Articles | Volume 25, issue 4
https://doi.org/10.5194/nhess-25-1331-2025
https://doi.org/10.5194/nhess-25-1331-2025
Research article
 | 
08 Apr 2025
Research article |  | 08 Apr 2025

Assessing the performance and explainability of an avalanche danger forecast model

Cristina Pérez-Guillén, Frank Techel, Michele Volpi, and Alec van Herwijnen

Related authors

Autoencoder-based feature extraction for the automatic detection of snow avalanches in seismic data
Andri Simeon, Cristina Pérez-Guillén, Michele Volpi, Christine Seupel, and Alec van Herwijnen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-76,https://doi.org/10.5194/gmd-2024-76, 2024
Revised manuscript under review for GMD
Short summary
Data-driven automated predictions of the avalanche danger level for dry-snow conditions in Switzerland
Cristina Pérez-Guillén, Frank Techel, Martin Hendrick, Michele Volpi, Alec van Herwijnen, Tasko Olevski, Guillaume Obozinski, Fernando Pérez-Cruz, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 22, 2031–2056, https://doi.org/10.5194/nhess-22-2031-2022,https://doi.org/10.5194/nhess-22-2031-2022, 2022
Short summary
On the correlation between a sub-level qualifier refining the danger level with observations and models relating to the contributing factors of avalanche danger
Frank Techel, Stephanie Mayer, Cristina Pérez-Guillén, Günter Schmudlach, and Kurt Winkler
Nat. Hazards Earth Syst. Sci., 22, 1911–1930, https://doi.org/10.5194/nhess-22-1911-2022,https://doi.org/10.5194/nhess-22-1911-2022, 2022
Short summary
Seismic location and tracking of snow avalanches and slush flows on Mt. Fuji, Japan
Cristina Pérez-Guillén, Kae Tsunematsu, Kouichi Nishimura, and Dieter Issler
Earth Surf. Dynam., 7, 989–1007, https://doi.org/10.5194/esurf-7-989-2019,https://doi.org/10.5194/esurf-7-989-2019, 2019
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Development of operational decision support tools for mechanized ski guiding using avalanche terrain modeling, GPS tracking, and machine learning
John Sykes, Pascal Haegeli, Roger Atkins, Patrick Mair, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 25, 1255–1292, https://doi.org/10.5194/nhess-25-1255-2025,https://doi.org/10.5194/nhess-25-1255-2025, 2025
Short summary
Causes, consequences and implications of the 2023 landslide-induced Lake Rasac glacial lake outburst flood (GLOF), Cordillera Huayhuash, Peru
Adam Emmer, Oscar Vilca, Cesar Salazar Checa, Sihan Li, Simon Cook, Elena Pummer, Jan Hrebrina, and Wilfried Haeberli
Nat. Hazards Earth Syst. Sci., 25, 1207–1228, https://doi.org/10.5194/nhess-25-1207-2025,https://doi.org/10.5194/nhess-25-1207-2025, 2025
Short summary
The Avalanche Terrain Exposure Scale (ATES) v.2
Grant Statham and Cam Campbell
Nat. Hazards Earth Syst. Sci., 25, 1113–1137, https://doi.org/10.5194/nhess-25-1113-2025,https://doi.org/10.5194/nhess-25-1113-2025, 2025
Short summary
Review article: A scoping review of human factors in avalanche decision-making
Audun Hetland, Rebecca A. Hetland, Tarjei Tveito Skille, and Andrea Mannberg
Nat. Hazards Earth Syst. Sci., 25, 929–948, https://doi.org/10.5194/nhess-25-929-2025,https://doi.org/10.5194/nhess-25-929-2025, 2025
Short summary
A quantitative module of avalanche hazard – comparing forecaster assessments of storm and persistent slab avalanche problems with information derived from distributed snowpack simulations
Florian Herla, Pascal Haegeli, Simon Horton, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 25, 625–646, https://doi.org/10.5194/nhess-25-625-2025,https://doi.org/10.5194/nhess-25-625-2025, 2025
Short summary

Cited articles

Ancey, C., Gervasoni, C., and Meunier, M.: Computing extreme avalanches, Cold Reg. Sci. Technol., 39, 161–180, https://doi.org/10.1016/j.coldregions.2004.04.004, 2004. a
Badoux, A., Andres, N., Techel, F., and Hegg, C.: Natural hazard fatalities in Switzerland from 1946 to 2015, Nat. Hazards Earth Syst. Sci., 16, 2747–2768, https://doi.org/10.5194/nhess-16-2747-2016, 2016. a
Birkeland, K. W., van Herwijnen, A., Reuter, B., and Bergfeld, B.: Temporal changes in the mechanical properties of snow related to crack propagation after loading, Cold Reg. Sci. Technol., 159, 142–152, https://doi.org/10.1016/j.coldregions.2018.11.007, 2019. a
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. a
Bründl, M., Etter, H.-J., Steiniger, M., Klingler, Ch., Rhyner, J., and Ammann, W. J.: IFKIS – a basis for managing avalanche risk in settlements and on roads in Switzerland, Nat. Hazards Earth Syst. Sci., 4, 257–262, https://doi.org/10.5194/nhess-4-257-2004, 2004. a
Short summary
This study assesses the performance and explainability of a random-forest classifier for predicting dry-snow avalanche danger levels during initial live testing. The model achieved ∼ 70 % agreement with human forecasts, performing equally well in nowcast and forecast modes, while capturing the temporal dynamics of avalanche forecasting. The explainability approach enhances the transparency of the model's decision-making process, providing a valuable tool for operational avalanche forecasting.
Share
Altmetrics
Final-revised paper
Preprint