Slope length m 455 1.8 21 13 180 23
Slope angle Degrees (°) 455 10 34 34 65 7.9
Altitude m 455 9 391 272 1324 273

Figure 3. Workflow for the prediction of the volume of landslides due to rainfall.

model due to non-overfitting characteristics based on the law
of large numbers (Breiman, 2001). DT regression is a pre-
dictive modeling technique in the form of a flowchart-like
tree structure that includes all possible results, output, pre-
dictor costs, and utility. DT simplifies decision-making due
to its algorithm that mimics human brain decision-making
patterns (Rathore and Kumar, 2016). The KNN technique
draws an imaginary boundary within which prediction out-
comes are allocated as the average of k-nearest-point predic-
tors, averaging their output variable (response). KNN calcu-

lates Euclidian distances to identify the similarity between
data points, and then it groups points that have smaller dis-
tances between them (Kramer and Kramer, 2013). RR is an
improved form of ordinary least squares that serves to re-
spond to cases where collinearity is found in predictor vari-
ables. The estimated coefficients of ridges are biased esti-
mators of true coefficients and are generated after adding a
penalty to the OLS model. RR always has lower variances
compared to OLS (Saleh et al., 2019). The advantage of
GLM over OLS is that the dependent variables need not fol-
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low the normal distribution. GLM is composed of random
and systematic components and the link function that links
them. In this study, GLM with a Gaussian link function was
applied. GLM is fitted using maximum likelihood estimation
(Dobson and Barnett, 2018). DNN is among the data-driven
models that have revolutionized different fields; DNN learns
via multi-processing layers and identifies intricate patterns in
the data to predict outcomes (LeCun et al., 2015). Here, the
backpropagation algorithm was used to predict the estimated
outcome. The advantage of DNN is that it can discover com-
plex structures in the data using a backpropagation algorithm
capable of changing the internal parameter (weight update).
SVM is popular for balanced predictive performance which
makes it capable of training models on small sample sizes
(Pisner and Schnyer, 2020). Subsequently, SVM has been ap-
plied in many different landslide studies (Pham et al., 2018;
Miao et al., 2018). SVM methods identify the optimal hy-
perplane in multidimensional space that separates different
groups in terms of output values. EGB is the most powerful
and a leading supervised machine learning method in solving
regression problems. It can perform parallel processing on
Windows and Linux (Chen et al., 2022). The gradient boost-
ing trains using a differentiable loss function, and the model
is fitted by minimizing the gradient. In this paper, both tra-
ditional statistical predictive models and ML models were
used. The first kind is known for high clarity and explain-
ability, and the second is famous for handling non-linearity
in features. In some cases, the performance of advanced data-
driven algorithms is almost similar (Chowdhury et al., 2023).

3.2 Feature selection and data splitting

The variable selection procedure was based on previous liter-
ature and applied in the model using the generalized variance
inflation factor (GVIF) (O’Brien, 2007) to eliminate collinear
variables. The variable with GVIF< 10 was considered non-
collinear and used in the model. Figure 4 depicts the retained
features and corresponding GVIF values. The retained fea-
tures have GVIFs of less than 10 (O’Brien, 2007). Accord-
ingly, all depicted variables were considered for the model
training. Further, to train the model, the datasets were split
randomly, with 70 % of the data for the training set and 30 %
for testing (Nguyen et al., 2021); 10-fold cross-validation
was performed to obtain an optimal model. The training and
test sets were scaled (Z score or variance stability scaling)
to solve convergence issues that are associated with running
the model without feature scaling (Singh and Singh, 2022).
To run the model on the data using driven methods that ac-
cept numerical features only, the test and training sets were
one-hot-encoded to create a feature matrix (Seger, 2018).

3.3 Model evaluation metrics

The model performance evaluation is a process of quanti-
fying the difference between the observed value not used

Figure 4. Generalized variance inflation factor (GVIF) bar plot for
features.

in the modeling process and the value predicted by the
model. Different metrics are applied depending on the type
of task, i.e., whether it is a classification or a regression prob-
lem. Subsequently, the widely used evaluation metrics for
regression models, namely R2, MAE, RMSE, MAPE, and
SMAPE, were utilized to evaluate the model performance.
The metric formulae and evaluation criteria are summarized
in Table 3.

4 Results

This section details how all analyses and model development
were performed in R using various libraries. The DNN re-
gression model was constructed using the dnn() function
from the cito library (Amesoeder et al., 2024), with two hid-
den layers of (50, 50) nodes. The model was trained for
1500 epochs (iterations), with a learning rate of 0.01 and
the MAE as the loss function. The DT regression model
was constructed with tree() function from the tree li-
brary, with the recursive-partition method. The RR model
was constructed using glmnet() from the glmnet package
(Friedman et al., 2010), with a ridge penalty (alpha= 0). The
optimal lambda was obtained by performing 10-fold cross-
validation. The EGB model was built using the xgboost()
function in the xgboost package (Chen et al., 2022). The op-
timal model was obtained at the 524th boosting iteration with
max depth= 5 and other parameters set to default. The GLM
regression model was constructed using the glm() function
(R Core Team, 2022) with the Gaussian family and log link
to constrain the model to predicting positive outcomes. KNN
regression was constructed using the knnreg() function
from the caret package (Kuhn, 2022), with the number of
neighbors, k, at 17. The OLS model was constructed with
lm() from the stats package (R Core Team, 2022). The RF
model was run using randomForest() from the random-
Forest package (Liaw and Wiener, 2002) with default param-
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Table 3. Model evaluation metrics.

Metrics Evaluation References

RMSE=

√
1
n

n∑
i=1

(
yi − ŷi

)2 – This measures the square root of the average squared
differences between predicted and actual values.
– Lower values indicate better model performance.

Hyndman and Koehler
(2006)

MAE= 1
n

n∑
i=1

∣∣yi − ŷi ∣∣ – This is the average of the absolute differences between
predicted and actual values.
– Lower values indicate better model performance.

Willmott and Matsuura
(2005)

MAPE= 100
n

n∑
i=1

∣∣∣ yi−ŷiyi

∣∣∣ – This measures the accuracy of a model as a percentage,
which can be more interpretable.
– Lower values indicate better model performance.

Armstrong (2001)

SMAPE= 100
n

n∑
i=1

|yi−ŷi |

|yi |−|ŷi |
– Unlike MAPE, which can be skewed by very small actual
values, SMAPE accounts for both the actual and the predicted
values, making it symmetric.
– SMAPE is expressed as a percentage.
– It mitigates the impact of small actual values on the error
metric, providing a more balanced assessment.
– Lower values indicate better model performance.

Hyndman and Koehler
(2006)

R2
= 1−

n∑
i=1
(yi−ŷi)

2

n∑
i=1

(yi−y)
2

– This represents the proportion of variance in the dependent
variable that can be explained by the independent variables.
– Values closer to 1 indicate a better fit.

Darlington (1990),
Chicco et al. (2021)

Note: yi and ŷi represent the actual and predicted value, and y and n stand for the mean of the actual value and number of observations in the dataset,
respectively.

eters, and the optimal model was reached at the 256th iter-
ation. The SVM regression model with a linear kernel was
built using the e1071 package (Meyer et al., 2021) and other
parameters set to default.

The predictive performance of all tested models on the
holdout dataset is depicted by the scatterplot (Fig. 5) of the
actual volume as recorded in the test set and predicted out-
come values of each model. The red line represents the per-
fect prediction. The scatterplot of actual and predicted val-
ues of tested models shows that OLS performed least well
compared to other models, with R2

= 0.2744; that is, 27 %
of variances in the model were explained by predictors. The
second-worst-performing model was RR, with R2

= 0.3034,
which is a 3.6 % improvement compared to OLS. Among
all models, three out of nine, namely OLS, SVM, and RR,
performed at below 50 %; however, these models predicted
small values of volume (below 2000 m3) well. The MAE
of these three models was higher than that of the remain-
ing six models, namely DNN, DT, GLM, KNN, RF, and
EGB. Among these last models, the best performing was
EGB, with R2

= 0.88 being the proportion of the variance
explained by predictors and MAE= 146.6 m3. The evalua-
tion metrics for the training and test models are summarized
in Table 4. Considering R2, three models, namely EGB, RF,
and DNN, had a value of R2 above 80 % on the holdout set.

Regarding the prediction on the training set, GLM had an
R2 of 83 %. Nevertheless, the prediction on the holdout set
was 51.9 %; this large variation in variance explained by pre-
dictors indicates that the GLM model did not catch all non-
linear patterns in the holdout set. Notably, the prediction dif-
ference in R2 on both the training and the test sets for the
random forest exhibited a very small difference compared
to EGB and DNN, that is, 1.75 % compared to 12.17 % and
7.72 % for DNN and EGB, respectively. Despite the stable
prediction of RF, for the performance in terms of SMAPE,
DNN gave the second-lowest symmetric mean absolute per-
centage error: 43.83 and 39.79 m3 on the training and test
sets, respectively. According to Chicco et al. (2021), R2 is
more informative in regression modeling; thus, RF had bet-
ter predictions than DNN.

To dive deep into the prediction performance of the EGB
model, we analyzed variables’ importance for the prediction
of the volume. It was observed that slope length was the pre-
dictor that contributed the most to the performance of the
EGB model, followed by maximum hourly rainfall and slope
aspect. The altitude, 3 h rainfall, slope angle, and age of tim-
ber contributed moderately to the prediction of the outcome
volumes, with gains above 0.01 and less than 0.2. The an-
tecedent rainfall from 3 d and above and continuous rainfall
made minor contributions, with a gain of less than 0.01 for
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Figure 5. Scatterplot of actual and predicted values for the nine tested models.

Table 4. Summary of prediction metrics for tested models on the training and test sets.

Metrics Models

DNN DT EGB GLM KNN OLS RF RR SVM

R2 Train 0.9309 0.4514 0.9613 0.8380 0.3470 0.3775 0.8610 0.3382 0.5510
Test 0.8092 0.5822 0.8841 0.5190 0.5587 0.2744 0.8435 0.3037 0.4970

MAE Train 132.7429 407.0814 75.1250 308.9700 410.2945 502.0053 236.9516 470.1633 276.2000
Test 209.8063 435.5836 146.6120 510.6015 443.2222 614.3769 330.4876 536.0343 376.6252

RMSE Train 348.6190 940.4850 113.4940 570.0070 1027.3730 1001.7620 574.9720 1042.9110 916.5471
Test 646.5438 1047.4880 501.8960 1055.9190 1115.5270 1234.1220 737.0857 1237.9420 1176.9410

MAPE Train 0.5240 0.7930 0.1540 76.3530 0.6280 5.2310 0.3810 1.5330 1.1588
Test 0.5623 0.8892 0.3132 1819.2220 0.6623 4.1277 0.4939 5.8428 1.0421

SMAPE Train 43.8375 79.8680 13.1780 150.4262 67.4715 103.0555 52.3359 93.4002 67.3221
Test 39.7998 81.4539 22.7237 152.4991 73.6498 106.9756 63.7582 93.9244 76.9794

each. The presence of rainwater drainage channels made a
moderate contribution, with a gain close to 0.01. On the other
hand, the contribution of soil depth and forest density in the
models was insignificant and far below 0.01. Though Fig. 2a
depicts the association between larger volumes and fire his-
tory, the variable importance indicates that this relation was
not significant. Some variables made minor contributions,

depending on the case, and the contribution of those vari-
ables may also increase depending on other regional settings.
Therefore, all variables with GVIF below 10 were kept in the
model. Figure 6 illustrates the variables’ importance for the
EGB model. The vertical red line splits landslides prediction
features into two groups, the first (to the right of the line)
containing features that contributed a gain above 0.01 and
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Figure 6. Variable importance for the EGB model.

the other (to the left of the line) containing those that made
minor contributions.

The variable importance plot depicts the overall contri-
bution of a given feature; however, it does not provide de-
tailed information. To gain more insight into the relation-
ship between the volume of landslides and predictors, sta-
tistical tests for normality, namely the Shapiro–Wilk test and
Dunn’s test, were conducted. The Shapiro–Wilk test (Dud-
ley, 2023) results revealed that the distribution of volume was
non-normal (W = 0.40642, p value< 0.001). Noting that the
volume distribution was non-normal, we opted for the non-
parametric tests, which do not rely on normality to conduct
the distance correlation (Székely et al., 2007) test (dcor) for
continuous independent features. Figure 7 illustrates that the
slope length exhibited a higher value (dcor= 0.56), followed
by continuous rainfall, altitude, and 3 h rainfall, and the val-
ues kept decreasing up to timber diameter, with a distance
correlation of 0.08. Overall, the distance correlation between
the volume of landslides shows a moderate strength of asso-
ciation between continuous predictors.

Furthermore, to test for categorical features, the Kruskal–
Wallis test (McKight and Najab, 2010) was used to check
whether the volume of the landslide was different in each
category and Dunn’s tests (Dinno, 2015) were applied to ex-
amine which categories had similar means of the volume of
landslides due to rainfall in different categories. The null
hypothesis (H0) was that the mean volume of landslides
in different categories is the same, and the alternative hy-
pothesis (H1) was that the means of landslides are differ-
ent in some categories. For the slope aspect, the second-
most-significant predictor for the EGB model according to
the results of the Kruskal–Wallis test (χ2

= 20.889, df= 7,
p value= 0.003938), showed that there is a significant differ-
ence in the median of the volume in some categories of slope
aspects. To know which classes of slope aspects had signif-
icantly different mean volumes, Dunn’s test results at the
95 % confidence interval applied to pairs (east–southwest,

east–southeast, east–south, east–northwest, and northwest–
southeast) had significantly different means of landslides’
volume (with p value< 0.05). Figure 8 shows that the south-
west and southeast aspects had a higher frequency of land-
slides.

The Kruskal–Wallis test for the difference in the mean
of drainage classes gave results of χ2

= 15.792, df= 2, and
p value= 0.000372, which shows that the means of the vol-
ume per class were different. This was clarified by Dunn’s
test results: p values were less than 0.05 in all pairwise mean
difference comparisons. The results of these tests highlighted
that drainage has a remarkable influence on the occurrence of
rainfall-induced landslides on the Korean Peninsula.

5 Discussion

Numerical models have traditionally been employed due to
their foundation in physical principles such as slope stabil-
ity and hydrological dynamics (Glade et al., 2005). These
models are valuable for understanding the underlying mech-
anisms of landslide processes but often face limitations when
applied to regions with complex or heterogeneous terrain, as
they require detailed, high-quality input data that may not al-
ways be available (Caine, 1980). In the same way, statistical
models, which use historical rainfall and landslide data to es-
tablish correlations, can offer useful predictions of VLDR in
regions with extensive historical records (Chung and Fabbri,
2003). However, these models may struggle to account for lo-
cal variations in topography or rapidly changing weather pat-
terns, limiting their general applicability. Additionally, ML
techniques have shown significant promise in improving pre-
dictive accuracy at the regional level due to the capability of
processing large diverse datasets and capturing complex non-
linear relationships that traditional models might fail to cap-
ture (Pourghasemi and Rahmati, 2018). Further, ML models
can adapt to regional variations and continuously improve
as new data are introduced, offering a more flexible and dy-
namic approach to predicting VLDR on a regional scale (Liu
et al., 2021b). Subsequently, the aim of this study was to con-
struct a data-driven algorithm that accurately predicts VLDR.
The results of nine different tested algorithms revealed a
tremendous difference between classical regression models
(OLS, RR, and GLM) and other data-driven machine learn-
ing models. In this study, apart from SVM regression, DT,
and KNN, the machine learning models (DNN, DT, RF, and
EGB) exhibited high prediction capability with R2 above
50 % (Fig. 5). The DNN, EGB, and RF models achieved
R2> 0.8 on both training and test sets, with accuracy re-
duced to R2 values of 1.75 %, 7.72 %, and 12.17 % for RF,
EGB, and DNN, respectively, on the holdout set, indicating
that the model could yield reliable volume estimates in ad-
jacent areas with similar geological and environmental con-
ditions. The random forest model performed well in predict-
ing smaller volumes; however, as the volume increased, the
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Figure 7. Distance correlation plot for the volume and continuous features.

Figure 8. The distribution of the volume of landslides due to rainfall
with respect to the slope aspect.

model underpredicted volume values. The DNN model, with
low MAE, performed quite well compared to random forest;
however, the model did not perform well on moderate vol-
ume values, resulting in reduced R2. The EGB model tested
on the South Korean landslide inventory coupled with rain-
fall data at the time of landslide events and antecedent rain-
fall within 1 month of the event exhibited more accurate pre-
dictions compared to other constructed algorithms. The dif-
ference in performance may be due to the internal structure
of each algorithm; the RF builds multiple decision trees and
averages predictions to improve accuracy (Breiman, 2001),
while EGB builds sequential trees in a recursive order, where
the newly built tree improves error that occurred while build-
ing the previous decision tree and optimizes the loss function
through a gradient descent (Chen et al., 2022).

The slope aspect played an important role in the predic-
tion of the volume, and the landslides mostly occurred in lo-

cations oriented toward the south-southwest and southeast.
This may be due to the direction taken by typhoons, which
hit the southwest versants of mountains upon landfall on the
Korean Peninsula and travel toward the northeast Pacific (Lee
et al., 2013; Ha, 2022). The findings of this research are con-
gruent with those of Lee et al. (2013), who also highlighted
that the mountain versant oriented to strong wind directions
may face more landslides. The study also highlighted that a
moderate rainwater drainage channel plays an important role
in the prevention of landslides due to its stabilizing effect.
The landslide location and pattern follow the rainfall climate
scenario, which highlighted a higher intensity of rainfall in
the northeastern region of South Korea (Lee, 2016). In ad-
dition, the findings of this study are congruent with Zhang
et al. (2019) observations that highlighted the low influence
of soil type in landslide modeling and showed that the max-
imum rainfall and cumulative 3 h of rainfall were the most
contributing rainfall types, which indicated that the shal-
low landslides of interest may have been triggered by sud-
den rainfall concentrated in a few hours before the occur-
rence of the events. The occurrence of landslides triggered
by rainfall is a complex phenomenon that involves many in-
terrelated environmental settings, human activities, geolog-
ical conditions, and climatic conditions. Moreover, the oc-
currence of typhoons is known to aggravate the landslides’
impacts on communities (Chang et al., 2008); incorporating
typhoon variables in future studies to customize regional set-
tings may improve the accuracy of models. The advantage of
this research is that the constructed model has high predic-
tive accuracy and can handle the non-linearity of predispos-
ing factors. The model came to fill the gap in a few fields
related to the prediction of the volume of landslides using
data-driven techniques. This model can serve as an effective
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tool for policymakers to incorporate landslide volume risks
into policies aimed at protecting infrastructure and residents
dwelling in landslide high-risk zones.

To understand the applicability of the developed models,
the trained model was tested using unknown data (test data),
with volume predictions generated solely based on the pre-
dictor variables; actual volume values were utilized only for
evaluating model prediction accuracy. The outcome exhib-
ited a difference in R2 on the training and holdout set of
7.72 % for the optimal model (i.e., EGB), highlighting that
the model can be applied to other regions of with similar set-
tings. It was noted that without proper model calibration with
the independent dataset, it is difficult to determine whether
these discrepancies in performance are due to model limita-
tions or data differences in different regions (Huang et al.,
2020). Therefore, future research will focus on developing
an independent database containing recent landslide geome-
try data from various regions of the Korean Peninsula to en-
hance model accuracy, along with calibrating region-specific
parameters to ensure the model’s transferability to other re-
gions.

The major limitation of this study is that the analysis
is solely focused on shallow-seated landslides, specifically
translational slope failures with volumes below 13 000 m3.
Thus, the analysis may not fully capture the variability
in landslide characteristics across different geomorphologi-
cal and geological contexts. Deep-seated landslides, for in-
stance, often exhibit distinct failure mechanisms, material
compositions, and depositional patterns that influence their
volumetric characteristics, and these were not considered in
this investigation. Similarly, debris flows, known for their
unique channelization and entrainment behaviors, were not
included, potentially limiting the applicability of the opti-
mized models to other landslide types. Further, this study was
performed using point-based landslide inventory data, which
may not capture all variability in influencing factors and their
exact state. The incorporation of high-resolution data from
remote sensing and other sources may also improve the effi-
ciency of the predictions. These limitations may impact the
broader applicability of the proposed model; however, future
studies will aim to address this by conducting separate analy-
ses for deep-seated landslides and debris flows, allowing for a
more comprehensive understanding of landslide volume pre-
dictions across diverse landslide types and geomorphological
settings.

6 Conclusions

In this paper, the aim was to construct a data-driven model
that predicts the volume of landslides due to rainfall. To
this end, nine different classical regression models and ma-
chine learning algorithms were tested on a South Korean
landslide dataset containing features of landslides that oc-
curred between 2011 and 2012. Among the tested mod-

els, the EGB model produced the most accurate predic-
tion. This is proven by the evaluation of the difference be-
tween actual and predicted values, such as R2

= 88.41 % and
MAE= 146.6120 m3 on the holdout set. The analysis of fea-
ture variables in the contribution to the prediction of the
model revealed that the slope length was the most influen-
tial predictor. The EGB model can be seen as a promising
tool for the prediction of the volume of landslides due to its
high predictive performance. The model can be customized
in different environmental settings. The model can be applied
to estimate the expected volume of landslides based on fore-
casted rainfall once the model has been well adjusted to fit
the geomorphological and environmental settings of the re-
gion of interest after re-training on the regional historical
data to include regional variability. Therefore, this model can
be a good tool for planning for resilience and infrastructure
pre-construction risk assessment to ensure that new infras-
tructure is placed in stable regions free from severe land-
slides.
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