Articles | Volume 24, issue 3
https://doi.org/10.5194/nhess-24-947-2024
https://doi.org/10.5194/nhess-24-947-2024
Research article
 | 
20 Mar 2024
Research article |  | 20 Mar 2024

Automated Avalanche Terrain Exposure Scale (ATES) mapping – local validation and optimization in western Canada

John Sykes, Håvard Toft, Pascal Haegeli, and Grant Statham

Related authors

Development of operational decision support tools for mechanized ski guiding using avalanche terrain modelling, GPS tracking, and machine learning
John Sykes, Pascal Haegeli, Roger Atkins, Patrick Mair, and Yves Bühler
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-147,https://doi.org/10.5194/nhess-2024-147, 2024
Revised manuscript accepted for NHESS
Short summary
AutoATES v2.0: Automated Avalanche Terrain Exposure Scale mapping
Håvard B. Toft, John Sykes, Andrew Schauer, Jordy Hendrikx, and Audun Hetland
Nat. Hazards Earth Syst. Sci., 24, 1779–1793, https://doi.org/10.5194/nhess-24-1779-2024,https://doi.org/10.5194/nhess-24-1779-2024, 2024
Short summary
Automated snow avalanche release area delineation in data-sparse, remote, and forested regions
John Sykes, Pascal Haegeli, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 22, 3247–3270, https://doi.org/10.5194/nhess-22-3247-2022,https://doi.org/10.5194/nhess-22-3247-2022, 2022
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Statistical calibration of probabilistic medium-range Fire Weather Index forecasts in Europe
Stephanie Bohlmann and Marko Laine
Nat. Hazards Earth Syst. Sci., 24, 4225–4235, https://doi.org/10.5194/nhess-24-4225-2024,https://doi.org/10.5194/nhess-24-4225-2024, 2024
Short summary
Glide-snow avalanches: a mechanical, threshold-based release area model
Amelie Fees, Alec van Herwijnen, Michael Lombardo, Jürg Schweizer, and Peter Lehmann
Nat. Hazards Earth Syst. Sci., 24, 3387–3400, https://doi.org/10.5194/nhess-24-3387-2024,https://doi.org/10.5194/nhess-24-3387-2024, 2024
Short summary
Improving fire severity prediction in south-eastern Australia using vegetation-specific information
Kang He, Xinyi Shen, Cory Merow, Efthymios Nikolopoulos, Rachael V. Gallagher, Feifei Yang, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 3337–3355, https://doi.org/10.5194/nhess-24-3337-2024,https://doi.org/10.5194/nhess-24-3337-2024, 2024
Short summary
Review article: A scoping review of human factors in avalanche decision-making
Audun Hetland, Rebecca Anne Hetland, Tarjei Tveito Skille, and Andrea Mannberg
EGUsphere, https://doi.org/10.5194/egusphere-2024-1628,https://doi.org/10.5194/egusphere-2024-1628, 2024
Short summary
Development of operational decision support tools for mechanized ski guiding using avalanche terrain modelling, GPS tracking, and machine learning
John Sykes, Pascal Haegeli, Roger Atkins, Patrick Mair, and Yves Bühler
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-147,https://doi.org/10.5194/nhess-2024-147, 2024
Revised manuscript accepted for NHESS
Short summary

Cited articles

Avalanche Canada: Avalanche Canada 2022 Annual Report, 38–39 pp., https://avalanche.ca/about/annual-reports (last access: 15 June 2023), 2022. 
Avalanche Canada: Trip Planner https://www.avalanche.ca/planning/trip-planner, last access: 11 May 2023. 
Bebi, P., Kulakowski, D., and Rixen, C.: Snow avalanche disturbances in forest ecosystems – State of research and implications for management, Forest Ecol. Manag., 257, 1883–1892, https://doi.org/10.1016/J.FORECO.2009.01.050, 2009. 
Bebi, P., Bast, A., Helzel, K., Schmucki, G., Brozova, N., and Bühler, Y.: Avalanche Protection Forest: From Process Knowledge to Interactive Maps, in: Protective forests as Ecosystem-based solution for Disaster Risk Reduction (ECO-DRR), IntechOpen, https://doi.org/10.5772/intechopen.99514, 2021. 
Brožová, N., Fischer, J. T., Bühler, Y., Bartelt, P., and Bebi, P.: Determining forest parameters for avalanche simulation using remote sensing data, Cold Reg. Sci. Technol., 172, 102976, https://doi.org/10.1016/j.coldregions.2019.102976, 2020. 
Short summary
The research validates and optimizes an automated approach for creating classified snow avalanche terrain maps using open-source geospatial modeling tools. Validation is based on avalanche-expert-based maps for two study areas. Our results show that automated maps have an overall accuracy equivalent to the average accuracy of three human maps. Automated mapping requires a fraction of the time and cost of traditional methods and opens the door for large-scale mapping of mountainous terrain.
Altmetrics
Final-revised paper
Preprint