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Abstract. The Avalanche Terrain Exposure Scale (ATES) is
a system for classifying mountainous terrain based on the
degree of exposure to avalanche hazard. The intent of ATES
is to improve backcountry recreationist’s ability to make in-
formed risk management decisions by simplifying their ter-
rain analysis. Access to ATES has been largely limited to
manually generated maps in high-use areas due to the cost
and time to generate ATES maps. Automated ATES (Au-
toATES) is a chain of geospatial models which provides a
path towards developing ATES maps on large spatial scales
for relatively minimal cost compared to manual maps. This
research validates and localizes AutoATES using two ATES
benchmark maps which are based on independent ATES
maps from three field experts. We compare the performance
of AutoATES in two study areas with unique snow climate
and terrain characteristics: Connaught Creek in Glacier Na-
tional Park, British Columbia, Canada, and Bow Summit in
Banff National Park, Alberta, Canada. Our results show that
AutoATES aligns with the ATES benchmark maps in 74.5 %
of the Connaught Creek study area and 84.4 % of the Bow
Summit study area. This is comparable to independently de-
veloped manual ATES maps which on average align with the
ATES benchmark maps in 76.1 % of Connaught Creek and
84.8 % of Bow Summit. We also compare a variety of DEM
types (lidar, stereo photogrammetry, Canadian National To-
pographic Database) and resolutions (5–26 m) in Connaught
Creek to investigate how input data type affects AutoATES
performance. Overall, we find that DEM resolution and type

are not strong indicators of accuracy for AutoATES, with a
map accuracy of 74.5 %± 1 % for all DEMs. This research
demonstrates the efficacy of AutoATES compared to expert
manual ATES mapping methods and provides a platform for
large-scale development of ATES maps to assist backcountry
recreationists in making more informed avalanche risk man-
agement decisions.

1 Introduction

Snow avalanches are a complex and dynamic natural hazard
in cold mountainous regions worldwide. In North America
and Europe, on average approximately 140 people are killed
by avalanches each year (Avalanche Canada, 2022; Colorado
Avalanche Information Center, 2020; Techel et al., 2016),
with most of those fatalities being individuals recreating in
mountainous terrain such as backcountry skiers or snow-
boarders, snowmobilers, mountaineers, and hikers. In most
avalanche accidents and fatalities, the victim(s) is a mem-
ber of the group that triggered the avalanche (Schweizer and
Lütschg, 2001; Jamieson et al., 2010).

Avalanche forecast centers exist in many economically de-
veloped countries to provide avalanche risk management in-
formation to the public in the interest of decreasing the rate of
avalanche accidents. Forecast centers typically provide daily
reports describing the avalanche danger level as well as de-
tailed descriptions of specific types of avalanche problems
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that could be triggered (Statham et al., 2018, 2010). How-
ever, forecast products generally do not provide information
on specific locations that are safe for the current conditions.
That decision is left to the end user, who can control their
risk exposure by choosing terrain that is more or less likely
to produce an avalanche under the current conditions.

In 2006, the Avalanche Terrain Exposure Scale (ATES)
was developed by Parks Canada to provide a systematic ap-
proach to classifying avalanche terrain and assist backcoun-
try recreationists in making appropriate and informed risk
management decisions. ATES is broken into two models: the
communication model and the technical model. The com-
munication model provides accessible and simple descrip-
tions of the ATES classes for a general audience. Each ATES
class is defined based on the slope angle, common terrain
characteristics, and level of avalanche exposure. The tech-
nical model is oriented towards avalanche professionals or
avalanche education audiences who are interested in detailed
analysis of avalanche terrain based on an extensive list of ter-
rain characteristics. The original ATES uses 11 terrain char-
acteristics to classify avalanche terrain into a three-level scale
(Statham et al., 2006). An updated version, ATESv2, uses
a simplified list of eight terrain characteristics to classify
avalanche terrain into an expanded five-level scale (Table 1)
(Statham and Campbell, 2023).

In practice, the ATES system has been used to classify
linear routes based on the highest level of avalanche ter-
rain exposure along a given route and as zonal polygons
where an entire drainage or mountain region is broken into
polygons with similar terrain characteristics and assigned an
ATES rating (Statham et al., 2006; Campbell and Marshall,
2010). Each of these use cases is relevant for different ap-
plications depending on the local terrain and the usage pat-
terns of backcountry recreationists. For example, snowmo-
bile trails, cross-country ski trails, or ice climbing routes
that travel through avalanche terrain but remain on a known
and established route are well suited to a linear ATES rat-
ing. However, activities like backcountry skiing or mountain
snowmobile riding often involve travel on less defined routes
within a drainage or valley which is better suited to zonal
ATES mapping. Examples of both linear and zonal ATES rat-
ings can be found across Canada (Avalanche Canada, 2023;
Parks Canada, 2023), in guidebooks for selected locations in
Canada and the United States, as well as in selected locations
in Europe like the Aran Valley in the Pyrenees, Jura Moun-
tains in Switzerland, and in Norway (Gavaldà et al., 2013;
Pielmeier et al., 2014; Larsen et al., 2020).

One challenge of creating ATES maps is the amount of
time and cost required for human experts to determine ATES
ratings. Efforts to develop a desktop-based ATES mapping
workflow have helped to decrease the time and cost by using
geospatial tools to create preliminary maps which are then
refined by local experts (Campbell and Gould, 2013). How-
ever, this process largely relies on manual interpretation of
geospatial data to determine ATES ratings, so costs are still

too high to create ATES ratings for large swaths of mountain-
ous terrain. Hence, the development of ATES maps has so far
been limited to high-traffic areas where the costs are justified
relative to the large number of backcountry users. However,
a fully automated approach is required to sufficiently reduce
the cost and time necessary to apply ATES on a larger scale
and make terrain ratings feasible for more areas.

Automated ATES (AutoATES v1.0) was originally devel-
oped by Larsen et al. (2020) using Geographic Information
System (GIS) modeling to classify terrain into ATES ratings
based on terrain characteristics including slope angle, loca-
tion of avalanche release areas, and avalanche runout dis-
tance. This research showed the ability of AutoATES v1.0
to capture the critical terrain features that are incorporated in
manual ATES ratings and highlighted some differences in the
scale and resolution of human versus automated maps. The
ability to process AutoATES v1.0 for the entire mountain-
ous area of Norway (365 246 km2) demonstrated vastly im-
proved cost effectiveness for large-scale mapping compared
to manual methods, which warrants continued development
and validation of the model.

To utilize its full potential, AutoATES needs to be able to
generate ATES ratings for any mountainous region world-
wide using locally available input datasets. Some key chal-
lenges are evaluating the impact of different snow climates
(Mock and Birkeland, 2000) and determining how differ-
ent types of DEM and forest input data affect the output
of AutoATES (Bühler et al., 2011). Regional differences in
snow climate impact typical avalanche types (Haegeli and
McClung, 2007) and how snow cover alters the shape of
the landscape (Veitinger et al., 2014), which have implica-
tions for identifying avalanche release areas and simulating
avalanche runout. High-quality validation data are critical
for testing AutoATES in different snow climates and with
different input datasets. Despite fundamental differences in
how automated versus manual methods generate ATES rat-
ings, manual maps created by local experts are the best avail-
able dataset for AutoATES validation. Further, the potential
to localize AutoATES maps based on expert-derived man-
ual maps by fine tuning input parameters for specific regions
can improve their performance beyond what is possible using
theoretically derived input parameters.

This article presents an approach for localizing and vali-
dating AutoATES based on comparison with manual ATES
maps and tests the impact of different types of DEM data on
the performance of AutoATES, which is part of a broader ef-
fort to update standards for ATES mapping. While detailed
information on the development of the ATESv2 classifica-
tion system can be found in Statham and Campbell (2023),
we use a grid search method (Bühler et al., 2018) to optimize
the AutoATES input parameters for our study areas using
manual ATES maps to assess accuracy. Our study areas are
located in mountain ranges with distinct snow and avalanche
climates, enabling comparison of optimal input parameters
for different regions.
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Table 1. ATESv2 technical model from Statham and Campbell (2023). Criteria highlighted in bold indicate default values that automatically
place the ATES rating into that category or higher.

2 Methods

2.1 Study areas and input data

To validate and optimize the AutoATES model, we selected
two test sites in mountain ranges with distinct avalanche and
topographic characteristics in western Canada (Figs. 1 and
2). Utilizing multiple test sites provides the opportunity to
compare the optimal input parameters for different areas. The
availability of input data varies by region, which is a critical
consideration when applying the AutoATES model.

2.1.1 Connaught Creek, Glacier National Park, British
Columbia

Connaught Creek (Fig. 1) is located at the summit of Rogers
Pass in the Selkirk Mountains, British Columbia, within the
boundaries of Glacier National Park. Elevations in the study
area range from approximately 1300 to 2700 m with gen-
erally steep rocky terrain at higher elevations and densely
forested terrain at lower elevations. Connaught Creek is ex-
posed to overhead avalanche hazard from both sides of the
valley, which makes assessing avalanche terrain exposure
challenging.

The area is characterized by a transitional snow climate
with strong maritime influence (Hägeli and McClung, 2003).

The seasonal avalanche character depends on the strength of
the maritime influence. The most important types of persis-
tent weak layers are facet–crust combinations, which typi-
cally form after early season rain-on-snow events, and sur-
face hoar.

Rogers Pass has a long-standing avalanche control pro-
gram due to the presence of the Trans-Canada Highway and
the Canadian Pacific Railroad. Several high-resolution DEM
datasets have been generated for this area, which makes it
an ideal location to evaluate the impact of DEM resolu-
tion and type on the performance of the AutoATES model.
Available DEM data include a 1 m lidar digital terrain model
(DTM) based on data collected in 2015, 10 m satellite stereo
photogrammetry digital surface model (DSM) based on data
collected in 2015 and 2016, 17 m Canadian National DSM
(CDEM), and 26 m Advanced Land Observation Satellite
(ALOS) global DSM.

For forest data we used the British Columbia Vegeta-
tion Resource Inventory (BC VRI), which provides polygon-
based forest characteristic information across all of British
Columbia, Canada (Sandvoss et al., 2005). The dataset is
generated using a combination of aerial photograph interpre-
tation and local study plots to interpolate a wide range of
forest characteristics, including relevant characteristics for
capturing avalanche forest interaction such as crown cover,
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Figure 1. Connaught Creek study area. Inset map shows location of Glacier National Park. (a) Greater area of Glacier National Park, British
Columbia, Canada. (b) Connaught Creek in a 3D view and overview photo.

stem density, and basal area (Bebi et al., 2009; Viglietti
et al., 2010). We extracted the forest characteristics crown
cover, stem density, and basal area from the BC VRI dataset
and converted them to raster layers with the same resolution
and alignment as the input DEM. We also used the British
Columbia Land Cover Classification Scheme to create a bi-
nary raster of forest extent based on the BC VRI dataset
(Ministry of Sustainable Resource Management, 2002).

2.1.2 Bow Summit, Banff National Park, Alberta

Bow Summit (Fig. 2) is a popular backcountry recreation
site located in Banff National Park in the Rocky Mountains
of Alberta, Canada. Elevations range from approximately
1900 to 2800 m, with a steep alpine ridge running along the
western study area boundary which gradually transitions into
lower-angle forested terrain at lower elevations with several
large avalanche paths descending into treeline. Compared to
Connaught Creek, this study area does not have overlapping
avalanche paths from opposite sides of the valley and there-
fore the overhead exposure is more well-defined.

The snow climate in Bow Summit is continental, which is
typical of the Canadian Rocky Mountains and generally char-
acterized by cold temperatures, lower overall snow depth,
and presence of persistent weak layers (Haegeli and Mc-
Clung, 2007). Deep persistent slab avalanche problems are
more prevalent in the Canadian Rockies than other moun-
tain ranges in western Canada, with the most common weak

layer types being early-season faceted layers and depth hoar
(Shandro and Haegeli, 2018).

There is a notable lack of freely available high-resolution
DEM data in Bow Summit, with the 26 m ALOS DSM being
the best data that we could locate. While the ALOS DSM is
not the optimal input dataset for capturing high-precision ter-
rain characteristics, it has the benefit of being freely available
worldwide and having relatively high accuracy compared to
other low-resolution global DEMs (Kramm and Hoffmeister,
2019).

For forest data we use the Banff National Park vegetation
resource inventory (Parks VRI), which was generated based
on the methods of the BC VRI dataset. We extracted the same
forest variables from the Parks VRI (forest extent, crown
cover, stem density, basal area) to characterize forested ar-
eas in Bow Summit.

2.2 AutoATES

The basic processing steps of the AutoATES model are
(1) potential avalanche release area (PRA) modeling,
(2) avalanche runout simulation, and (3) ATES classification
(Fig. 3). This article is focused on optimization of step 3, the
ATES classification, based on local validation data (Fig. 3,
step 3). This section will provide a brief overview of the en-
tire AutoATES model as applied in our study areas with a
more detailed description of the ATES classification step. See
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Figure 2. Bow Summit study area. Inset map shows location of Banff National Park. (a) The greater area of Banff National Park, Alberta,
Canada. (b) Bow Summit in a 3D view and overview photo of central portion of study area.

Toft et al. (2023) for a more detailed description of the pro-
cessing methods and development of AutoATESv2.0 model.

2.2.1 Potential avalanche release area model

The PRA model is adapted from Veitinger et al. (2016) with
updates to include forest density based on the prior research
of Sharp et al. (2018). The output of the PRA model is a
continuous raster with values ranging from 0 to 1 indicat-
ing the likelihood of each pixel being an avalanche release
area. To utilize the PRA output to define the spatial extent
of avalanche release areas in the runout simulation, we cre-
ated a binary PRA raster using a cutoff threshold of 0.15.
This PRA cutoff parameter can be tuned based on the desired
avalanche frequency scenario and local forest character (Toft
et al., 2023). We did not include the PRA threshold in our
grid search to optimize the ATES classification because run-
ning the subsequent avalanche runout simulations repeatedly
requires extensive computer processing time.

2.2.2 Avalanche runout simulation

Capturing overhead exposure and avalanche runout in the
AutoATES model relies on the Flow-Py avalanche simula-
tion software developed by D’amboise et al. (2022). Based
on recommendations from the developers, input from Parks
Canada avalanche experts, and local testing, we use the fol-
lowing input settings to run Flow-Py: maximum alpha angle
24°, exponent 8, flux threshold 0.003, and max zδ 270. To
capture the interaction of forests and avalanche runout, we
used the “forest_detrainment” branch of the Flow-Py GitHub
repository. This version of Flow-Py includes functions to ac-

count for forest friction and detrainment of snow in forested
terrain (Neuhauser et al., 2020). To apply this version of
Flow-Py the basal area raster was scaled to the range of 0
to 1 to represent forest density.

2.2.3 AutoATES classifier

The final step in the AutoATES modeling chain is to pro-
duce the ATES classification. Currently, AutoATES does not
include non-avalanche terrain (class 0) due to the high level
of certainty required for assigning this class and the associ-
ated implications for risk management decisions. AutoATES
classification can be broken down into three distinct steps:
(1) initial classification based on slope angle, alpha angle,
and overhead exposure parameters; (2) updating the ATES
classification based on forest density, forest extent, and PRA
extent; and (3) removing small islands of cells.

In the first step of the ATES classification, we produce
three separate raster layers with ATES ratings solely based on
the slope angle, alpha angle, and overhead exposure rasters.
The ATES ratings of these layers are determined by the
slope angle thresholds (SAT12, SAT23, SAT34), alpha angle
thresholds (AAT12, AAT23), and overhead exposure thresh-
olds (OE12, OE23) that separate the different classes. For
each pixel, we take the maximum rating of these three rasters
to determine the initial ATES rating (classes 1–4).

Once the initial ATES classification is completed, we use
the forest density and PRA extent rasters to update the ATES
ratings. Using the initial ATES classification (1–4), forest
density (10–40), and the binary PRA (no or yes), we create a
reclassification scheme with unique values for each combina-
tion of ATES rating, forest density, and PRA value (Table 2).
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Figure 3. Automated ATES processing and validation workflow.

Due to low spatial resolution of the BC VRI basal area forest
dataset near the treeline, we used an additional forest dataset,
based on the BC Land Cover Classification Scheme level-4
vegetation type (Ministry of Sustainable Resource Manage-
ment, 2002), to create a binary forest extent layer in order
to convert pixels that were initially classified as extreme (4)
to complex (3). This helps improve the classification accu-
racy of extreme (4) terrain and aligns with the definition of
extreme terrain as having “few or no trees” in ATESv2 (Ta-
ble 1). This step was added to specifically address limitations
with VRI basal area data and is optional for other regions de-
pending on the quality of the forest input data.

The final step in producing the ATES classification is to
remove isolated islands of pixels smaller than the island fil-
ter size. This helps simplify and smooth the output of Au-
toATES and bridge the scale mismatch between human and
automated maps by removing features that would be unlikely
to be included in manual ATES maps. For more details on all
AutoATESv2.0 processing steps, see Toft et al. (2023).

2.3 Approach to localization

Prior versions of AutoATES relied on theoretical thresh-
olds from avalanche literature (Campbell and Gould, 2013;
Schweizer and Lütschg, 2001; McClung and Schaerer, 2023;
Lied and Bakkehøi, 1980) to determine the slope angle and
alpha angle input parameter values. This approach assumes
that real-world values captured in the literature are accu-
rately reflected in the DEM data used as input for AutoATES.
However, DEMs are a model of real-world terrain and there-
fore offer an imperfect representation of the real-world ter-
rain characteristics (Fisher and Tate, 2006). Lower-resolution

DEM data are especially prone to smoothing terrain features
and underestimating slope angles due to the larger area re-
quired to calculate derivatives, such as slope angle and cur-
vature (Hengl and Evans, 2009). For this reason, the direct
application of theoretical thresholds from avalanche litera-
ture as input parameters for a DEM-based model can lead to
systematic errors.

As an alternative approach, we used high-quality human-
generated ATES maps to determine the optimal input param-
eters for automated ATES mapping. This reverse engineering
approach uses a grid search method to test a wide range of
possible input parameter values and determines the optimal
values by quantifying accuracy based on the human ATES
maps. The resulting AutoATES model captures some of the
local knowledge and experience of human mappers in deter-
mining the optimal settings while having the additional ben-
efit of being transparent, replicable, and efficient for large-
scale mapping.

2.3.1 Reverse engineering with human ATES maps

To generate a validation dataset for this research, we collab-
orated with three avalanche experts from Avalanche Canada
and Parks Canada. The three mappers first produced their
own independent ATES maps manually and then collabo-
rated as a group to reach consensus on the most accurate
map (Figs. 4 and 5). For a more complete discussion of the
methods for generating manual ATES maps, see Statham and
Campbell (2023).

The three individual ATES maps used to generate the
benchmark map had substantial differences based on the in-
terpretation of the mapper. These differences highlight the
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Table 2. Forest density reclassification table. Italics indicate values that are reclassified based on forest density and PRA value (adapted from
Toft et al., 2023).

Initial ATES rating

Forest density PRA extent Simple (class 1) Challenging (class 2) Complex (class 3) Extreme (class 4)

Open (10) No (0) Class 1 Class 2 Class 3 Class 4
Yes (100) Class 1 Class 2 Class 3 Class 4

Sparse (20) No (0) Class 1 Class 1 Class 2 Class 3
Yes (100) Class 1 Class 1 Class 2 Class 3

Moderate (30) No (0) Class 1 Class 1 Class 1 Class 3
Yes (100) Class 1 Class 1 Class 2 Class 3

Dense (40) No (0) Class 1 Class 1 Class 1 Class 2
Yes (100) Class 1 Class 1 Class 2 Class 2

Figure 4. Connaught Creek study area (12.2 km2) ATES benchmark map and individual human maps used to generate the validation dataset.
Note that non-avalanche terrain shown here was considered simple terrain for validation.

subjectivity in manual ATES mapping and the challenge of
having multiple individuals produce consistent ATES maps.
The ATES benchmark maps help to reduce subjectivity and
provide an ideal validation dataset for localizing and validat-
ing the AutoATES model.

2.3.2 Grid search

Building on existing avalanche terrain model research (Büh-
ler et al., 2018; Sykes et al., 2022), we used a grid search ap-
proach to test a wide range of possible parameter values for
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Figure 5. Bow Summit study area (8.3 km2) ATES benchmark map and individual human maps used to generate the validation dataset. Note
that non-avalanche terrain shown here was considered simple terrain for validation.

AutoATES. The grid search method uses a set of user-defined
default input parameters as a baseline and iterates over one
input parameter at a time based on a list of candidate values
for each parameter (Table 4). The baseline parameters are
then sequentially updated based on the grid search results
until the optimal values are reached (Fig. 3). To update the
baseline parameters, we started with slope angle thresholds,
window size, alpha angle thresholds, forest density thresh-
olds, overhead exposure, and then island filter size. After se-
lecting an updated parameter value, we rerun the grid search
before moving to the next parameter.

We use a multi-class confusion matrix (Table 3) with the
AutoATES output as the predicted values and the rasterized
ATES benchmark map as the ground truth values using the
Python package scikit-learn (Pedregosa et al., 2011) to deter-
mine the accuracy of each grid search iteration. Based on
the confusion matrix we summarize the accuracy of each
grid search iteration based on the percent of all pixels ac-
curately predicted, the percent of pixels accurately predicted
for each ATES class, and the percent of all pixels underpre-
dicted (type I errors) and overpredicted (type II errors). We
also calculated the macro-averaged F1 score, precision, and
recall, which provide a more nuanced representation of the
performance of the classification model compared to over-
all accuracy and allow for comparison to other modeling do-
mains.

We considered both the accuracy statistics from the confu-
sion matrix and visualized the AutoATES output on a map as
a larger-scale quality control measure to select the optimal in-
put parameters. We focus on underestimated pixels instead of
overestimated pixels because misclassification into a lower

ATES class is a more severe type of error. In cases where the
grid search was inconclusive, we chose the best input param-
eter based on discussions with local avalanche experts from
Parks Canada and by comparing the input parameter values
between our two study areas.

To provide some context for the AutoATES accuracy
scores, we compared the three manual ATES maps that were
used to create the ATES benchmark map to the final version
of the ATES benchmark map. All non-avalanche (0) pixels in
the manual maps and benchmark map were converted to sim-
ple (1) to facilitate direct comparisons between AutoATES
and the human maps, because AutoATES currently does not
include non-avalanche (0) terrain. We then used a confusion
matrix to calculate the overall accuracy, and the percent of
pixels accurately predicted for each ATES class.

2.4 DEM sensitivity analysis

The Connaught Creek study area provides an ideal location
to examine the effect of different DEM resolutions on our
approach to localize AutoATES because it has a variety of
DEM data available. For this research we tested a 5 m lidar
DTM, 10 m satellite stereo DSM, 17 m national topographic
survey-based DSM, and a 26 m free global satellite stereo
DSM (Fig. 6). The exact resolutions we report are based on
the cell sizes after reprojecting the raw geographic coordinate
system DEM data into a UTM coordinate system and may
vary depending on latitude. We upsampled the lidar DTM
from 1 to 5 m for better computational efficiency and based
on prior research demonstrating that a 5 m DEM is sufficient
for high-resolution avalanche terrain modeling (Bühler et al.,
2011, 2013).

Nat. Hazards Earth Syst. Sci., 24, 947–971, 2024 https://doi.org/10.5194/nhess-24-947-2024
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Table 3. Confusion matrix example from grid search accuracy assessment in Bow Summit. Cells below the diagonal indicate underprediction
errors (Type I), and cells above the diagonal indicate overprediction errors (Type II).

AutoATES

n= 12 462 Simple (1) Challenging (2) Complex (3) Extreme (4)

ATES benchmark Simple (1) 6698 (96.6 %) 208 (3.0 %) 25 (0.4 %) 0
Challenging (2) 579 (27.5 %) 1261 (59.9 %) 266 (12.6 %) 0
Complex (3) 6 (0.2 %) 460 (17.9 %) 1947 (75.6 %) 163 (6.3 %)
Extreme (4) 0 1 (0.1 %) 236 (27.8 %) 612 (72.1 %)

Figure 6. Slope angle rasters from the lidar DTM (a), satellite stereo DSM (b), Canadian national DSM (c), and ALOS DSM (d). The wide
variety of DEM data illustrate the smoothing effect of lower-resolution input data.

Because the extent of the lidar DTM did not cover the en-
tire area of the Connaught Creek ATES benchmark map, we
clipped an area of 0.14 km2 from each of the DEM datasets
to provide a consistent comparison. We adjusted the wind-
shelter radius input parameter of the PRA model based on
the resolution of each DEM and otherwise used the same in-
put parameters for the PRA model and Flow-Py for all DEM
datasets (Toft et al., 2023). To determine the optimal input
parameters for each DEM, we applied the same grid search
process described previously.

3 Results

3.1 Localization of parameters

To determine the optimal input parameters for AutoATES,
we performed a grid search using the ALOS 26 m satellite
stereo DSM, which is the best available DEM that covers
both our Connaught Creek and Bow Summit study areas. Out
of the 12 AutoATES input parameters, 5 had identical values

between Bow Summit and Connaught Creek (AAT12, OE23,
TREE12, TREE23, ISL_SIZE) (Table 4). Of the remaining
seven parameters, six had values that differed by only one
step in our grid search. The only parameter with a differ-
ence greater than 1 step on the grid search is the overhead
exposure threshold between challenging (2) and complex (3)
terrain (OE23).

3.1.1 Slope angle

Adjusting the slope angle parameters (SAT12, SAT23,
SAT34, WIN_SIZE) has the largest overall impact on the
output of AutoATES as indicated by the charts in the pan-
els in the top row of Figs. 7 and 8. For the slope angle
threshold between simple (1) and challenging (2) (SAT12),
we chose to limit the optimized value to 18° despite the grid
search indicating that a lower value would improve the ac-
curacy of challenging (2) terrain (Figs. 7 and 8). We made
this choice because simple (1) terrain is defined as having
slope angles less than 20° with steeper areas of dense forest

https://doi.org/10.5194/nhess-24-947-2024 Nat. Hazards Earth Syst. Sci., 24, 947–971, 2024
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Table 4. Optimized AutoATES input parameters based on the ALOS DEM for the Bow Summit and Connaught Creek study areas.

Input Input Range Iterations Connaught Bow
raster parameter tested Creek Summit

Slope angle threshold SAT12 15–30° 16 18° 19°
SAT23 30–40° 11 29° 28°
SAT34 35–50° 16 39° 40°
WIN_SIZE 1–50 18 3 1

Alpha angle threshold AAT12 20–28° 9 24° 24°
AAT23 28–36° 9 34° 33°

Overhead exposure OE12 0–50 13 5 5
OE23 10–75 14 25 40

Forest density TREE01 5–50 10 5 10
TREE12 10–65 12 20 20
TREE23 25–80 12 25 25

Island filter size ISL_SIZE 5000–50 000 m2 10 30 000 m2 30 000 m2

(Statham and Campbell, 2023), but allowing AutoATES to
decrease the value to 18° allows us to account for the effects
of DEM smoothing. Lower SAT12 values cause non-forested
alpine terrain with low avalanche exposure to be systemati-
cally overpredicted by AutoATES. We believe this type of
terrain is underrepresented in our two study areas and there-
fore not illustrated in our grid search results.

Our selection of the SAT23 and SAT34 parameters was
primarily driven by slight spikes in overall accuracy for the
respective values of Bow Summit and Connaught Creek.
We also preferred parameter values that increased the accu-
racy of challenging (2) terrain, since it has by far the low-
est accuracy of the ATES classes. The goal of including the
WIN_SIZE input parameter is to filter out small steep ter-
rain features that may have locally steep slope angles, but the
overall terrain feature is not large enough to constitute an ex-
treme (4) rating. For Connaught Creek there was a notable
increase in overall accuracy when WIN_SIZE was set to 3
due to subtle increases in accuracy for simple (1), challeng-
ing (2), and complex (3) despite a decrease in accuracy for
extreme (4).

3.1.2 Alpha angle

The impact of alpha angle on the output of AutoATES is
less significant than slope angle, which can be seen in the
lack of variation in overall accuracy and ATES class accuracy
across the range of grid search values for AAT12 and AAT23
(Figs. 7 and 8). This is especially true for AAT12, which
has a minor impact on accuracy of challenging (2) terrain
for Connaught Creek and Bow Summit. This behavior is an
artifact of our grid search procedure only varying one input
parameter at a time and keeping all others constant. For chal-
lenging (2) terrain the spatial extent is similar for alpha angle
and overhead exposure. Therefore, the impact of changes in

the alpha angle threshold is muted by the overhead exposure
parameters (OE12, OE23) remaining the same.

The alpha angle threshold between challenging (2) and
complex (3) (AAT23) terrain has more variation across the
range of grid search values (Figs. 7 and 8). In both Connaught
Creek and Bow Summit, we set AAT23 to improve the accu-
racy of challenging (2) terrain without significant negative
impacts on the overall accuracy or percent of underpredicted
pixels. However, there is a proportional decrease in the accu-
racy of complex (3) terrain.

3.1.3 Overhead exposure

Based on the grid search we see no variation in over-
all accuracy, ATES class accuracy, or percent of underpre-
dicted pixels to determine the optimal threshold between
simple (1) and challenging (2) terrain for overhead exposure
(OE12). Therefore, we turned to the definitions of ATESv2
for guidance (Statham and Campbell, 2023). Simple (1) ter-
rain is defined as having runout zones with well-defined path
boundaries where deposits fan out, crossing low-frequency
runout zones, and minimal exposure crossing runouts. There-
fore, we decided to set OE12 to 5 out of a possible maximum
of 100. This means that overhead exposure could exist, but
the average flow velocity and number of overhead start zones
that could impact a given pixel are only 5 % of the possible
maximum for a given study area.

For the overhead exposure threshold between challenging
(2) and complex (3) terrain, the grid search illustrates an in-
crease in overall accuracy at the respective values for each
study area (Figs. 7 and 8). We also used this parameter as an-
other tool to improve accuracy of challenging (2) terrain but
were conscious of the coincident sharp increase in underpre-
dicted pixels, which prevented us from increasing the value
any further for both study areas.
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Figure 7. Results of the grid search procedure for the Connaught Creek study area. To select optimal parameter values, we considered overall
accuracy, percent underpredicted, and balanced accuracy across ATES classes.

3.1.4 Forest density thresholds

The grid search provided more definitive results to set the op-
timal input parameters for forest density in Connaught Creek
versus Bow Summit. We see higher values of overall ac-
curacy and increased accuracy in challenging (2) terrain at
each of the optimized parameters of TREE01, TREE12, and
TREE23 in Connaught Creek. For Bow Summit we altered
the value of TREE01 to 10 m2 per hectare based on higher
overall accuracy and challenging (2) terrain accuracy. The
overall lack of variability in the TREE12 and TREE23 pa-
rameters is mostly due to the spatial resolution of the input
dataset. The forest data were generated as polygons delin-
eated from aerial photograph interpretation with single val-
ues for each attribute assigned for each polygon. This results
in a raster layer with limited small-scale variability.

3.1.5 Island filter size

Filtering out groups of pixels below the island filter size is
beneficial for improving the accuracy of challenging (2) and
complex (3) terrain in both study areas. In Bow Summit, it is
also beneficial for improving the accuracy of extreme (4) ter-
rain. In both study areas there is a negligible effect on simple
(1) terrain. This is due to the fact that most of the small poly-
gons in the ATES Benchmark map are in simple (1) terrain,
which are delineated by small clusters of dense forest. The
fact that the island filter improves the accuracy of AutoATES
is likely due to our use of manual ATES maps as a validation
dataset. It is not practical, or the intent of the ATESv2.0 defi-
nitions, to evaluate terrain characteristics on a pixel-by-pixel
basis when generating manual ATES maps, and therefore a
certain degree of smoothing is implicit to the manual map-
ping process.
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Figure 8. Results of the grid search procedure for the Bow Summit study area. To select optimal parameter values, we considered overall
accuracy, percent underpredicted, and balanced accuracy across ATES classes.

3.2 Accuracy of localized models

The overall accuracy of AutoATES compared to the ATES
benchmark maps is 75.1 % for Connaught Creek (Fig. 9, Ta-
ble 7) and 84.4 % for Bow Summit (Fig. 10, Table 7) using
the ALOS DSM for both study areas. There is substantial
variation in accuracy across the ATES classes for both study
areas. Simple (1) terrain has the highest accuracy rating in
Bow Summit (96.6 %) and the second highest accuracy rat-
ing for Connaught Creek (80.0 %) (Table 5). In Connaught
Creek 20 % of simple (1) terrain is overpredicted by Au-
toATES, with 15.5 % of those pixels predicted as challenging
(2) and 4.5 % predicted as complex (3). The 4.5 % of pixels
overpredicted by two classes is primarily due to overestimat-
ing runout distance and overhead exposure near the mouth of
Connaught Creek at the bottom of the map in Fig. 9.

Challenging (2) terrain has the lowest accuracy in both
study areas (Table 5) and a relatively large proportion of
underpredicted pixels. Examples of underprediction due to

forest extent exist in the central portion of the Connaught
Creek map, where the patches of simple (1) terrain in the
AutoATES map are much larger than the ATES benchmark
map, and in the estimation of treeline in the center right por-
tion of the Bow Summit AutoATES map, where simple (1)
terrain extends too far upslope compared to the ATES bench-
mark map. In addition, simple terrain was identified in alpine
areas of Connaught Creek, such as the bottom right of the
AutoATES map, which was not captured by the ATES bench-
mark maps.

Complex (3) terrain is the second most accurate class in
Bow Summit and the most accurate in Connaught Creek. The
rate of underpredicted pixels is much higher in Bow Summit,
with 18.1 % of complex (3) terrain being predicted as chal-
lenging (2) (17.9 %) or simple (1) (0.2 %). The majority of
these underpredicted pixels are due to differences in the esti-
mation of runout or overhead exposure. For example, in the
left center portion of Fig. 10, two lobes of complex terrain
extend further downslope in the ATES benchmark map.
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Figure 9. Automated ATES output from grid search procedure in Connaught Creek study area (a) and ATES benchmark map used for
validation (b).

Figure 10. Automated ATES output from grid search procedure in Bow Summit study area (a) and ATES benchmark map used for valida-
tion (b).
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Table 5. AutoATES accuracy and percentage of under- and over-
classified pixels by ATES class compared to ATES benchmark
maps.

ATES Bow Connaught
class Summit Creek

Simple (1) Accuracy 96.6 80.0
Under n/a n/a
Over 3.4 20.0

Challenging (2) Accuracy 59.9 52.8
Under 27.5 20.6
Over 12.6 26.6

Complex (3) Accuracy 75.6 88.1
Under 18.1 8.3
Over 6.3 3.6

Extreme (4) Accuracy 72.1 63.9
Under 27.9 36.1
Over n/a n/a

n/a: not applicable

Extreme (4) terrain has the second-worst accuracy for both
Connaught Creek and Bow Summit and the highest rate of
underpredicted pixels for both study areas. In both cases the
majority of the underestimated area is localized to a single
portion of the map which has relatively lower slope angle val-
ues compared to the rest of the extreme (4) terrain. In Con-
naught Creek the underpredicted area is in the lower right
of the ATES benchmark map where extreme terrain extends
much further downslope (Fig. 9). In Bow Summit there is
an area of extreme (4) terrain in the top center of the ATES
benchmark map that is connected to the large cliff section
below which is not connected in the AutoATES map.

3.2.1 Comparison to manual ATES maps

To get a sense of the overall skill of the AutoATES model, we
compare the accuracy metrics to the performance of the three
manual ATES maps used to generate the ATES benchmark
map. For both Connaught Creek and Bow Summit, the over-
all accuracy, precision, recall, and F1 macro of AutoATES
fall within the range of the three manual maps (Table 6). The
average overall accuracy of the manual maps is 84.8 % for
Bow Summit and 76.1 % for Connaught Creek compared to
84.4 % and 75.1 % for AutoATES.

Taking a closer look at accuracy scores by ATES class,
we can see that in simple (1) terrain the manual maps and
AutoATES performed better in Bow Summit compared to
Connaught Creek (Fig. 11). In challenging (2) terrain, Au-
toATES was relatively consistent in the two study areas,
while the manual maps had higher average accuracy in Con-
naught Creek versus Bow Summit. In complex (3) terrain,
AutoATES performed better in Connaught Creek, while the
manual maps have a similar average accuracy between the

two study areas. In extreme (4) terrain, the manual maps gen-
erally performed better than AutoATES with higher average
accuracy in both study areas.

3.3 Effect of DEM resolution

Our DEM sensitivity analysis revealed that the resolution and
type of input DEM does not have a large impact on the over-
all accuracy of the AutoATES model (Fig. 12). The overall
accuracies are all within 1.2 percentage points of one another
(Table 7), which is a negligible difference given the dramatic
variation in accuracy and precision between the DEM in-
puts. The grid search plots for each DEM, which illustrate
the change in accuracy across a range of possible input val-
ues, are included in Appendix A.

The accuracy scores are very similar between all DEM in-
put datasets for simple (1) and challenging (2) terrain (Ta-
ble 7). This is at least partially due to the forest input data re-
maining the same across all DEM versions and therefore lim-
iting the impact of higher-resolution terrain data in forested
areas. The lowest-resolution ALOS DSM had the highest ac-
curacy for complex (3) terrain, 2.4 %–6.1 % higher than the
other DEM input data. Differences in the lateral spreading
of the runout model due to DEM resolution and lower rates
of overprediction in extreme (4) terrain are mostly respon-
sible for the improved performance in complex (3) terrain.
The higher-resolution DEM data generally performed better
in extreme (4) terrain with increases of 4.7 %–14.4 % com-
pared to the ALOS DSM. However, since there is less to-
tal area of extreme (4) terrain in the ATES benchmark map
and the increased accuracy is accompanied by decreased ac-
curacy in complex (3) terrain, the overall accuracy is still
slightly lower.

The main differences in the optimized input parameter val-
ues across the DEM datasets are in the slope angle thresholds
and overhead exposure threshold (OE23) (Table 8). For the
slope angle threshold between challenging (2) and complex
(3), the lidar DTM has a higher threshold compared to the
other DEM data, which can be attributed to a lesser degree of
terrain smoothing in the higher-resolution data. Differences
in the slope angle threshold between complex (3) and ex-
treme (4) terrain are more difficult to compare directly due
to the impact of the increased window size that is used to
apply a smoothing filter to the slope angle layer before the
extreme (4) slope angle threshold is applied. We determined
the optimized values of WIN_SIZE for each DEM based on
higher values of overall accuracy in the grid search plots (Ap-
pendix A), which are caused by slight increases in accuracy
of simple (1) and complex (3) terrain. It is logical that the
window size would increase as raster resolution increases to
maintain a relatively consistent filtering effect on small ter-
rain features. The actual window sizes, accounting for DEM
resolution, are approximately 6000 m2 for the ALOS DSM,
2600 m2 for the CDEM, 17 000 m2 for the stereo DSM, and
22 500 m2 for the lidar DTM.
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Table 6. Comparison of AutoATES to manual ATES maps.

ATES map Study area Overall accuracy Precision Recall F1 macro

AutoATES Bow Summit 84.4 79.0 76.1 77.5
Connaught Creek 75.1 73.9 71.0 71.6

Map 1 Bow Summit 80.7 70.9 76.3 72.7
Connaught Creek 67.9 66.3 66.7 66.1

Map 2 Bow Summit 76.6 66.7 70.0 67.8
Connaught Creek 74.3 81.3 76.8 76.2

Map 3 Bow Summit 97.1 96.7 97.1 96.8
Connaught Creek 86.0 87.1 80.5 80.4

Figure 11. Performance of AutoATES and three human mappers compared to ATES benchmark map for Connaught Creek (a) and Bow
Summit (b) color coded by ATES class simple (green), challenging (blue), complex (black), and extreme (red) terrain.

4 Discussion

4.1 Evaluation of localized models

Our primary research objective is to evaluate the accuracy
of the AutoATES model against the standard practices of
ATES mapping in western Canada. Our reverse engineer-
ing approach produced overall accuracies of 75.1 % in Con-
naught Creek and 84.4 % in Bow Summit. In comparison,
three manually generated ATES maps created by avalanche
experts have an average accuracy of 76.1 % in Connaught
Creek and 84.8 % in Bow Summit. The similarity of the over-
all accuracy scores, as well as precision, recall, and F1 macro
performance metrics (Table 6), demonstrates that the local-
ized versions of AutoATES have comparable skill to human
mappers in generating ATES ratings. For a more detailed de-
scription of how the development of AutoATESv2.0 has con-
tributed to improved accuracy compared to the original ver-
sion of AutoATES, see Toft et al. (2023).

The large difference in accuracy scores between the two
study areas is partially due to the added complexity of the
terrain in Connaught Creek, with many smaller drainages and
bowls joining together into the main valley. This makes the
assessment of overhead exposure and delineation of bound-
aries between ATES classes more challenging. Another con-

tributing factor is the relatively large number of small simple
(1) polygons in the Connaught Creek ATES benchmark map
that are delineated based on local knowledge of forest charac-
teristics (Fig. 9). The resolution of the VRI forest data used in
this research is not sufficient to capture these features, and in
some cases the local knowledge captured in the ATES bench-
mark map differs from the basal area values. The VRI forest
data are generated based on a combination of forest sample
plots and manual interpretation of aerial imagery (Sandvoss
et al., 2005). While these methods are efficient for large-scale
mapping and gross estimation of forest characteristics, they
do not have adequate resolution in the upper treeline eleva-
tions to accurately capture the interaction of avalanches and
forest.

Accuracy for each ATES class varies by study area, but,
overall, challenging (2) terrain has the lowest accuracy and
relatively high rates of underpredicted pixels (type I error).
In the Bow Summit study area, the individual manual ATES
maps also consistently had the lowest accuracy in challeng-
ing (2) terrain, indicating that it is difficult to consistently
classify for human ATES mappers as well. Underprediction
errors are the most consequential for AutoATES due to end
users’ interpretation that the terrain is safer than what has
been determined in the ATES benchmark map. This is espe-
cially important for the delineation of simple (1) and chal-
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Table 7. DEM sensitivity analysis results.

DEM input Overall Simple (1) Challenging (2) Complex (3) Extreme (4)

ALOS 26 m 75.1 80.0 52.8 88.1 63.9
CDEM 17 m 74.8 81.2 53.2 85.7 68.6

Stereo 10 m 73.9 78.4 53.5 82.0 78.3
Lidar 5 m 74.1 80.7 53.3 82.4 76.2

Figure 12. DEM sensitivity analysis for Connaught Creek study area, showing the spatial patterns between the output have some variation
but are largely consistent despite vastly different accuracy of the input DEM data.

lenging (2) terrain because of the risk management impli-
cations of how simple terrain is interpreted and applied by
backcountry recreationists. The majority of underpredicted
pixels in challenging (2) terrain in both study areas are due
to the relatively low resolution and precision of the BC VRI
and Parks VRI forest datasets.

Extreme (4) terrain is another area where AutoATES has
high rates of underpredicted pixels and could be substantially
improved. Currently slope angle and forest extent are the
only parameters used to delineate extreme (4) terrain. One
critical element that is not currently captured in AutoATES
is terrain exposure. The consequences of falling or being
pushed off a steep slope by a small avalanche are critical con-
siderations for extreme (4) terrain, which are not captured by
the PRA or Flow-Py models.

4.1.1 Differences in localized parameters by study area

Overall, the localized input parameter settings between Bow
Summit and Connaught Creek are similar when using the
ALOS DSM. Out of 12 input parameters, 5 have the same
optimized values for both study areas, 6 differ by only one
step in the grid search method, and 1 differs by more than
one step in the grid search. For the parameters that differ be-
tween the two study areas, the differences are mostly driven
by the goal of improving performance in challenging (2) ter-
rain. The two input parameters with the most impact on the
accuracy of challenging (2) terrain are OE23 and TREE01
(Figs. 7 and 8).

For Bow Summit, lowering the OE23 value to match Con-
naught Creek would result in a steep decline in accuracy of

challenging (2) terrain and a decrease in overall accuracy of
roughly 4 % (Fig. 7). For Connaught Creek, increasing the
value of OE23 to match Bow Summit would result in a dra-
matic increase in the rate of underpredicted pixels (Fig. 8).
These localized differences in parameter settings are due to
multiple factors including differences in the range of possible
overhead exposure values between the two study areas and
the potential for slight differences in how the ATES bench-
mark maps classify challenging terrain in the two study areas.

Overhead exposure is calculated as a function of the aver-
age of the zδ and cell_counts output of the Flow-Py avalanche
runout simulation software (Toft et al., 2023). The zδ layer
has a fixed maximum value of 270, which is defined as an
input parameter of Flow-Py (D’amboise et al., 2022). How-
ever, the cell_counts layer represents the number of release
area pixels that could potentially impact a given runout area
cell, which can have a wide range of maximum values in ar-
eas with multiple large channelized overlapping avalanche
paths. For example, the maximum cell_counts value using
the ALOS DSM for Connaught Creek is roughly 4000 versus
500 in Bow Summit. In the interest of making the overhead
exposure layer more standardized across different types of
terrain and with different DEM resolutions, we take the nat-
ural log of the cell_counts layer and scale it the range of 0 to
100 before combining it with the zδ layer. However, the re-
sulting overhead exposure layer can still vary considerably
depending on the maximum cell_counts value for a given
study area.

The forest density parameter for determining the threshold
between open and sparse forest (TREE01) is also important
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Table 8. AutoATES localized input parameters for Connaught Creek by DEM dataset.

Input raster Input parameter ALOS 26 m CDEM 17 m Stereo 10 m Lidar 5 m

Slope angle threshold SAT12 18° 18° 19° 18°
SAT23 29° 28° 29° 31°
SAT34 39° 38° 37° 37°
WIN_SIZE 3 3 13 30

Alpha angle threshold AAT12 24° 24° 24° 24°
AAT23 34° 34° 34° 34°

Overhead exposure OE12 5 5 5 5
OE23 25 30 35 30

Forest density TREE01 5 5 5 5
TREE12 20 20 20 20
TREE23 25 25 25 25

Island filter size ISL_SIZE 30 000 30 000 30 000 35 000

for accurately capturing challenging (2) terrain. This is pri-
marily due to how the ATES rating is adjusted in forested
areas after the initial ATES classification step. The basal area
threshold to delineate sparse forest is 5 m2 per hectare in Bow
Summit and 10 m2 per hectare in Connaught Creek. It is be-
yond the scope of this article to conduct field site visits to
determine whether these parameter differences are due to ac-
tual differences in forest character on the ground or due to
the variability in the VRI datasets. The Connaught Creek
area receives more annual precipitation compared to Bow
Summit (Shandro and Haegeli, 2018; Haegeli and McClung,
2007), which could lead to generally denser vegetation. To
apply AutoATES in other areas, we recommend users care-
fully consider the forest data available and ecological climate
to accurately set the forest density parameters.

The relative consistency of the localized slope angle and
alpha angle input parameters is an indication that there are
not substantial differences in the slope angle distribution
for avalanche release or the runout distance of avalanches
between our two study areas (McClung and Mears, 1991;
Jamieson et al., 2018). This is likely due to the fact that we
are using low-resolution DEM input data and the fact that
persistent weak layers are common in both locations. While
the common weak layer types and overall snowpack charac-
ter differ between the two study areas, the shared propensity
for development of persistent weak layers and the associated
terrain management considerations could lead to the input
parameters values being largely similar.

4.2 Effect of DEM type and resolution

Our results show that DEM type and resolution have minimal
impact on the overall accuracy of AutoATES in Connaught
Creek. Using four different DEM datasets ranging from 5 to
26 m resolution, we performed a grid search to optimize the
input parameters and found that all DEMs produce ATES rat-

ings with accuracies of roughly 74.5 %± 1 % (Table 8). The
fact that lower-resolution DEM data performs equally as well
as high-resolution DEM data is an advantage for processing
AutoATES on large scales and makes the application of the
AutoATES model more feasible in different regions world-
wide.

Prior research has clearly demonstrated that the accura-
cies of PRA models and runout simulations are sensitive to
DEM type and resolution (Brožová et al., 2021, 2020; Bühler
et al., 2011, 2013). Therefore, the accuracies of the individ-
ual components of the AutoATES model, which include a
PRA model and runout model, are assumed to be higher with
higher-resolution DEM data. The greater accuracy of high-
resolution DEM data is also clearly shown by the increased
precision in identifying accurate slope angles and terrain fea-
tures relevant for avalanche release (Fig. 6).

One notable difference between the DEM types is the
amount of lateral spreading that occurs in channelized terrain
features in the Flow-Py runout simulations. For the CDEM
and ALOS DSM data, the width of the avalanche runout
zones in gully features extends towards the visible trim lines
of forested terrain (Fig. 13c–d) indicating that these areas are
impacted by avalanches frequently enough to deter growth
of forests (McClung and Schaerer, 2023). However, in lidar
and stereo DEM data the lateral spreading of the runout in
gully features is limited to the width of the incised creek
bed (Fig. 13a–b). Prior research has demonstrated that ter-
rain smoothing due to snow loading has a strong impact
on avalanche release and runout modeling (Veitinger et al.,
2014). Based on this observation we recommend exploring
DEM smoothing functions based on snow depth, resampling
the DEM to a lower resolution, or adjusting the input param-
eters of Flow-Py for more realistic runout modeling when
using higher-resolution DEM data.

In addition, the stereo 10 m DSM has areas with unreal-
istically steep terrain compared to the other DEM datasets
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Figure 13. Effect of DEM resolution on runout simulation in Flow-Py in channelized terrain features. Note the difference in the width of the
high-overhead-exposure region in the two gullies and the relationship to the extent of forested terrain.

along the margins of forested terrain. This is a common issue
with stereo DSMs, because they are a digital surface model
which represents the first reflective surface (i.e., top of forest
canopy). These errors do not appear to have a major impact
on the overall accuracy for the stereo DSM but are notable in
slope angle layers and PRA output and should be considered
when using stereo DSM data as input to AutoATES.

4.2.1 Simplicity and scale of ATES system

There are two likely high-level causes of the DEM input hav-
ing no effect on the accuracy of AutoATES. First is the fact
that the ATES system is designed around generalizing terrain
features into broad categories to simplify end user interpreta-
tion of terrain exposure. The nature of the ATES system is to
de-emphasize precise measurements of any individual terrain
characteristic and focus on a more holistic view of multiple
terrain characteristics. Based on that view of the terrain, au-
tomated ATES models would benefit more from developing
meaningful representations of as many of the terrain charac-
teristics outlined in ATESv2 (Statham and Campbell, 2023)
as possible over capturing very high-resolution representa-
tions of a few DEM derivatives.

This holistic perspective of developing an automated
ATES model is in line with our approach to reverse engineer
the optimal input parameters. Our goal is not to prescribe
what an ATES rating should be based on theoretical under-
standing of avalanche behavior coupled with easily accessi-
ble GIS tools. Instead, we are aiming to extract meaningful
thresholds from the work of avalanche experts and develop
datasets that represent meaningful terrain characteristics for
classifying avalanche terrain.

The second likely cause of high-resolution DEM input
not improving the performance of AutoATES is due to a
mismatch in scale between the automated approach and the
ATES benchmark maps, as already pointed out by Larsen et

al. (2020). Human ATES maps are based on polygon fea-
tures which are created by manually drawing boundaries
around terrain features with similar characteristics (Statham
and Campbell, 2023). An advantage of this approach is that
it simplifies the ATES map into a set of features that are rel-
evant for the scale of backcountry travel in avalanche terrain.
The resulting map provides a smooth and clean appearance
and focuses on the most important features in the terrain. A
disadvantage of this approach is that the drawing of polygon
boundaries is highly subjective and relies heavily on the local
knowledge and experience of the human mapper.

Human maps are also able to consider common travel
routes and incorporate overall terrain exposure to capture a
bigger picture of recreational use for a given area. For exam-
ple, mapping an isolated area of simple (1) terrain within an
otherwise steep and highly exposed slope is not necessarily
meaningful in the big picture because the routes to access that
terrain involve exposing yourself to the surrounding slopes.
Incorporating the bigger picture of terrain exposure allows
human mappers to consider multiple scales, ranging from ter-
rain features to entire basins, when determining ATES ratings
(Statham et al., 2018). The current version of AutoATES is
not able to incorporate the cumulative exposure of traveling
through avalanche terrain and therefore is purely based on
the local terrain characteristics.

Currently, AutoATES attempts to bridge the gap in scale
between human and automated maps by including the is-
land filter function to remove small regions in the AutoATES
map. This method is effective at simplifying the output of
AutoATES and improving alignment with manual maps but
results in a loss of data resolution. A fundamental question in
developing automated ATES is whether the aim of matching
human maps is really the best way to leverage the advantages
of a computer-based system. While AutoATES has the capa-
bility to produce much higher-resolution output compared to
manual ATES maps due to its ability to calculate terrain char-
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acteristics on a pixel-by-pixel basis across large study areas,
it would be tedious and impractical for a human ATES map-
per to adopt the same approach. This computational advan-
tage could be especially important for zonal ATES mapping
where the cumulative hazard across a route is less important
than grouping regions with similar characteristics within a
larger basin.

4.3 Limitations

This research aims to evaluate the performance of the ATES
classification portion of the AutoATES model and does not
attempt to validate the PRA model and Flow-Py runout
model in a robust way. Future research using local avalanche
cadaster information could test how changes in the input
parameters of the PRA model and runout model impact
the overall accuracy of AutoATES. Of particular interest is
how the PRA model and runout model perform in maritime
snow climates, which have so far not been widely tested
(D’amboise et al., 2022; Neuhauser et al., 2020).

The study areas selected for this research are both regions
with relatively high-elevation peaks, steep terrain, and rela-
tively small areas of forested terrain. This terrain is largely
representative of the type of mountainous terrain that back-
country skiers recreate in, but it is not necessarily represen-
tative of terrain that is favored by other winter recreation-
ists like snowmobilers, snowshoers, hikers, or cross-country
skiers. Further validation is necessary in areas that are largely
non-avalanche (0) terrain or simple (1) terrain with occa-
sional avalanche paths.

4.4 Practical applications

AutoATES was developed as a tool for large-scale automated
terrain mapping which can provide avalanche terrain infor-
mation for much larger swaths of mountainous terrain than
previously possible. Using AutoATES effectively requires
knowledge of the local snow climate and careful considera-
tion of available DEM and forest input data. AutoATES maps
can be used either as a first draft to be manually revised by
local experts or as a stand-alone product after quality control
with local avalanche experts. Despite the recommendation of
vetting the output of AutoATES maps with local experts be-
fore release to the public, the automated system still provides
massive improvements in efficiency compared to traditional
manual mapping methods.

Localizing and validating AutoATES is dependent on the
input datasets available. This research uses forest data that
likely differ from data available in other provinces or coun-
tries. Additional validation and testing of forest input param-
eters for both the PRA model and ATES classification in-
put parameters is necessary if applying AutoATES in regions
with different types of forest data available.

For those interested in applying AutoATES in new study
areas without validation datasets available to localize the

model, we recommend starting with the default input param-
eters presented in Toft et al. (2023). This research has shown
that the most likely areas for errors in AutoATES are around
treeline elevations where forest datasets may not accurately
capture the extent and character of forested terrain. From an
end user perspective these are critical areas to capture ac-
curately because of the frequent use of forested terrain un-
der low-visibility conditions or during periods with elevated
avalanche hazard. We recommend biasing AutoATES toward
overpredicting the ATES rating in these cases so that the risk
management practices of end users are biased towards be-
ing more conservative. The research presented in this paper
has shown that the TREE01 and OE23 parameters are crit-
ical for the accuracy of challenging (2) terrain. We recom-
mend testing a range of input parameters and consulting lo-
cal avalanche experts to help identify appropriate thresholds
to define simple (1) and challenging (2) terrain.

When applying AutoATES in terrain with isolated or small
avalanche paths, especially in largely forested terrain, the is-
land filter size is an important parameter to control which
features are filtered out. For our study areas the median poly-
gon areas from the ATES benchmark maps are 114.2 ha for
non-avalanche (0), 2.7 ha for simple (1), 49.0 ha for challeng-
ing (2), 407.9 ha for complex (3), and 16.0 ha for extreme
(4). In comparison the optimized AutoATES island filter size
is 30 000 m2 or 3.0 ha for both Connaught Creek and Bow
Summit using the ALOS DSM. Based on the substantially
smaller median size of polygons in simple (1) terrain, it could
be advantageous to decrease the island filter size if applying
AutoATES in largely forested terrain.

The fact that low-resolution DEM data produce AutoATES
maps with equivalent accuracy is an advantage for generat-
ing ATES maps on large spatial scales. The most computa-
tionally expensive component of the AutoATES model chain
is the Flow-Py runout model. The computation resources re-
quired to process Flow-Py increases as a function of the sur-
face area of the raster cell size, so a 5 m DEM (25 m2) would
take roughly 4 times longer to process compared to a 10 m
DEM (100 m2) for the same study area. We recommend us-
ing the ALOS global DSM in areas without higher-resolution
data available.

5 Conclusions

This research aimed to validate and localize a model for gen-
erating automated ATES ratings against professional ATES
maps in western Canada and evaluate the impact of different
DEM input data. The validation and localization utilized a
grid search method to determine the optimal input parameters
for two study areas: Bow Summit in Banff National Park, Al-
berta, and Connaught Creek in Glacier National Park, British
Columbia. The results demonstrate that the accuracy of Au-
toATES ranges from 75.1 % to 84.4 % for the two study ar-
eas, respectively, as compared to ATES benchmark maps cre-
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ated by three local avalanche experts. In comparison to the
three individual manual ATES maps, AutoATES was within
1 percentage point of the average overall accuracy in both
study areas. DEM resolution had surprisingly little effect on
the output of AutoATES based on four input DEMs in the
Connaught Creek study area ranging from 5 to 26 m resolu-
tion. The overall accuracy compared to the ATES benchmark
map is 74.5 %, ±1 % for all DEMs.

Further testing in different snow climates and ecological
regions is required to fully understand the best practices for
applying AutoATES. Future research should aim to further
validate the AutoATES model by specifically validating the
PRA model and runout simulation tool Flow-Py. Significant
improvements in accuracy and consistency in forested areas
are possible with higher-resolution forest input data, such as
a satellite remote sensing land cover classification or lidar
(Bebi et al., 2021; Bühler et al., 2022; Sykes et al., 2022).
Including a metric for terrain exposure which captures the
consequences of falling (Harvey et al., 2018) could comple-
ment the avalanche runout exposure metrics currently used in
AutoATES, especially for improving accuracy in extreme (4)
terrain. Finally, further development of the AutoATES classi-
fication model to consider alternative classification methods
such as fuzzy membership models (Veitinger et al., 2016) or
machine learning models could improve accuracy and make
future validation efforts more nuanced at highlighting areas
where the model has high uncertainty.

A central question in validating automated ATES methods
is whether manually generated ATES maps truly represent
the gold standard that automated maps should aim for. The
ability of AutoATES to classify terrain on a pixel-by-pixel
basis across large swaths of mountainous terrain based on a
meaningful set of terrain characteristics far exceeds the com-
putational ability of human mappers. Automated maps have
the potential to outperform human maps in terms of preci-
sion, replicability, and the scale that the output can be pre-
sented.

An alternative to purely automated ATES mapping is to
leverage the computational efficiency and precision of Au-
toATES to generate a first draft map which is then up-
dated based on interpretation of local experts. Combining the
strengths of automated and manual mapping methods pro-
vides the optimal trade-off between efficiency and capturing
local expertise. Producing ATES maps in this manner could
also provide further validation datasets to continue improv-
ing AutoATES by characterizing the differences between the
purely automated maps and the manually adjusted versions.
To determine the best practices for ATES mapping in the fu-
ture, we should consider how to improve end users’ ability to
make informed risk management decisions based on the ter-
rain characteristics and current avalanche hazard conditions.
Further research is required to test how end users interpret
ATES maps and what characteristics help them make appro-
priate assessments of avalanche terrain.

AutoATES has demonstrated the ability to classify terrain
with similar accuracy to human experts, which presents an
opportunity to redefine how ATES ratings are generated and
applied. Currently, maps are only available for high-use ar-
eas where resources exist to offset the time and cost of man-
ual mapping. AutoATES opens up the opportunity to create
low-cost avalanche terrain information across large areas of
mountainous terrain.
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Appendix A

Figure A1. Grid search plot for the Canadian 17 m DEM in Connaught Creek.
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Figure A2. Grid search plots for stereo 10 m DSM in Connaught Creek.
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Figure A3. Grid search plots for lidar 5 m DTM in Connaught Creek.
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